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Abstract

Self-supervised learning has emerged as a promising paradigm for
enhancing the analysis of physiological signals, particularly Electrocar-
diogram (ECG) and Photoplethysmogram (PPG) data. This review
paper surveys the application of self-supervised learning techniques
in the domain of ECG and PPG signal analysis. Traditional super-
vised methods often rely on labeled data, which can be limited and
costly to acquire in medical contexts. Self-supervised learning lever-
ages the inherent structure and temporal dependencies within ECG and
PPG signals to train models without explicit annotations. By exploit-
ing pretext tasks such as predicting time intervals, missing samples, or
temporal order, self-supervised approaches can learn meaningful repre-
sentations that capture crucial information for subsequent downstream
tasks. This paper provides an overview of key self-supervised methods
applied to ECG and PPG data, highlighting their advantages and chal-
lenges. Furthermore, it discusses the transferability of learned represen-
tations to various clinical applications, including arrhythmia detection,
anomaly detection, and heart rate variability analysis. Through this
comprehensive review, we shed light on the potential of self-supervised
learning to revolutionize ECG and PPG signal processing, ulti-
mately contributing to improved healthcare diagnostics and monitoring.
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1 Introduction

Biomedical signals, acquired from the intricate depths of the human body cells,
organs, and molecules, serve as profound indicators of our physiological exis-
tence. They embody a symphony of life, revealing themselves through various
forms of signal processing. For instance, the ethereal EEG unravels the mind’s
electrical whispers, while the captivating ECG unveils the rhythmic dance of
the heart. The enchanting PPG reveals the pulsating rhythm of blood flow.

It unveils hidden patterns and intricacies. Through meticulous analysis,
uncovers the pulse waveform, assesses arterial stiffness, and explores the realm
of blood oxygenation. These captivating signals, initially harnessed for diag-
nosis and detection, have found their way into the realm of medical care,
offering insights into the intricate workings of biological systems. Guided by
the artistry of Artificial Intelligence, they undergo a metamorphosis, shedding
noise, extracting exquisite features, unraveling the true essence of signal mod-
els, reducing dimensions to reveal dysfunctions and even unveiling glimpses of
future pathologies and functional events.

The manual interpretation of ECG, though essential, is a time-consuming
endeavor. Moreover, the intricate nature of complicated cases often leads to
differing opinions among cardiologists. Given the vast scale, quality, and com-
plexity of these data, relying solely on human experts or expert systems proves
to be of limited utility, urging the need for data-driven methods to emerge.
Machine learning techniques have been successfully utilized to detect cardiac
abnormalities and identify sleep disorders. A groundbreaking development in
this field comes in the form of deep learning (DL) models, particularly deep
neural networks (DNNs), which have exhibited comparable or even superior
performance to clinical cardiologists across various biomedical signal analysis
tasks. When compared with classical machine learning approaches, supervised
deep learning methods showcase outstanding advantages when it comes to
modeling ECG and PPG data.

Supervised biomedical signal processing, while widely employed, poses var-
ious challenges that hinder its effectiveness and applicability in the field of
healthcare. One of the key hurdles lies in the acquisition and annotation of
labeled data, which can be time-consuming, resource-intensive, and subject to
inter-observer variability. Additionally, the scarcity of annotated datasets in
certain medical domains limits the ability to train accurate and robust models.
These challenges have prompted researchers to explore alternative approaches
such as self-supervised learning in order to leverage the vast amounts of unla-
beled data available. Several studies have highlighted these challenges and
emphasized the need for innovative solutions. For instance, the work of Hannun
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et al. [1] and Ribeiro et al. [2] delves into the time-consuming nature of man-
ual ECG interpretation and the potential disagreements among cardiologists
in complex cases. Similarly, Zhang et al. [3], Minchole et al. [4], and Al-Zaiti
et al. [5] emphasize the limitations of supervised methods in detecting cardiac
abnormalities, while Zarei and Asl. [6] and Pan et al. [7] discuss the challenges
of labeled data scarcity in sleep disorder analysis. These papers shed light on
the challenges faced in supervised biomedical signal processing and provide a
foundation for exploring alternative approaches like self-supervised learning.

As a resolution a remarkable approach known as self-supervised learning
has emerged, offering promising possibilities for unlocking hidden knowl-
edge and patterns within physiological data. This innovative paradigm allows
machines to learn directly from the inherent structure and relationships present
in the signals themselves, without relying on labeled data. Self-supervised
learning has gained significant attention in the field, particularly in the analysis
of vital signals such as ECG and PPG. By harnessing the power of unsu-
pervised learning, self-supervised methods aim to unveil intricate insights,
enabling accurate diagnosis, disease detection, and personalized healthcare.
The purpose of this survey paper is to provide an all-encompassing review
and concise summary of the existing literature pertaining to self-supervised
biomedical signal processing techniques, specifically focusing on ECG and PPG
signals, within the realm of artificial intelligence. The paper aims to high-
light the immense potential of self-supervised algorithms that leverage ECG
and PPG signals in predicting and diagnosing cardiac diseases. Its objectives
encompass a thorough examination of the methodologies employed in the liter-
ature, an evaluation of their performance metrics, an identification of ongoing
challenges, and the proposition of potential solutions for future advancements
in this field.

The intended audience for this extensive review spans across various
domains, including researchers and practitioners entrenched in the realms
of artificial intelligence, machine learning, and healthcare. Furthermore, it
targets medical professionals, esteemed cardiologists, experts in biomedical
informatics, and computational scientists engrossed in the intricate analysis
of biomedical signals. The value of this survey extends to academia, students,
decision-makers within the healthcare sphere, industry professionals specializ-
ing in healthcare technology, and researchers in related fields such as precision
medicine and cardiology. Moreover, it captivates the attention of the broader
scientific community fascinated by the convergence of AI, digital pathology,
and the prognosis of heart disease risk. To facilitate comprehension, a compre-
hensive table (Table 1) accompanies the survey, elucidating commonly used
terminologies and their respective descriptions.

Table 1: List of accronyms and abbreviations used in paper

Acronyms Words Acronyms Words

ECG Electrocardiogram PPG Photoplethysmography

SSL Self Supervised Learning DBN Deep Belief Network

CNN Convolutional Neural Network HRV Heart rate variability

PRV Pulse rate variability SpO2 Oxygen saturation

QRS Depolarization of ventricles VAEs Variational autoencoders

RNN Recurrent Neural Network LSTM Long short term memory
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GAN Generative Adversarial network EEG Electroencephalogram

EMG Electromyography AI Artificial Intelligence

DNN Deep Neural Network

1.1 Scope of the Review

In this captivating review article, we aim to offer a comprehensive and
enchanting overview of the current research landscape surrounding the use of
self-supervised learning in biomedical signal processing, with a primary focus
on ECG and PPG signals. Our objective is to summarize the methodologies
employed, address the challenges faced, and explore the advancements made
in this field. By doing so, we seek to guide and inspire future research and
development efforts that can enhance prognosis and treatment outcomes for
patients.

To ensure the inclusiveness of our review, we conducted an extensive litera-
ture search across reputable platforms such as Elsevier, Springer, IEEE Xplore,
and Google Scholar. Our search encompassed peer-reviewed journals and con-
ferences, and we examined publications from the period between 2019 and
2023. Each selected paper’s adopted methodology underwent a comprehensive
review process. Throughout our exploration, we not only emphasized the cap-
tivating approaches described in the literature but also shed light on areas that
warrant further research and potential avenues for future investigations.

Remarkably, our investigation revealed a notable gap in existing reviews
specifically focusing on self-supervised learning techniques in biomedical sig-
nal processing, including ECG and PPG. Therefore, this review holds the
potential of being the pioneering work in this domain, providing an excep-
tional opportunity to bridge the gap between the computational community
and medical specialists. Our hope is that this bridging will foster collabora-
tive research and development endeavors in the application of self-supervised
learning techniques for ECG and PPG analysis.

The interdisciplinary nature of this review makes it highly relevant and
intriguing for a diverse range of professionals. Our target audience includes
AI practitioners, medical statisticians, and forward-thinking cardiologists who
possess a keen interest in implementing AI-driven solutions within clinical
practice. Furthermore, we have taken care to describe publicly available ECG
and PPG datasets that can facilitate biomedical signal analysis.

Ultimately, the grand aspiration of this review article is to provide valuable
insights and guidance that can shape future research directions in the captivat-
ing field of biomedical signal processing. By doing so, we aspire to contribute
to the ongoing progress and innovation in this domain, thereby benefiting both
the scientific community and patients alike.

2 Survey Methodology

In this section, we have examined the criteria utilized for selecting literature
for extracting relevant research articles in this review paper. Furthermore, we
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have exemplified the categorization of the reviewed articles according to their
publication avenues including conferences and journals and the respective years
in which they were published.

2.1 Papers Selection

In this section, we have examined the criteria utilized for selecting literature
for extracting relevant research articles in this review paper. Furthermore, we
have exemplified the categorization of the reviewed articles according to their
publication avenues including conferences and journals and the respective years
in which they were published. In this review paper, we have utilized PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) to
present in detail the main data of the research articles included. PRISMA dia-
gram is attached in Figure 1 below, it provides a conclusive view of the paper
selection process. Our search for relevant papers was conducted on Elsevier,
Springer, IEEE Xplore, and Google Scholar. Initially, a total of 7,860 papers
were identified through search queries. Among these 7860 papers, unfortu-
nately, we excluded a total of 5000 papers because they are totally irrelevant
to the topic of research which is biomedical signal processing also the data
of those papers are not based on either EEG or PPG, not focussed on self-
supervised learning or duplication. After screening the remaining 2,860 papers,
we carefully selected 305 articles that met our criteria. The remaining 2,555
papers were found ineligible for this review as they did not fulfill the relevancy
criteria. Specifically, some of these papers solely focused on other biomedi-
cal signals, rather than exploring ECG and PPG signal processing techniques
based on self-supervised learning.

Furthermore, out of the 305 selected articles, we conducted an additional
screening for legitimacy and excluded 230 papers. These papers either focused
on extracting features other than histological features (such as gene mutation
and protein biomarkers) or employed techniques other than deep learning or
machine learning, such as relying on expert pathologists for problem resolution.
In the end, the total number of articles remaining for the systematization is
equivalent to the number of 75.

