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Abstract 45 

 46 

Background and Objectives: Accurate assessment of level of consciousness and potential to 47 
recover in severe brain injury patients underpins crucial decisions in the intensive care unit but 48 
remains a major challenge for the clinical team. The neurological wake-up test (NWT) is a widely 49 
used assessment tool, but many patients’ behavioral response during a short interruption of 50 
sedation is ambiguous or absent, with little prognostic value. This study assesses the brain’s 51 
electroencephalogram response during an interruption of propofol sedation to complement 52 
behavioral assessment during the NWT to predict survival, recovery of consciousness, and long-53 
term functional outcome in acute severe brain injury patients. 54 

Methods: We recorded 128-channel EEG of 41 severely brain-injured patients during a clinically 55 
indicated NWT. The Glasgow Coma Scale (GCS) was used to assess behavioral responsiveness 56 
before and after interruption of sedation (GCSobserved). During the NWT, nine patients regained 57 
responsiveness, 13 patients showed ambiguous responsiveness and 19 patients were not 58 
responsive. Brain response to sedation interruption was quantified using EEG power, spatial ratios 59 
and the spectral exponent. We trained a linear regression model to identify brain patterns related 60 
to regaining behavioral responsiveness. We then applied this model to patients whose behavioral 61 
responses were ambiguous or absent, using their NWT brain responses to predict a change in 62 
behavioral response (ΔGCSpredicted). Prognostic value of the ΔGCSpredicted was assessed using the 63 
Mann-Whitney-U test and group-separability. The patients’ survival, recovery of responsiveness, 64 
and functional outcomes were assessed up to 12 months post-recording. 65 

Results: EEG patterns during interruption of sedation reliably predicted the GCSobserved in patients 66 
who regained responsiveness during the NWT. Electrophysiological patterns of waking-up were 67 
observed in some patients whose behavioral response was ambiguous or absent. Compared to 68 
the GCSobserved, the ΔGCSpredicted improved separability of prognostic groups and significantly 69 
distinguished patients according to survival (U = 87, p<0.05). The EEG-trained model outperformed 70 
outcome predictions of the patients’ attending physician and predictions based on the patients’ 71 
APACHE score. 72 

Discussion: EEG can complement behavioral assessment during the NWT to improve 73 
prognostication, inform clinicians, family members and caregivers, and to set realistic goals for 74 
treatment and therapy.  75 

 76 

 77 
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Main Text 79 

1 Introduction   80 

The accurate assessment of severely brain injured patients’ levels of consciousness and potential 81 
to recover underpins the most crucial clinical decisions in the intensive care unit (ICU) but remains 82 
a major challenge for the clinical team. Behavioral assessments, such as the Glasgow Coma Scale 83 
(GCS) 1, are widely used to evaluate patients based on their level of arousal, reaction to pain and 84 
capacity to follow commands. However, in patients who have suffered moderate to severe brain 85 
injury, consciousness and responsiveness can be completely dissociated; in other words, patients 86 
can be behaviorally unresponsive despite being covertly conscious 2–4. 87 

Sedation plays a key role in the early treatment of acutely brain-injured patients 5,6. During the first 88 
days of ICU admission, these patients are often continuously sedated to regulate pain and agitation, 89 
improve tolerance to intubation and reduce the risk of secondary injury 5,6. However, extended 90 
periods of sedation also limit the clinical team’s ability to identify changes in the patient’s mental 91 
status and to separate injury-related impairments from drug-induced effects 7. It has therefore 92 
become routine practice to interrupt sedation at least once a day to allow patients to wake up for a 93 
neuro-cognitive assessment; this practice is known as the neurological wake-up test (NWT) 5–7. 94 
During this short sedation interruption, the presence of signs of awareness of self and of 95 
environment are key indicators for early recovery of consciousness and predictive of a good long-96 
term recovery 8,9. However, the absence of a behavioral response has less diagnostic or prognostic 97 
value, as it may be caused by confounding factors ranging from sensory or motor impairments to 98 
pain and fatigue. 99 