2.2 Papers Extraction Methods

Relevant various platforms are used in the search of articles for this review
paper, platforms used include Elsevier, Springer, IEEE Xplore, and Google
Scholar. Mostly conference papers and peer-reviewed document papers are
selected. Different keywords related to this review are used to search exactly
relevant results. Keywords are diverse and it is combined with two logical
operators which are “OR” and “AND”, both are used to get good results
especially relevant to this review.

The list of keywords used in searching are:
• Biomedical signals, ECG, Self-supervised learning.
• PPG, Representation learning; Neural networks, Self-supervised learning
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Fig. 1: PRISMA - flow diagram of selected research articles for the review

• Photoplethysmography, Electrocardiography, Transformer based
• ECG-based, Mental stress detection, discriminative Clustering, Adver-

sarial Domain Adaptation.
• Electrocardiography, Transformers, Physiology, Pattern recognition
• Skin, Synchronization, Optical sensors, Heart rate; Wrist, Annotations,

Photoplethysmography.
Using those keywords, the word cloud is generated. The extracted keywords

taken from the research articles relating to this review are shown in Fig 2
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Table 2: Inclusion Exclusion Criteria.

Inclusion Criteria Exclusion Criteria

Work on automatic analysis of electrocar-
diogram signal is done in that article.

Articles techniques specifically do not
involve ECG signals.

Research articles that utilize self-supervised
learning methods for processing biomedical
signals.

Articles that are not using self-supervised
learning techniques, particularly for biomed-
ical signal processing.

Articles featuring the analysis of PPG sig-
nals using the techniques of self-supervised
learning

If the PPG technique is not used in the fea-
tured article

Articles featuring techniques to enhance
artifact removal, feature extraction, and
electrocardiography.

Articles featuring related information with-
out original research

Fig. 2: A picture of the most repeated keywords from research articles under
review.

The word cloud indicates the most used words in the research articles
chosen for the review paper self-supervised learning for biomedical signal pro-
cessing. The main goal is to transform into a sequence of all the available
literature documents related to biomedical signal processing using ecg and ppg
signals. So, if we look at the word cloud it highlights the main terms used which
include neutral, physiology, deep signal, electrocardiography, synchronization,
extractions, annotations, and many more.

Paper inclusion and exclusion criteria are in detail described in Table 2. In
the initial stage selection of papers is done based on their titles. If the titles
do not fulfill the exclusion and inclusion criteria, in the later stage, the final
selection is done based on what is in the abstract, the conclusion of the paper,
and the paper’s model diagram.
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2.3 Papers dispersal

In this section, we present the distribution of the published papers among
various journals, conferences, and years. The objective of this section is to offer
a summary of the articles included in this review, demonstrating the extent of
available literature in peer-reviewed publications and conferences, as well as
the influence of the work.

Figure 3 shows the distribution of reviewed articles across the years.
The graph illustrates the progressive expansion of literature on ECG and

PPG from 2019 to 2023. The research on biomedical signal processing using
self supervised learning using ECG and PPG signals has shown consistent
growth starting in 2019, with a significant surge in publications during 2023,
with 26 research articles being published.

Fig. 3: Bubble graph representing number of articles chosen from top ranked
journals and conferences

Figure 4 illustrates the distribution of papers according to their sources. It
displays the count of self-supervised learning articles based on ECG and PPG
data, extracted from various reputable journals and conferences. Each bubble
in the figure represents the number of papers obtained from a specific journal
or conference.

The number of research articles focusing on self supervised learning for
ECG and PPG in different journals and conferences is visually presented in
Figure 9. Each venue percentage is depicted in the pie chart that corresponds
to a specific segment color of the total block. The graphical representation
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indicates that the largest proportion of papers, totaling 13% articles, originated
from BSPC journal. Moreover, CVF contributed 5% papers to the overall
review.

Fig. 4: Bubble graph representing number of articles chosen from top ranked
journals and conferences
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Fig. 5: Bubble graph representing number of articles chosen from top ranked
journals and conferences

3 Self-Supervised Learning Techniques

Self-supervised learning techniques can be valuable for biomedical signal
processing, including Electrocardiogram (ECG) and Photoplethysmography
(PPG) data analysis. These techniques leverage the abundance of unlabeled
data to learn meaningful representations without relying on explicit anno-
tations. Lee et al. [8] introduced a novel self-supervised learning algorithm
utilizing ECG delineation, demonstrating its efficacy in classifying arrhyth-
mias. The algorithm significantly improved the performance of deep neural
networks (DNNs) across multiple datasets and different levels of labeled data.
Additionally, we employed transfer learning to fine-tune the algorithm, further
enhancing its capabilities. The pursuit of training CNNs for ECG classification
is often hindered by the need for an extensive collection of annotated samples,
a costly endeavor. In an ingenious approach, [9] resolved this challenge through
the utilization of transfer learning. Initially, CNNs are pretrained on the vast
public repository of unprocessed ECG signals. Subsequently, these networks
are refined on a limited dataset to specialize in the identification of Atrial
Fibrillation, the prevailing cardiac arrhythmia. A new approach called Seg-
ment Origin Prediction (SOP) was introduced as a self-supervised pre-training
method proposed by Luo et al. [10] aimed at enhancing the model’s ability
to classify arrhythmias. By incorporating a data reorganization module, the
model learns ECG features by predicting whether two segments belong to the
same original signal, eliminating the need for annotations [11]. Additionally,
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by including a feed-forward layer during the pre-training phase, the model
achieves improved performance when utilizing labeled data for arrhythmia
classification in subsequent stage [12]. [13] introduces a self-supervised learn-
ing approach for precise heart rate estimation. By skillfully approximating a
participant’s PPG signal from videos, specifically focusing on well-covered skin
regions, their framework triumphantly handles diverse local noises. Addition-
ally, the model enriches an extracted rPPG signal from a facial landmark with
neighboring facial landmarks’ rPPG signals, expertly aligning their distinctive
personalized patterns.

Jangwon et al. [14] utilized EfficientNet-B3, a powerful deep learning model,
as the foundation for their research. They employed self-supervised learning
in their pre-training process, specifically using label masking, to handle data
from multiple sources. Their goal was to identify clinical diagnoses from various
types of ECG recordings, ranging from 12-lead to reduced-lead formats such
as 6-lead, 4-lead, 3-lead, and 2-lead.

3.1 Contrastive Learning

Contrastive learning is primarily an unsupervised learning technique, where
the labels or annotations are not required during the training process. However,
in the context of ECG (Electrocardiogram) and PPG (Photoplethysmogram)
signal processing, contrastive learning can be combined with a supervised
approach to enhance the performance of the models.

3.1.1 Application of contrastive learning to ECG and PPG
signals

Contrastive learning has shown great potential in the application of electro-
cardiogram (ECG) and photoplethysmogram (PPG) signals, providing several
benefits in their analysis. One application is in unsupervised representation
learning, where contrastive learning can extract meaningful features from large
amounts of unlabeled ECG and PPG data. By contrasting similar and dissim-
ilar signal segments, contrastive learning can capture underlying patterns and
structure, enabling the model to learn representations that reflect the intrinsic
characteristics of the signals. These learned representations can then be uti-
lized for various downstream tasks such as arrhythmia detection, heart rate
variability analysis, or blood pressure estimation.

Furthermore, contrastive learning can be employed for domain adaptation
and transfer learning in ECG and PPG analysis. By pre-training a model on a
large dataset from a source domain, such as a different hospital or population,
and then fine-tuning it on a smaller labeled dataset from the target domain,
the model can adapt and generalize well to the specific characteristics of the
target domain. This is particularly useful in scenarios where labeled data in
the target domain is limited or expensive to obtain. Contrastive learning allows
the model to leverage the abundant unlabeled data from the source domain to
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learn robust and transferable representations, improving the performance and
generalization capability on the target domain.

However, applying contrastive learning to ECG and PPG signals also
presents challenges. One challenge is the selection of appropriate positive and
negative pairs for the contrastive loss calculation. In the case of ECG and
PPG signals, determining similar and dissimilar segments can be non-trivial
due to variations caused by different physiological conditions, noise, artifacts,
or measurement devices. Careful consideration is required to design effective
strategies for constructing the positive and negative pairs that capture the rele-
vant similarities and differences in the signals. Additionally, the computational
complexity of contrastive learning can be demanding, especially when dealing
with long ECG or PPG sequences. Efficient sampling methods and optimiza-
tion techniques need to be employed to make the training process feasible and
scalable.

In summary, contrastive learning offers valuable applications in ECG
and PPG signal analysis, including unsupervised representation learning and
domain adaptation. By leveraging unlabeled data and learning meaningful
representations, contrastive learning can enhance the performance of vari-
ous tasks in ECG and PPG analysis. However, careful consideration of pair
construction and computational efficiency is essential to address the chal-
lenges specific to these signal types. A novel approach was introduced by John
et al. [15] for determining the heart rate of individuals using facial video.
Instead of relying on existing blood pressure data, this method focuses on
extracting the photoplethysmography (PPG) signal present in facial expres-
sions through self-supervised contrastive learning. To enhance the accuracy,
a supervised heart rate estimator is trained to closely align with the actual
heart rate measurements. Ye et al. [16] introduces a new technique called Dis-
criminative Clustering Enhanced Adversarial Domain Adaptation (DC-ADA)
for detecting mental stress across different individuals using ECG data. This
method enhances the training process of existing bi-classifier adversarial UDA
methods by incorporating a self-supervised loss on the target data. The pro-
posed approach involves obtaining pseudo labels for the target data through a
clustering-based strategy. These labels are then utilized as supervision to guide
the classification of ambiguous target data into the appropriate stress levels.

Retraining models for new users in healthcare applications often necessi-
tates the collection of a significant amount of labeled data, which can be both
challenging and expensive. This is particularly true for applications like atrial
fibrillation detection. To address the scarcity of labeled data, unsupervised
and self-supervised techniques have emerged as promising solutions. Fonseca
et al. [17] proposes the utilization of contrastive learning to enhance the per-
formance of a CNN that classifies atrial fibrillation in scenarios with limited
labeled data, small models, and noisy data. The effectiveness of this strategy
was evaluated using the largest publicly available ECG dataset, and the study
presents results in terms of the F1-score for various proportions of unlabeled-
labeled data and different model sizes. The findings indicate that the proposed
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strategy surpasses the baseline approach, achieving up to a 30% improvement
in the 10-fold mean F1-score compared to a 5.8% enhancement in AUC, which
is the current state-of-the-art performance metric.

Remote Photoplethysmography (rPPG) systems offer a non-contact, cost-
effective, and widely available means of regularly monitoring heart rate (HR)
[18]. They achieve this by analyzing the scattered light reflected from changes
in blood volume in human skin tissues (known as PPG). However, these sys-
tems have not been widely adopted due to the absence of a standardized
approach for estimating HR from skin videos in various practical situa-
tions. Conventional supervised methods necessitate a substantial number of
accurately synchronized annotations between video and rPPG signals, which
significantly hinder the development of comprehensive end-to-end rPPG mod-
els. Hasan et al. [19] introduces Self-rPPG, a technique that directly learns the
optical and physiological mechanisms of rPPG from unlabeled videos with-
out requiring synchronized rPPG signal annotations. The authors devised a
self-supervised contrastive learning-based pretraining strategy to learn the rep-
resentation of the inherent frequency and phase of diffusion signals, as well as
the temporal coherence of video frames, using unlabeled sequences collected
from multiple public datasets. They conducted experiments to determine the
optimal contrastive learning schemes (loss functions and sampling strategy)
and to evaluate the significance of the features learned by Self-rPPG. The
results showed that the self-supervised representations can effectively encode
the frequency and phase of diffusion signals, while also demonstrating resilience
against temporal distortion. The effectiveness of different augmentations for
contrastive self-supervised learning of electrocardiogram (ECG) signals and
the optimal parameters are thoroughly examined in this study [20]. The base-
line approach comprises two primary components: contrastive learning and the
downstream task. Initially, an encoder is trained using various augmentations
to extract ECG signal representations that are generalizable. Subsequently,
the encoder is frozen, and a few linear layers are fine-tuned using differ-
ent quantities of labeled data for arrhythmia detection in downstream tasks.
[21] introduced ALPINE, a captivating approach named A noveL rPPG tech-
nique for Improving remote heart rate estimatioN using contrastive lEarning.
ALPINE incorporates the power of contrastive learning to overcome limited
labeled data, fostering data diversity for enhanced network generalization.
Moreover, they introduce an innovative hybrid loss, encompassing contrastive
loss, signal-to-noise ratio (SNR) loss, and data fidelity loss, further enhancing
their methodology.

[22] introduces a remarkable unsupervised learning framework for signal
regression, eliminating the reliance on labeled video data. By embracing the
essence of periodicity and finite bandwidth, this approach unveils the blood vol-
ume pulse from unlabelled videos. The study concludes that promoting sparse
power spectra within the realm of normal physiological frequencies, coupled
with variance across batches of power spectra, proves ample for learning the
visual attributes of periodic signals. [23] introduced a captivating Intra-Inter
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Subject Self-Supervised Learning (ISL) model tailored for multivariate cardiac
signals. This model skillfully incorporates medical expertise to effectively glean
insights from differences within and between subjects. For intra-subject self-
supervision, the ISL model harnesses a channel-wise attentional CNN-RNN
encoder to extract heartbeat-level features from each individual. Additionally,
a stationarity test module captures temporal dependencies among heartbeats.
In the realm of inter-subject self-supervision, the model employs a series of
data augmentations inspired by the unique clinical attributes of cardiac sig-
nals. By employing contrastive learning, it acquires distinct representations for
different patient types. [24] presents a captivating framework called CROCS,
which employs supervised contrastive learning. Here, cardiac signal represen-
tations linked to specific patient attributes, such as disease class, sex, and
age, are drawn towards learnable embeddings known as clinical prototypes.
These prototypes serve a dual purpose: facilitating the clustering and retrieval
of unlabeled cardiac signals based on various patient attributes. [25] presents
an exquisite, all-encompassing framework for semi-supervised learning across
domains, incorporating the elegance of contrastive learning and the prowess
of adversarial training strategies. [26] introduced an exquisite unsupervised
contrastive learning framework. This framework ingeniously incorporates a
fresh contrastive loss, harnessing the power of a data augmentation scheme
that gracefully combines two data samples to create novel instances. The
central objective of this framework lies in predicting the mixing component,
which gracefully serves as soft targets within the loss function. [27] present an
exquisite contrastive learning framework that harnesses metadata to curate
positive and negative pairs during the training of unlabeled data. Specifically,
the contrastive learning model ingeniously integrates metadata from clinical
records, such as age, sex, weight, and sound location, to establish a pro-
found connection between lung and heart sound recordings on a patient level,
effectively enhancing the overall context.

Proposing a novel technique for remote photoplethysmography (rPPG),
[28] introduced an innovative approach that eliminates the need for costly
physiological training data. Their method leverages self-supervised training,
combining contrastive learning with a subtle prior on the frequency and
smoothness of the target signal. By integrating a learned saliency resampling
module, they demonstrated the ability to reduce reliance on manually engi-
neered features while offering insights into the model’s behavior and potential
limitations.

[29] introduces an exquisite deep learning framework that effortlessly cap-
tures the essence of physiological waveforms. By employing convolutional
neural networks (CNNs), it distinguishes genuine arrhythmia alarms from false
ones. Through the ingenious utilization of Contrastive Learning, the frame-
work minimizes a binary cross entropy classification loss while incorporating
a remarkable similarity loss derived from pairwise waveform segment compar-
isons. Moreover, to enhance the models, they integrate learned embeddings
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from a rule-based approach, effectively harnessing prior domain knowledge
specific to each alarm type.

[30] present an elegant solution called the Contrastive Accelerome-
ter–Gyroscope Embedding (CAGE) model. This innovative approach utilizes a
two-stream convolutional neural network (CNN) to process the accelerometer
and gyroscope signals independently. By fusing modality-specific features at
the feature-level, the model effectively tackles recognition tasks. Additionally,
they introduce a self-supervised learning (SSL) task, where the accelerometer
and gyroscope embeddings from the same activity instance are paired. In their
work, [31] introduced the Dense Lead Contrast (DLC) approach, which utilizes
contrastive learning on multilead ECGs. By employing a multibranch network
(MBN), DLC fosters intralead and interlead invariance, resulting in a compre-
hensive global representation through a joint loss that combines intralead and
interlead contrastive losses.

3.1.2 Benefits and challenges of contrastive learning in
biomedical signal analysis

Contrastive learning has gained attention as a promising technique in biomed-
ical signal analysis, offering several benefits in this domain. One key advantage
is its ability to leverage large amounts of unlabeled data to learn meaningful
representations. Biomedical signal datasets are often vast and unlabeled, mak-
ing contrastive learning an attractive approach for unsupervised representation
learning. By contrasting positive pairs (similar samples) and negative pairs
(dissimilar samples), contrastive learning can capture the underlying struc-
ture and patterns in the signals, facilitating subsequent downstream tasks such
as classification or anomaly detection. Moreover, contrastive learning enables
transfer learning, where models pre-trained on a large dataset can be fine-
tuned on smaller labeled datasets, allowing for efficient utilization of limited
labeled biomedical signal data.

However, contrastive learning also presents certain challenges in the con-
text of biomedical signal analysis. One significant challenge is the choice of
appropriate similarity metrics or contrastive loss functions. Selecting the right
metrics that capture the relevant similarities between signals is crucial for
the success of contrastive learning. Additionally, contrastive learning may face
difficulties in handling highly imbalanced datasets or rare events in biomedi-
cal signals. This can lead to suboptimal representation learning, as the model
might prioritize the majority class, potentially overlooking critical minority
patterns. Another challenge is the computational complexity of contrastive
learning, which often requires significant computational resources and time,
particularly when dealing with large-scale biomedical signal datasets. Careful
optimization strategies and efficient implementation are necessary to mitigate
these challenges and ensure the practicality and effectiveness of contrastive
learning in biomedical signal analysis.
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3.2 Generative Models

Generative models, such as Variational Autoencoders (VAEs) or Generative
Adversarial Networks (GANs), can also be employed for self-supervised learn-
ing. These models learn to generate realistic synthetic ECG or PPG signals by
modeling the underlying data distribution. By training such models on large
amounts of unlabeled data, they can capture the inherent structure and pat-
terns of the signals. The trained generative models can then be used for data
augmentation, anomaly detection, or as a source of synthetic data for down-
stream tasks. In their work, [32] introduce CardioGAN, an elegant adversarial
framework that transforms PPG signals into exquisite ECG waveforms. This
innovative model harnesses an attention-based generator, gracefully capturing
intricate details, while employing dual discriminators to safeguard the fidelity
of the generated data across both time and frequency domains.

3.2.1 AutoEncoders

Autoencoders are neural network architectures that learn to encode input data
into a low-dimensional latent space and then decode it back to the original
input. By training an autoencoder on a large amount of unlabeled ECG or
PPG data, the model can learn to capture the salient features and patterns
within the signals. Once trained, the encoder part of the network can be used
to extract meaningful representations that can be employed for downstream
tasks like anomaly detection or classification. Daniel et al. [33] presented a
novel approach to self-supervised learning specifically for 12-lead electrocar-
diograms (ECGs). In their method, they introduced a task to mask certain
segments of the input signals across all channels and aimed to predict the orig-
inal values. To implement this, they employed a U-ResNet model consisting
of an encoder-decoder structure. They evaluated the model’s performance by
initially pretraining it on the CODE dataset using self-supervised learning and
subsequently fine-tuning it on the PTB-XL and CPSC benchmarks to leverage
the acquired feature.

Dezaki et al. [34] The Echo-Rhythm Net method, proposed in [], intro-
duces an automated approach for detecting atrial fibrillation (AF) by relying
solely on echocardiogram imagery (echo), eliminating the requirement for an
electrocardiogram (ECG). The framework comprises three primary elements:
an encoder, trained through a self-supervised technique, a layer for temporal
self-similarity matrix, and a supervised detector that is trained using labels of
cardiac rhythm provided by sonographers.

In their study, Yang et al. [35] present a model for learning representa-
tions of ECG signals based on a masked autoencoder. The proposed approach
involves applying a high masking ratio to the original ECG signal and employ-
ing an autoencoder to reconstruct it. The model incorporates both local and
global ECG features by utilizing multi-scale convolution for extracting local



Springer Nature 2021 LATEX template

- 17

features and employing a transformer for capturing global features. The train-
ing process involves pre-training the model on ECG datasets and subsequently
fine-tuning it for each specific ECG classification task.

Catering to the core challenge in diagnostics, [36] addresses the harmo-
nious integration of diverse modalities, forging a unified portrayal of the
physiological state. Their ingenious solution lies in a cross-modal autoencoder
framework, melding distinct data modalities to create a comprehensive depic-
tion of the cardiovascular condition. Remarkably, this framework fuses cardiac
magnetic resonance images (MRIs) that capture structural details with elec-
trocardiograms (ECGs) that convey myoelectric insights, yielding cross-modal
representations of exceptional depth and breadth

3.2.2 Use of autoencoders for ECG and PPG signal
representation learning

Autoencoders have proven to be valuable tools for representation learning
in various domains, including the analysis of electrocardiogram (ECG) and
photoplethysmogram (PPG) signals. ECG and PPG signals contain valuable
information about the cardiovascular system and can be used for various clin-
ical applications, such as arrhythmia detection, heart rate variability analysis,
and blood pressure estimation.

Autoencoders are neural network architectures that are designed to recon-
struct their input data. They consist of an encoder network that compresses
the input into a lower-dimensional representation, called the latent space, and
a decoder network that attempts to reconstruct the original input from the
latent representation. By training the autoencoder to minimize the reconstruc-
tion error, the model learns to extract meaningful features and representations
from the input data.

Fig. 6: Sample ECG Signal
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3.3 Variational autoencoders

Variational Autoencoders (VAEs) can indeed be used for self-supervised
learning with biomedical signals such as ECG (electrocardiogram) and PPG
(photoplethysmogram). VAEs are a type of generative model that can learn
the underlying latent representation of the data by training on unlabeled sam-
ples. This latent representation can then be used for various downstream tasks,
including classification, anomaly detection, and data generation

3.3.1 Introduction to VAEs

Variational Autoencoders (VAEs) are a type of generative model that can
be used for self-supervised learning. Self-supervised learning is an approach
to training machine learning models where the labels or annotations for the
training data are automatically generated from the data itself, rather than
being provided by human annotators.

In the context of VAEs, self-supervised learning typically involves training
the model to reconstruct the input data, or to generate new samples that are
similar to the input data. The basic idea is to use the unsupervised training
process of the VAE to learn a latent representation of the data that captures
its salient features, without relying on any external annotations.

3.3.2 Application of VAEs for ECG and PPG signal feature
extraction

Variational Autoencoders (VAEs) have found applications in various domains,
including biomedical signal processing such as electrocardiogram (ECG) and
photoplethysmogram (PPG) signal analysis. VAEs can be employed for feature
extraction from ECG and PPG signals, which are vital in diagnosing cardio-
vascular diseases and monitoring physiological conditions. By leveraging the
unsupervised learning capabilities of VAEs, the encoder-decoder architecture
can learn to capture the underlying patterns and distinctive characteristics
of these signals in a latent space representation. This latent space can then
be utilized to extract relevant features such as heart rate variability, rhythm
abnormalities, or pulse characteristics. The reconstructed signals obtained
from the decoder can be compared with the original input signals, enabling
the evaluation of reconstruction loss and the accuracy of the learned repre-
sentation. By applying VAEs for ECG and PPG signal feature extraction,
researchers and clinicians can potentially improve the accuracy of disease
detection, monitoring, and risk assessment, leading to more effective health-
care interventions.Huang et al. [37] introduced a captivating and ingenious
self-supervised pretraining method. Unveiling an adept encoder that gracefully
acquires spatiotemporal representations by skillfully reconstructing 12-lead
ECG signals. These signals, artfully masked in both time and lead dimensions,
reveal the true brilliance of this novel approach.
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3.3.3 Discussing the strengths and weaknesses of VAEs in
biomedical signal analysis

Variational Autoencoders (VAEs) have emerged as powerful tools in biomedi-
cal signal analysis, offering several strengths that make them valuable in this
field. One of their main strengths lies in their ability to capture complex, high-
dimensional patterns in biomedical signals, such as electrocardiograms (ECGs)
or electroencephalograms (EEGs). VAEs can learn a latent representation of
the signals, enabling efficient data compression and reconstruction. This can be
particularly useful in cases where data storage or transmission constraints are
present. Furthermore, VAEs provide a probabilistic framework, enabling uncer-
tainty estimation and generating synthetic samples, which can be valuable for
data augmentation and generating simulated datasets for training.

However, VAEs also possess certain weaknesses that should be considered
in biomedical signal analysis. One limitation is the difficulty in guaranteeing
the preservation of the fine details and temporal dynamics of the original sig-
nals during the compression and reconstruction process. The reconstruction
quality might be compromised, especially in cases where the input signals con-
tain subtle but clinically relevant information. Additionally, VAEs heavily rely
on the assumption of independence between the elements of the latent space,
which may not always hold true in complex biomedical signal analysis. Another
challenge is the selection of appropriate hyperparameters, such as the dimen-
sionality of the latent space, which can significantly impact the performance
and interpretability of VAE models. Therefore, careful tuning and validation
are essential to ensure optimal results when using VAEs in biomedical signal
analysis.

3.4 Other self-supervised learning techniques

3.4.1 Predictive coding

Contrastive predictive coding (CPC) is a self-supervised learning framework
that aims to capture the underlying structure of the data. It involves training
a model to predict future segments of the signal given previous segments. By
maximizing the agreement between predictions and the actual future segments,
the model learns to capture relevant features and patterns in the data. With
the adept use of GNN pre-training techniques, the authors [38] magnify the
potential of Graphene by retraining it with a graph attention architecture. This
innovative approach triumphs over rival methods in the realms of pathway gene
recovery, disease gene reprioritization, and comorbidity prediction, showcasing
unparalleled performance.
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Fig. 7: Illustrations depicting the schematic representations of ECG and PPG
waveforms

3.4.2 Temporal alignment

Temporal alignment models are designed to learn temporal dependencies
within a sequence of data. In the case of ECG and PPG, these models can
learn to align and compare different parts of the signals to identify meaningful
patterns. By training these models on unlabeled data, they can learn to cap-
ture temporal relationships between different signal segments, which can be
beneficial for tasks like heartbeat segmentation or event detection. In order to
effectively utilize time-series signals like physiological signals, it is crucial that
the representations employed capture pertinent information from the entire
signal. In a study conducted by Juan et al. [39], a Transformer-based model was
proposed for the analysis of electrocardiograms (ECG) in the context of emo-
tion recognition. The attention mechanisms of the Transformer were utilized to
construct contextualized representations of the signal, placing greater emphasis
on relevant portions. These representations were subsequently processed using
a fully-connected network to predict emotions. To address the limited avail-
ability of emotional labels in datasets, the researchers employed self-supervised
learning. They collected multiple ECG datasets lacking emotion labels and
employed them for pre-training their model, which was then fine-tuned using
the AMIGOS dataset to perform emotion recognition. [40] propose a novel
approach called Mixed Supervised Contrastive Loss (MSCL) for MTS repre-
sentation learning. This approach combines self-supervised, intra-class, and
inter-class supervised contrastive learning to effectively utilize labels. Build-
ing upon MSCL, they introduce a new framework named MIxed supervised
COntrastive learning for MTS classification (MICOS), which leverages spatial
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and temporal channels to extract complex spatio-temporal features from MTS
data. [41] introduce TimeCLR, a framework for univariate time series represen-
tation. It combines DTW and InceptionTime to create a feature extractor with
strong feature extraction capabilities. The approach involves DTW data aug-
mentation to generate targeted phase shift and amplitude change phenomena
while preserving time series structure and features. By leveraging the advan-
tages of both DTW data augmentation and InceptionTime, TimeCLR extends
SimCLR and finds successful applications in the time series domain. A mul-
timodality ECG classification approach using SSL was proposed by [20]. The
approach follows the SSL learning paradigm and comprises two modules: one
for the pre-stream task and another for the downstream task. In the SSL-pre-
stream task, they applied self-knowledge distillation (KD) techniques without
using labeled data, considering various transformations in both the time and
frequency domains. For the downstream task, which utilizes labeled data,
they introduced a gate fusion mechanism to merge information from different
modalities. [42] introduced the T-S reverse detection, an elegant and powerful
self-supervised method to acquire ECG representations. Harnessing the tem-
poral and spatial qualities of ECG signals, this approach ingeniously employed
horizontal, vertical, and combined temporal-spatial reversals. By categorizing
four signal types, including the original, it facilitated learning.

3.4.3 Multitask learning

Multitask learning involves training a model to perform multiple related tasks
simultaneously. In the context of ECG and PPG analysis, you can define multi-
ple tasks such as heart rate estimation, anomaly detection, or signal denoising.
By jointly training the model on multiple tasks, it can learn to extract useful
representations that are relevant across different tasks. An elegant multi-
task learning framework, CO-TASK, was introduced by [43]. It enhances the
performance of multi-task learning by creating auxiliary tasks through the har-
monious fusion of task labels. CO-TASK ingeniously generates these auxiliary
tasks without requiring extra labeling, exhibits resilience towards label noise,
and seamlessly integrates with diverse multi-task learning techniques.

4 Applications of Self-Supervised Learning in
ECG and PPG Analysis

Self-supervised learning is a powerful technique in machine learning where
a model learns from unlabeled data by creating surrogate labels from the
data itself, rather than relying on human-labeled datasets. This approach has
shown great potential in various domains, including ECG (Electrocardiogram)
and PPG (Photoplethysmogram) analysis [44] introduced a groundbreaking
convolutional architecture, which capitalizes on casual dilated convolutions
and residual connections to extend effective memory and achieve outstanding
performance. By leveraging raw Electrocardiograph (ECG) and Photoplethys-
mograph (PPG) signals directly, without the need for hand-crafted feature
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extraction like conventional methods, they unlock the true potential of deep
learning. This approach enhances the extraction of intrinsic features (deep
features) and improves long-term robustness [45]. The study suggests a deep
convolutional neural network with attention mechanisms for ECG emotion
recognition. To account for individuality differences, an enhanced Convo-
lutional Block Attention Module (CBAM) is integrated into the network.
CBAM’s channel attention assigns weights to ECG features from various chan-
nels, while spatial attention provides weighted representations of ECG features
within each channel [46]. [47] employ a self-supervised deep multi-task learning
approach for emotion recognition using electrocardiogram (ECG) data. They
first learn ECG representations through a signal transformation recognition
network using unlabeled data. Then, they transfer the network’s weights to
an emotion recognition network, freezing the convolutional layers and train-
ing the dense layers with labeled ECG data. [48] presented an automated
framework for inferring personalized 4D surface meshes of cardiac structures
from 2D echocardiography videos. This step is crucial for precise personal-
ized simulation and automated assessment of cardiac chamber morphology
and function. The method is trained using unpaired echocardiography and
heart mesh videos, employing a self-supervised approach to find the mapping
between these visual domains. The study [49] emphasizes self-supervised tech-
niques and models in healthcare, exploring their benefits and constraints in
tasks involving electronic health records, medical images, bioelectrical signals,
genes, and proteins. Additionally, it explores potential applications of self-
supervised learning with multimodal datasets and the challenges of acquiring
unbiased data for training. Overall, self-supervised learning holds the promise
of speeding up the advancement of medical artificial intelligence.

4.1 ECG analysis

Analyzing electrocardiogram (ECG) signals using self-supervised learning is
an interesting and promising approach. It is an essential task in cardiology to
diagnose various heart-related conditions and has gained popularity in vari-
ous fields due to its ability to leverage large amounts of unlabeled data and
extract meaningful representations. In their work, [50] introduced an emo-
tion recognition system based on ECG using self-supervised learning. The
system comprises two key networks: a signal transformation recognition net-
work and an emotion recognition network. Initially, the former network is
trained on unlabeled data to detect predefined signal transformations through
self-supervised learning. Subsequently, the convolutional layer weights of this
network are transferred to the emotion recognition network, which is further
trained with two dense layers to classify arousal and valence scores. In their
work, [51] introduce Echo-SyncNet, a self-supervised learning approach for
synchronizing 2D echo series without human supervision or external inputs.
The framework utilizes two types of supervisory signals: spatiotemporal pat-
terns within a cine (intra-view self-supervision) and interdependencies between
multiple cines (inter-view self-supervision). By leveraging these signals, the
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model learns a feature-rich and low-dimensional embedding space to achieve
temporal synchronization of multiple echo cines

4.1.1 Rhythm analysis and abnormality detection

Li et al. [52] introduces DrCubic an innovative method for categorizing heart
irregularities by utilizing condensed-lead ECG recordings. Their approach
includes integrating peak detection as a self-supervised auxiliary task and con-
structing the model around SE-ResNet. They also incorporate models with
varying input lengths and sampling rates to ensure optimal performance within
a single source and across multiple sources simultaneously.

Fig. 8: Sample ECG and PPG signal illustrating PPT calculation from R
peaks of ECG signal and some point of PPG signal

4.1.2 QRS complex detection and delineation

QRS complex detection and delineation is a crucial task in the field of elec-
trocardiogram (ECG) and photoplethysmogram (PPG) analysis for accurately
identifying cardiac events. Self-supervised learning has emerged as a promis-
ing approach to tackle this challenge effectively. By utilizing large volumes
of unlabeled ECG and PPG data, self-supervised learning algorithms can
autonomously learn relevant representations and patterns within the signals.
Through this process, the model can develop a robust understanding of QRS
complexes, enabling it to detect and delineate these critical features accurately.
This innovative approach eliminates the need for costly and time-consuming
manual annotation, making it highly scalable and adaptable to different
datasets and scenarios. The potential of self-supervised learning in QRS com-
plex detection and delineation holds tremendous promise for advancing the
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field of cardiovascular research and enhancing the accuracy of cardiac moni-
toring and diagnosis in real-world healthcare applications. According to [53],
the proposed method involves framing the signal based on the detected QRS
complex (R peaks). As a result, consecutive frames of the signal exhibit high
similarity, reducing redundancy and increasing sparsity. To enhance detection
performance, frames indicating cardiovascular disease symptoms are trans-
mitted uncompressed. The paper [54] introduces a system that utilizes smart
speakers to capture heartbeats without physical contact. By employing algo-
rithms that convert the smart speaker into a short-range active sonar system,
they measure heart rate and inter-beat intervals (R-R intervals) for regular
and irregular rhythms. The smart speaker emits inaudible 18–22 kHz sound
and detects echoes from the human body, which encode sub-mm displacements
caused by heartbeats. A new architecture LinkNet++ [55] is introduced to
efficiently and automatically extract fECG from abdominal mECG. It utilizes
a feature-addition approach, combining deep and shallow levels with resid-
ual blocks, addressing the shortcomings of U-Net and UNet++ models. The
model’s performance was assessed for fECG signal reconstruction and fetal
QRS (fQRS) detection.

4.1.3 Heart rate variability (HRV) analysis

Heart rate variability (HRV) analysis is a physiological measurement that
assesses the variations in time intervals between successive heartbeats. It is
a non-invasive method widely used to evaluate the autonomic nervous sys-
tem (ANS) activity, specifically the balance between the sympathetic and
parasympathetic branches. HRV is considered an important indicator of the
body’s ability to adapt to various stressors and reflects the overall health and
well-being of an individual. HRV analysis finds applications in various fields,
including cardiology, stress management, sports performance, and general
health assessment. It can help identify autonomic imbalances, assess cardiovas-
cular risk, evaluate the effectiveness of interventions, and provide insights into
an individual’s response to stress or training. However, it’s essential to interpret
HRV data within the context of other clinical and physiological parameters to
draw meaningful conclusions.

[56] introduces a transductive meta-learner that leverages unlabeled sam-
ples during testing for self-supervised weight adjustment, enabling swift
adaptation to distributional changes in Remote heart rate estimation using
remote photoplethysmography (rPPG).

A new self-supervised representation learning framework called ”Con-
trastive Heartbeats (CT-HB)” [57] is proposed to develop general and robust
electrocardiogram representations for efficient training on different down-
stream tasks. This framework uses a unique heartbeat sampling method
to create positive and negative pairs of heartbeats for contrastive learn-
ing, leveraging the meaningful patterns in electrocardiogram signals. Through
CT-HB, the self-supervised learning model acquires personalized heartbeat
representations that reflect the patient’s specific cardiology contex
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4.1.4 Arrhythmia classification and prediction

Arrhythmia refers to an abnormal heart rhythm that deviates from the nor-
mal sinus rhythm. It can manifest as irregular heartbeats (too fast, too slow,
or irregular pattern) and may result from various factors such as heart disease,
electrolyte imbalances, drug use, or genetic conditions. Arrhythmia classifi-
cation and prediction involve identifying and categorizing different types of
arrhythmias and assessing the likelihood of their occurrence. This process is
crucial for the early detection, treatment, and management of cardiac arrhyth-
mias. ECG is the primary tool for diagnosing arrhythmias. It records the
electrical activity of the heart over time, representing it as a graph. Cardiolo-
gists and algorithms can analyze the ECG signals to identify various types of
arrhythmias based on specific patterns in the ECG waveform. [58] endeavors to
develop a precise screening method for arrhythmia (ARR), aiding physicians
in diagnosing heart diseases more effectively. The proposed approach intro-
duces a multi-domain feature extraction technique and a hierarchical extreme
learning machine (H-ELM) network to predict fetal ARR. Initially, the multi-
domain feature extraction technology captures rich, high-dimensional features
that represent the original signal. Next, the sensitive features are identified
through neighborhood component analysis (NCA) from the high-dimensional
vectors. These sensitive features are then fed into a stacked extreme learn-
ing machine sparse autoencoder (ELM-SAE), which employs a layer-by-layer
unsupervised learning process to extract high-level fusion features. Finally,
an original ELM is integrated into the ELM-SAE network for accurate fetal
ARR prediction. The study[59] proposes an S-shaped reconstruction method
to identify arrhythmia. It involves data preprocessing, denoising the original
ECG data, removing baseline drift, extracting heartbeats, and balancing data
using a synthetic minority oversampling technique algorithm. The method
converts the one-dimensional heartbeat series into a 2-D matrix to analyze
relationships between distant points in an ECG series. Finally, a 2-D 19-layer
SE-ResNet is employed to categorize heartbeats into normal, supraventricular
ectopic, ventricular ectopic, fusion, and unknown beats. [60] introduces super-
vised contrastive learning (sCL), a model that utilizes labeled data to bring
instances of the same class closer while pushing different classes apart, miti-
gating the risk of false negatives for arrhythmia classification. [61] introduce
CLECG, a new instance-level contrastive learning method for ECG signals,
aiming to extract valuable information from unlabeled data. CLECG encour-
ages similar representations for augmented views of the same signal (positive
samples) and enhances the distance between representations of augmented
views from different signals (negative samples) during pre-training. The MAE-
based MaeFE network, proposed in [62], includes three customized masking
modes: masked time autoencoder (MTAE), masked lead autoencoder (MLAE),
and masked lead and time autoencoder (MLTAE). MTAE and MLAE focus
on temporal and spatial features, respectively, while MLTAE combines both.
During pretraining, ECG signals are divided into patches and partially masked
for encoder-token transfer and decoder reconstruction. In downstream tasks,
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the pretrained encoder serves as an arrhythmia classifier for the downstream
dataset.

Fig. 9: Sample ECG and PPG signal illustrating chest and wrist band calcu-
lations at rest and during physical activity

4.2 PPG Analysis

Analyzing PPG signals using self-supervised learning is an interesting approach
that involves leveraging the data itself to create labels for training with-
out human annotations. Self-supervised learning is a subset of unsupervised
learning, where the model learns from the input data indirectly. In the case
of PPG analysis, self-supervised learning can be used to extract meaningful
representations and features from the raw PPG signal.

4.2.1 Blood pressure estimation

Blood pressure estimation using electrocardiogram (ECG) and photoplethys-
mogram (PPG) through self-supervised learning represents a groundbreaking
approach in the field of healthcare technology. By leveraging self-supervised
learning techniques, the system can learn from a vast amount of unlabeled
data, which substantially reduces the reliance on costly and time-consuming
annotated datasets. This novel method harnesses the synergistic information
present in both ECG and PPG signals, capturing intricate cardiovascular
dynamics for precise blood pressure estimation. Through unsupervised feature
learning, the system can extract relevant patterns and correlations, leading
to more accurate and robust predictions. By fusing the power of ECG and
PPG data with self-supervised learning, this cutting-edge technology has the
potential to revolutionize blood pressure monitoring, enabling non-invasive,
continuous, and real-time assessment of cardiovascular health in a cost-effective
and user-friendly manner.
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4.2.2 Pulse rate variability (PRV) analysis

Pulse Rate Variability (PRV) analysis, using Electrocardiogram (ECG) and
Photoplethysmogram (PPG) data, has witnessed significant advancements
through the implementation of self-supervised learning techniques. PRV refers
to the variation in the time interval between successive heartbeats and provides
valuable insights into the autonomic nervous system’s functioning and overall
cardiovascular health. Self-supervised learning is an emerging approach that
leverages unlabeled data to train models without requiring manual annota-
tions. In the context of PRV analysis, this technique enables the extraction of
meaningful patterns and features from large-scale ECG and PPG datasets. By
learning to predict and reconstruct underlying temporal structures within the
data, self-supervised models can subsequently be fine-tuned for various cardio-
vascular tasks, such as arrhythmia detection, stress assessment, and heart rate
monitoring. This innovative approach holds great promise for enhancing the
accuracy and efficiency of PRV analysis, ultimately contributing to improved
diagnosis and management of cardiovascular conditions.

4.2.3 Oxygen saturation (SpO2) estimation

Oxygen saturation (SpO2) estimation is a critical parameter used to moni-
tor a patient’s respiratory and cardiovascular health. Traditional methods for
SpO2 estimation often rely on specialized medical equipment, such as pulse
oximeters, which can be cumbersome and may not be readily available in all
settings. However, recent advancements in self-supervised learning techniques
have shown promise in accurately estimating SpO2 using simpler and more
ubiquitous sensors, such as electrocardiography (ECG) and photoplethysmog-
raphy (PPG) sensors. Self-supervised learning leverages the vast amount of
unlabeled data available from these sensors to learn robust and generalized
representations. By capitalizing on the intrinsic relationships between ECG
and PPG signals and SpO2 levels, the self-supervised learning model can effec-
tively estimate oxygen saturation levels, paving the way for more accessible
and cost-effective healthcare monitoring solutions in various environments.
This innovation has the potential to revolutionize remote patient monitoring,
home healthcare, and resource-limited medical settings, ultimately improving
patient outcomes and healthcare accessibility.

4.2.4 Disease detection and monitoring (e.g, hypertension,
sleep apnea)

Disease detection and monitoring using electrocardiogram (ECG) and photo-
plethysmogram (PPG) data have become increasingly important in modern
healthcare. These two non-invasive techniques provide valuable information
about a person’s cardiovascular health and can be used to detect and monitor
various diseases, including hypertension and sleep apnea.
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Hypertension Detection and Monitoring

Hypertension is a common condition where the blood pressure in the arteries
is consistently elevated. It is a significant risk factor for heart disease, stroke,
and other cardiovascular issues. Both ECG and PPG can be used to aid in
the detection and monitoring of hypertension. Electrocardiogram records the
electrical activity of the heart, which allows medical professionals to assess the
heart’s rhythm and identify any abnormalities. In the context of hypertension,
ECG can be used to look for signs of left ventricular hypertrophy (LVH), which
is an indicator of the heart working harder due to high blood pressure. Pho-
toplethysmogram measures changes in blood volume through the skin. PPG
can provide information about the peripheral vascular resistance, which can
be associated with hypertension. Additionally, PPG can be used to measure
blood pressure indirectly by analyzing the pulse waveform characteristics.

Sleep Apnea Detection and Monitoring

Sleep apnea is a sleep disorder characterized by interrupted breathing dur-
ing sleep, which can lead to reduced oxygen levels and other health issues.
ECG and PPG plays a role in diagnosing and monitoring sleep apnea, espe-
cially during sleep studies conducted in a clinical setting. During sleep apnea
episodes, there are characteristic changes in heart rate and rhythm due to the
disruptions in breathing. ECG data can help identify these patterns, especially
when synchronized with other sleep monitoring parameters. PPG can be used
to assess changes in blood flow and oxygen levels during sleep. When a per-
son experiences sleep apnea events, there may be fluctuations in blood oxygen
saturation, which can be detected using PPG-based pulse oximeters.

In [63], a self-supervised representation learning (SSRL) approach is intro-
duced for detecting hypopnea events in single-channel electrocardiography
(ECG) signals. The model is trained in two phases: first, an encoder learns
signal representation from unlabeled data, and then the classifier and encoder
are fine-tuned for classification in the second phase.

4.3 Performance Evaluation Metrics for self-supervised
learning models in biomedical signal analysis

Performance evaluation and comparison metrics are essential when working
with electrocardiogram (ECG) and photoplethysmogram (PPG) signals, as
they allow researchers and clinicians to assess the accuracy and effectiveness of
different algorithms or methods in processing and analyzing these physiological
signals. The common metrics used for evaluating and comparing ECG and
PPG signals includes:

4.3.1 Signal Quality Metrics

Signal quality metrics are measurements used to assess the performance and
reliability of an ECG or PPG signal. These metrics help in determining the
effectiveness of signal transmission and reception, identifying potential issues,
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and optimizing the overall system performance. The specific metrics used varies
depending on the signal i.e ECG or PPG application,here are some common
ECG and PPG signal quality metrics:

Signal-to-Noise Ratio (SNR)

Measures the ratio of signal power to noise power and indicates the quality of
the acquired signal.

Signal-to-Interference Ratio (SIR)

Measures the ratio of signal power to interference power, which can be useful
in noisy environments.

Signal-to-Noise and Distortion Ratio (SNDR)

Combines both noise and distortion measurements in the signal, providing a
comprehensive quality assessment.

4.3.2 Accuracy Metrics

Accuracy metrics are important in evaluating the performance of algorithms
or models used for ECG and PPG signal analysis. These metrics help to mea-
sure how well the algorithm can identify various features or abnormalities in
the signals.These metrics are used to evaluate the performance of algorithms
for tasks, such as detecting specific ECG waveforms e.g. QRS complexes, P
waves or identifying abnormalities in PPG signals e.g., detecting heart rate
variability, arterial stiffness. Here are the common accuracy metrics used in
ECG and PPG signal analysis:

Sensitivity (Recall)

Sensitivity measures the proportion of true positive cases correctly identified
by the algorithm. In the context of ECG or PPG analysis, it quantifies how
well the algorithm detects the presence of certain features or abnormalities in
the signal.

Sensitivity =
TruePositives

TruePositives+ FalseNegatives
(1)

Specifity

Specificity measures the proportion of true negative cases correctly identified
by the algorithm. It quantifies the ability of the algorithm to correctly rule out
the absence of certain features or abnormalities.

Specifity =
TrueNegatives

TrueNegatives+ FalsePositives
(2)
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Precision

Precision is the proportion of true positive cases out of all the cases predicted
as positive by the algorithm. It assesses the algorithm’s accuracy in correctly
identifying positive cases.

Precision =
TruePositives

TruePositives+ FalsePositives
(3)

Accuracy

Accuracy is the overall proportion of correct predictions made by the algo-
rithm, considering both true positives and true negatives.

Accuracy =
TruePositives+ TrueNegatives

TotalNumberofSamples
(4)

F1-Score

The F1 score is the harmonic mean of precision and sensitivity. It provides a
balanced measure that considers both false positives and false negatives.

F1Score =
2 ∗ (Precision ∗Recall)

Precision+Recall
(5)

Area Under the Curve (AUC)

The AUC is often used to evaluate the performance of binary classification
algorithms. It represents the area under the receiver operating characteris-
tic (ROC) curve and measures the algorithm’s ability to distinguish between
classes (e.g., normal and abnormal signals)

Mean Square Error (MSE)

Measures the average squared difference between the true and estimated signal
values.

D∑
i=1

(xi − yi)
2 (6)

Root Mean Square Error (RMSE)

The square root of MSE, providing a measure of the average absolute error
between the true and estimated signals.

RMSE =

√
1

n
Σn

i=1

(di − fi
σi

)2

(7)
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Mean Absolute Error (MAE)

Measures the average absolute difference between the true and estimated signal
values.

D∑
i=1

|xi − yi| (8)

4.3.3 Heart Rate Metrics

Heart rate metrics are essential parameters used in electrocardiogram (ECG)
and photoplethysmogram (PPG) analysis to assess the heart’s performance
and overall cardiovascular health. Both ECG and PPG are commonly used
methods for monitoring heart rate and detecting abnormalities.

Heart Rate (HR)

Heart rate represents the number of heartbeats per minute (bpm) and is one
of the fundamental metrics for assessing cardiac function. It provides valuable
information about the rhythm and overall activity of the heart.

Heart Rate Variability (HRV)

HRV is the variation in time intervals between successive heartbeats. It is an
essential indicator of the autonomic nervous system’s modulation of heart rate
and can provide insights into the heart’s adaptability and response to different
physiological and psychological stressors.

Maximum Heart Rate (MHR)

The highest heart rate recorded during a specific activity or period is the
maximum heart rate. It is often used to set target heart rate zones during
exercise or stress testing.

Minimum Heart Rate

The lowest heart rate recorded during a specific period is the minimum heart
rate. This metric is useful in understanding the resting heart rate or the lowest
heart rate achieved during sleep.

Heart Rate Recovery (HRR)

HRR is the rate at which the heart rate declines after exercise. It is used as
an indicator of cardiovascular fitness and the ability of the autonomic nervous
system to recover efficiently after physical exertion.

4.3.4 Time-Domain Metrics

R-R Intervals

In ECG analysis, the R-R interval refers to the time duration between suc-
cessive R-peaks (the highest point of each heartbeat). In PPG analysis, it is
referred to as the interbeat interval (IBI), which measures the time between
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consecutive peaks of the PPG waveform. R-R or IBI intervals are used to cal-
culate heart rate variability (HRV) and assess the autonomic nervous system’s
influence on heart rate.

Pulse Transit Time (for PPG)

Measures the time it takes for the pulse wave to travel between two arterial
sites, often used for blood pressure estimation.

4.3.5 Frequency-Domain Metrics

Power Spectral Density (PSD)

Represents the distribution of signal power across different frequency bands,
often used in HRV analysis.

4.3.6 Sensitivity and Specificity

If the signals are used for detecting specific events (e.g., arrhythmia, abnor-
malities), these metrics assess the algorithm’s ability to correctly identify true
positive and true negative cases.

4.3.7 Correlation Coefficients

Assess the linear relationship between two signals, such as the cross-correlation
coefficient.

4.3.8 Bland-Altman Analysis

Provides a graphical representation of agreement between two methods or
signals by plotting the differences against the average of the two measurements.

4.4 Performance Comparison with Supervised learning
approaches

Supervised learning approaches have been widely used in ECG and PPG anal-
ysis, where labeled datasets are essential for training. These methods rely on
annotated data to learn patterns and features specific to certain cardiac events
or health conditions. By using labeled data, supervised models can achieve high
accuracy and precision in detecting abnormal heart rhythms or other cardiac
anomalies. However, one of the main challenges with supervised learning lies
in the acquisition and labeling of large-scale, high-quality datasets, which can
be time-consuming, expensive, and often limited by the availability of expert
annotations.

On the other hand, self-supervised learning has emerged as a promising
alternative that alleviates the dependence on labeled data. Self-supervised
approaches utilize the inherent structure or relationships within the data to
create surrogate supervisory signals. For ECG and PPG analysis, this could
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involve predicting time intervals between different segments of the same sig-
nal or predicting a signal segment based on another part of the same signal.
By leveraging the data’s intrinsic information, self-supervised methods can
efficiently pretrain models on large amounts of unlabeled data. This pretrain-
ing stage can then be followed by fine-tuning on a smaller labeled dataset to
achieve higher accuracy.

In terms of performance comparison, both approaches have their advan-
tages and limitations. Supervised learning methods typically outperform self-
supervised approaches when abundant high-quality labeled data is available.
They can learn intricate patterns that may be challenging for self-supervised
techniques to capture, leading to better precision and recall in specific
diagnostic tasks.

However, in scenarios where labeled data is scarce or expensive to obtain,
self-supervised learning shines. These methods offer a cost-effective solution to
leverage vast amounts of unlabeled data and extract valuable features, which
can then be fine-tuned with limited labeled data to achieve competitive perfor-
mance. Self-supervised learning has the potential to significantly advance ECG
and PPG analysis in resource-constrained settings and enable the development
of more robust and generalized model.

4.5 Comparative analysis of different self-supervised
learning techniques for ECG and PPG signals

Self-supervised learning techniques have shown promising results in various
domains, including ECG and PPG signal analysis. In the context of these
physiological signals, several self-supervised learning approaches have been
compared to assess their efficacy. One widely used method is Contrastive Pre-
dictive Coding (CPC), which leverages the contrastive loss to learn meaningful
representations. CPC has demonstrated excellent performance in capturing
temporal dependencies and underlying patterns within ECG and PPG signals
[21]. Another approach is Temporal Alignment [11] (TA) that aligns segments
of the same signal, enabling the model to learn informative representations
while discarding non-relevant variations. TA has shown promise in handling
irregular heartbeats and motion artifacts in PPG signals [19]. Additionally,
Generative Pre-trained Transformers (GPT) have been applied to learn hierar-
chical representations from sequential data, including ECG and PPG signals.
GPT-based models have achieved state-of-the-art results in various natural
language processing tasks, and their application to physiological signals holds
great potential [9]. Overall, these comparative analyses indicate that self-
supervised learning techniques can effectively extract meaningful features from
ECG and PPG signals, providing valuable insights for cardiovascular health
monitoring, disease detection, and personalized healthcare applications. How-
ever, the choice of the most suitable technique still depends on the specific
dataset characteristics, signal quality, and task requirements.
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5 Challenges and Future Direction

Self-supervised learning for electrocardiogram (ECG) and photoplethysmo-
gram (PPG) data presents several significant challenges. One of the primary
obstacles is the scarcity of large-scale labeled datasets in the medical domain.
Both ECG and PPG data require expert annotations for accurate ground
truth, making it expensive and time-consuming to acquire sufficient labeled
data. Without a substantial amount of labeled data, self-supervised algorithms
may struggle to learn robust representations from the limited information
available.

Another challenge lies in defining appropriate pretext tasks for self-
supervised learning. Designing effective pretext tasks that can capture mean-
ingful representations from raw ECG and PPG signals is critical. These tasks
should be carefully crafted to encourage the model to learn relevant features
and avoid overfitting to noise or trivial correlations in the data. Finding the
right balance between complexity and interpretability of pretext tasks is crucial
to ensure the learned representations are clinically meaningful and applicable
in real-world scenarios.

Furthermore, the intrinsic complexities of physiological signals, such as
ECG and PPG, pose difficulties for self-supervised learning models. These
signals are highly dynamic, non-stationary, and subject to various inter and
intra-patient variabilities. Extracting informative features from such complex
data requires advanced modeling techniques and architectures. Ensuring that
the self-supervised models can generalize well across different patients, medical
conditions, and measurement conditions is a considerable challenge.

Moreover, addressing the issue of data quality and noise is essential in self-
supervised learning for ECG and PPG. Medical signals are often contaminated
with artifacts, baseline drift, and other sources of noise, which can mislead
the learning process. Developing robust self-supervised algorithms that can
effectively handle noisy data and learn resilient representations is critical for
achieving reliable and accurate performance.

Lastly, the ethical considerations in medical self-supervised learning can-
not be ignored. As these models have the potential to impact patient care
and decision-making, ensuring the privacy and security of sensitive patient
information is of utmost importance. Striking a balance between model per-
formance and data privacy is a significant challenge in the development and
deployment of self-supervised learning models for ECG and PPG data in real-
world healthcare settings. Adhering to strict ethical guidelines and regulatory
frameworks is crucial to building trustworthy and responsible self-supervised
learning systems for medical applications.

In self-supervised learning for ECG (Electrocardiogram) and PPG (Pho-
toplethysmogram) signals, the future holds promising directions to enhance
both the accuracy and efficiency of cardiovascular health monitoring. One sig-
nificant focus is on developing novel pretext tasks and representation learning
techniques to leverage the abundant unlabeled data available in real-world
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scenarios. By designing pretext tasks that exploit the temporal and spec-
tral patterns inherent in ECG and PPG signals, models can learn meaningful
representations without requiring extensive annotations.

Moreover, researchers are exploring multi-modal learning approaches,
incorporating data from different sources such as accelerometer data, respira-
tory signals, or patient demographics, to enrich the feature representations and
provide a more comprehensive view of an individual’s physiological status. This
fusion of information could potentially lead to more robust and personalized
predictive models for various cardiovascular conditions.

Another promising direction involves addressing the challenges posed by
data imbalance, domain shift, and potential biases in real-world datasets. Tech-
niques such as domain adaptation and transfer learning are being investigated
to enable models to generalize better across diverse patient populations and
data distributions, making them more applicable in real clinical settings.

Additionally, there is a growing emphasis on the development of self-
supervised learning algorithms that are computationally efficient and can be
deployed on edge devices or wearable sensors. This can lead to real-time and
continuous monitoring of cardiovascular health, providing timely insights and
facilitating early detection of anomalies or potential health risks.

Overall, the future of self-supervised learning for ECG and PPG signals
appears to be directed towards harnessing unlabeled data effectively, incorpo-
rating multiple modalities, addressing data-related challenges, and optimizing
for practical implementation in real-world healthcare applications. These
advancements hold the potential to revolutionize cardiovascular health moni-
toring, ultimately leading to improved patient care and preventive healthcare
measures

5.1 Data Availability

Data availability in self-supervised learning for ECG (electrocardiogram) and
PPG (photoplethysmogram) depends on various factors. ECG and PPG data
are typically collected from wearable devices, medical sensors, or health
monitoring systems. The availability of such data depends on factors like:

Data Privacy

ECG and PPG data involve sensitive health information, so access to large-
scale datasets might be limited due to privacy concerns.

Research Institutions

Some research institutions, hospitals, or medical centers may have proprietary
datasets, but access to these datasets might require collaborations or specific
permissions.
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Public Datasets

Over time, some publicly available datasets for ECG and PPG might have
been released. These datasets can be valuable for research purposes and can
help in the development of self-supervised learning methods.

Commercial Wearable Devices

Some wearable device companies might have collected substantial amounts of
ECG and PPG data from their users, but access to this data might be restricted
or require partnership agreements.

5.2 Data Quality

The quality of data in self-supervised learning for ECG and PPG is crucial
for achieving good performance in the models. Some considerations for data
quality include:

Noise

ECG and PPG signals can be affected by noise due to various factors such as
movement artifacts, sensor malfunctions, or environmental interference. Noise
reduction techniques are essential to improve data quality.

Labeling Errors

Self-supervised learning often relies on automatically generated labels or
pseudo-labels. Errors in labeling can propagate through the learning process
and affect model performance.

Data Imbalance

Imbalanced datasets can bias the model towards the majority class, leading to
suboptimal generalization.

Data Preprocessing

Proper preprocessing techniques are necessary to remove artifacts, baseline
wander, and other anomalies from the ECG and PPG signals.

5.3 Generalization across different patient populations

Generalization refers to the ability of a model trained on a particular dataset
to perform well on new, unseen data. Achieving good generalization across
different patient populations is crucial in medical applications to ensure the
model’s reliability and effectiveness in real-world scenarios.

When dealing with ECG and PPG data, there are several challenges related
to generalization across different patient populations:
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Inter-Subject Variability

Individuals’ ECG and PPG patterns can vary significantly due to differences
in age, gender, physiological characteristics, and underlying health conditions.
A model trained on a specific demographic may not perform well on a different
population.

Data Distribution Shift

If the distribution of data in the target patient population differs significantly
from the training data distribution, the model may fail to generalize effectively.

Artifact Variability

ECG and PPG signals can be affected by artifacts like noise, motion, or
electrode misplacement. These artifacts may vary across patient populations,
making generalization challenging.

Limited Annotated Data

Obtaining labeled data for specific patient populations might be more chal-
lenging, leading to fewer samples for training and evaluation.

To improve generalization across different patient populations in self-
supervised learning for ECG and PPG data, following approaches can be
considered :

Diverse Training Data

Use a large and diverse dataset that covers a wide range of patient demograph-
ics and conditions. This can help the model learn robust features that are less
sensitive to demographic variations.

Data Augmentation

Apply data augmentation techniques to artificially increase the diversity of the
training data. This can help the model learn to be more invariant to certain
types of variations.

Transfer Learning

Pre-train the model on a large dataset and then fine-tune it on a smaller
dataset from the target population. Transfer learning can leverage knowledge
learned from a larger dataset to adapt better to a specific population.

Domain Adaptation

Employ domain adaptation techniques to mitigate the distribution shift
between the source (training) and target (testing) patient populations.

Cross-Validation

Perform cross-validation using multiple patient populations to assess the
model’s generalization performance more comprehensively.
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Adversarial Training

Introduce adversarial learning techniques that encourage the model to be
invariant to certain variations across different patient populations.

5.4 Interpretability and explainability of self-supervised
models

Interpretability and explainability are crucial aspects of self-supervised mod-
els for ECG (Electrocardiogram) and PPG (Photoplethysmogram) analysis.
Self-supervised learning is a technique that enables models to learn from unla-
beled data, making it particularly appealing for medical applications where
labeled data is often scarce and costly to obtain. While self-supervised models
have shown promising results in ECG and PPG tasks, their interpretability
and explainability remain important challenges. Understanding the decisions
and predictions made by these models is critical in medical settings, where
clinicians need to trust and comprehend the reasoning behind the model’s
outputs. Researchers and developers are actively exploring methods to make
self-supervised models more interpretable and explainable, using techniques
such as attention mechanisms, saliency maps, and feature visualization to shed
light on the model’s internal workings and provide insights into how it pro-
cesses and interprets ECG and PPG data. By enhancing the interpretability
and explainability of self-supervised models, we can foster greater trust and
adoption of these advanced techniques in clinical settings, ultimately improving
patient care and outcomes.

5.5 Potential applications in personalized medicine and
remote healthcare

Self-supervised models for electrocardiogram (ECG) and photoplethysmogram
(PPG) data have the potential to revolutionize personalized medicine and
remote healthcare. ECG and PPG are valuable physiological signals that
provide crucial insights into a person’s cardiovascular health. By leveraging
self-supervised learning, these models can learn representations directly from
the raw data without the need for labeled datasets, making them adept at
extracting complex patterns and correlations from large-scale, unannotated
patient records. In personalized medicine, such models can aid in early detec-
tion and prediction of cardiac abnormalities, enabling healthcare providers
to offer targeted interventions and personalized treatment plans based on a
patient’s unique cardiac profile. Additionally, in the realm of remote health-
care, these models can empower wearable devices and mobile applications to
continuously monitor individuals’ cardiovascular health in real-time, alerting
them and their caregivers to any concerning deviations from their baseline.
This proactive approach can lead to timely interventions and prevent adverse
events, enhancing patient outcomes and overall healthcare efficiency. Further-
more, the anonymized and aggregated data from these models can be harnessed
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for population-wide research and insights, fostering advancements in cardiac
healthcare on a global scale.

5.6 Emerging trends and future research directions

Emerging trends and future research directions in self-supervised models for
ECG and PPG (Electrocardiogram and Photoplethysmogram) signal analy-
sis hold tremendous potential for advancing the field of cardiovascular health
monitoring and diagnosis. Self-supervised learning has shown promising results
by leveraging the vast amounts of unlabeled data to pretrain deep neural
networks. One key trend is the integration of multimodal data, combin-
ing ECG and PPG signals, along with other physiological measurements, to
enhance model performance and provide a more comprehensive understanding
of cardiovascular health. Additionally, there is a growing interest in explor-
ing self-supervised models for anomaly detection and prediction in long-term
continuous monitoring scenarios, where the models can learn to recognize
deviations from individual baseline patterns, enabling timely interventions.
Furthermore, the development of explainable and interpretable self-supervised
methods is a crucial direction to gain insights into the decision-making process
of the models, thereby increasing their clinical applicability and trustwor-
thiness. As the availability of large-scale ECG and PPG datasets continues
to grow, future research in this area should focus on designing novel self-
supervised architectures, leveraging attention mechanisms, transformer-based
models, and other cutting-edge techniques to further improve the accuracy,
robustness, and scalability of self-supervised models for ECG and PPG sig-
nal analysis, ultimately leading to significant advancements in cardiovascular
healthcare.

6 Conclusion

In conclusion, self-supervised models have emerged as a promising approach
for the analysis of ECG and PPG signals, offering a novel and effective means
of leveraging vast amounts of unlabeled data for training. These models have
demonstrated their capability to autonomously learn meaningful representa-
tions from raw physiological data without the need for manual annotations,
thus overcoming the limitations associated with traditional supervised learning
paradigms. By exploiting the inherent structure and temporal dependencies
present in ECG and PPG signals, self-supervised models have shown remark-
able potential in tasks such as abnormality detection, heart rate estimation,
and disease classification. Moreover, their ability to generalize across different
datasets and patient populations indicates their versatility and robustness. As
the field of self-supervised learning continues to evolve, the ongoing research
and development in this area are likely to unlock further advancements in the
medical domain, paving the way for more accurate and personalized healthcare
solutions based on physiological data analysis. However, challenges remain,
including data scarcity, interpretability, and model complexity, which demand
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further investigation to ensure the responsible and ethical deployment of self-
supervised models in real-world clinical settings. Nevertheless, the strides made
so far in leveraging self-supervised approaches for ECG and PPG analysis
underscore their potential as a transformative force in healthcare, empowering
clinicians with more sophisticated tools to enhance patient care and diagnosis.

6.1 Summary of the key findings and contributions

Self-supervised learning has emerged as a powerful approach for leveraging
unlabeled data to train machine learning models. In the context of electrocar-
diogram (ECG) and photoplethysmogram (PPG) data, researchers have made
significant strides in harnessing self-supervised learning techniques to extract
meaningful features and improve various cardiovascular-related tasks. Here are
the key findings and contributions in this domain:

Unsupervised Representation Learning

Self-supervised learning methods have shown promise in learning rich and
informative representations from ECG and PPG signals without the need
for labeled annotations. These learned representations can capture intricate
patterns and relationships present in the data, aiding subsequent tasks.

Anomaly Detection

Self-supervised learning has been employed for anomaly detection in ECG and
PPG data. By training models on a pretext task, such as predicting miss-
ing segments or reconstructing the input data, they can effectively identify
abnormal heart rhythms or irregularities, which is crucial for early detection
of cardiovascular diseases.

Transfer Learning

Self-supervised pretraining has been explored to facilitate transfer learning in
the medical domain. By training a model on a large-scale dataset using self-
supervised methods, researchers can fine-tune the model on smaller labeled
datasets for specific tasks, such as arrhythmia classification or heart rate
estimation, achieving improved performance.

Domain Adaptation

Self-supervised learning has also been applied to domain adaptation tasks,
where models are trained on a source domain with abundant data and then
adapted to perform well on a target domain with limited or different data
distributions. This approach has shown promise in addressing issues related to
data scarcity and domain shift in ECG and PPG analysis.

Data Augmentation

Self-supervised learning provides a novel way to generate augmented data for
training deep learning models. By utilizing pretext tasks like temporal shuffling
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or sequence prediction, the models learn to extract temporal dependencies
and spatial information from the ECG and PPG signals, thereby enhancing
generalization and robustness.

Interpretability and Explainability

Self-supervised learning has also been utilized to improve model interpretabil-
ity and explainability. By learning meaningful representations, researchers have
been able to identify salient features in ECG and PPG data that contribute to
model decisions, aiding clinicians in understanding the underlying mechanisms
behind the model’s predictions.

In conclusion, self-supervised learning has shown great promise in the
domain of ECG and PPG data analysis. By leveraging unlabeled data and pre-
text tasks, researchers have made significant contributions to representation
learning, anomaly detection, transfer learning, domain adaptation, data aug-
mentation, and model interpretability. These advancements hold the potential
to enhance the accuracy and effectiveness of cardiovascular diagnosis and mon-
itoring, ultimately benefiting patient care and treatment. However, as the field
is still relatively new, continued research and exploration are necessary to fully
unlock the potential of self-supervised learning in this domain.

6.2 Potential impact of self-supervised learning on
biomedical signal analysis

Self-supervised learning has the potential to revolutionize biomedical signal
analysis, particularly in the domain of electrocardiogram (ECG) and photo-
plethysmogram (PPG) data. By leveraging large amounts of unlabeled data,
self-supervised learning algorithms can automatically learn meaningful rep-
resentations from raw signals, capturing complex patterns and dependencies
without the need for extensive manual annotations. This approach has the
potential to enhance the accuracy and efficiency of various tasks, such as
heartbeat classification, arrhythmia detection, and physiological parameter
estimation. Furthermore, self-supervised learning could enable the transfer of
knowledge from one domain to another, allowing models trained on ECG data
to generalize effectively to PPG data, and vice versa. This not only saves
data collection effort but also enhances the adaptability of the algorithms to
new, unseen scenarios. Overall, the integration of self-supervised learning into
biomedical signal analysis holds great promise for advancing the understand-
ing and diagnosis of cardiovascular health, paving the way for more accessible
and accurate healthcare solutions.

6.3 Final remarks and call for further research in this area

In conclusion, self-supervised learning leverages large amounts of unlabeled
data to pretrain models and has led to improved feature representations and
enhanced performance in various tasks, such as arrhythmia detection and car-
diovascular risk assessment. However, further research is needed to address
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challenges such as data scarcity, domain adaptation, and model generaliza-
tion. Additionally, exploring novel self-supervised learning techniques tailored
specifically for ECG and PPG signals could unlock greater potential for
enhancing healthcare diagnostics and personalized monitoring, paving the way
for more accurate and efficient patient care.
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