Accordingly, a multitude of methods have been developed to assess patients by using 100 
electrophysiology and neuroimaging techniques to bypass their behavioral capacity 10–13. However, 101 
most methods require patients to tolerate an extended period without sedation and are therefore 102 
not suited for acute severely brain-injured patients, for whom even a short interruption of sedation 103 
may cause increased levels of stress and clinical risk 14,15. Our research group has previously 104 
shown that the brain’s EEG response to propofol anesthesia induction can successfully be used 105 
for the assessment of unresponsive patients 16–19. We demonstrated that EEG reconfiguration in 106 
response to propofol anesthesia has diagnostic 18 and prognostic 17 value to predict recovery of 107 
consciousness in unresponsive patients. However, this protocol 17 can only be applied to patients 108 
who are not already sedated and thus excludes most severe brain-injury patients during the first 109 
days of ICU admission, when many critical treatment decision are made.  110 

In this study, we propose the brain’s EEG response to interruption of propofol sedation as a 111 
complementary measure to behavioral assessment during the NWT. In particular, EEG power, 112 
spatial ratios and spectral exponents have been shown to be reliable markers of propofol-induced 113 
unconsciousness 20–22. We first hypothesize that we will observe a dynamic change in these EEG 114 
features in the patients who regained responsiveness during an interruption of propofol sedation. 115 
We further hypothesize that changes in these EEG features can be decoupled from the behavioral 116 
response in some patients, with dynamic changes in EEG features despite a lack of behavioral 117 
response. Finally, we hypothesize that the EEG response to interruption of sedation provides 118 
prognostic value for survival and functional outcome of patients who show absent or ambiguous 119 
behavioral response during the NWT.  120 

Continuous EEG monitoring and, in resource-limited settings, serial EEGs, are routinely used to 121 
assess the potential for neurological recovery 23. Our approach proposes a novel way of capturing 122 
dynamic and reactive electrophysiological features, which is highly translatable to clinical practice 123 
and resource- and time-efficient. In current clinical practice, early prognostication of brain-injured 124 
patients remains an ‘uncertain art and science’ 24; our study aims to support clinical decision making 125 
by providing a tool that complements behavioral assessment with neurological markers of return of 126 
consciousness. 127 
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2 Methods 128 

2.1 Participants 129 

This study was part of a larger protocol, previously published by Duclos et al. 25. Patients were 130 
recruited from four different intensive care units in Canada: 1) Montreal General Hospital; 2) 131 
Montreal Neurological Institute; 3) London University Hospital and 4) London Victoria Hospital. 132 
Since 2020, a total of 1878 patients were screened; 183 patients were eligible for the study; consent 133 
was obtained for 53 patients; and EEG data was acquired from 47 patients. 134 

Patients were included if they were at least 18 years old, within 14-days of ICU admission and 135 
continuously sedated following a brain injury (e.g., stroke, anoxic injury, traumatic brain injury, 136 
subarachnoid hemorrhage). Patients were only recruited if an interruption of sedation was planned 137 
as part of the standard of care and if they were deemed medically suitable for the study by their 138 
attending intensivist. Patients were excluded according to the following criteria: low comprehension 139 
of English or French; injuries which hindered high-density EEG (e.g., large bandages, infections, 140 
spine fracture); presence of status epilepticus; and history of pre-existing dementia or mild cognitive 141 
impairment 25. The study was approved by the Research Ethics Board of the McGill University 142 
Health Centre (Project ID 2020-5972) and the Western University Health Science Research Ethics 143 
Board (Project ID 114303). Written informed consent was provided by the patient’s legal 144 
representative family member, in accordance with the Declaration of Helsinki. 145 

 
Figure 1: Schematic illustration of study design.  
Patients were recruited within 14 days of admission to the ICU, and EEG was recorded in in 5 
phases: 1) on sedation, 2) during the transition post-interruption of sedation, 3) off sedation, 4) 
during the transition post re-initiation of sedation and 5) when sedation was on again. Behavioral 
assessment using the GCS was performed three times during the protocol. Patients’ functional 
outcome was determined using phone assessments. In this study, we evaluated the value of 
behavioral and EEG response to prognosticate patients’ long-term functional outcome.  
ICU: intensive care unit, GCS: Glasgow Coma Scale, GOS-E: Glasgow Outcome Scale -  
Extended, EEG: electroencephalography 

 146 
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2.2 Electroencephalography data acquisition and anesthetic protocol 147 

EEG data was recorded in 5 phases: 1) pre-interruption of continuous sedation; 2) during the 148 
transition after interruption of sedation; 3) during a resting state off sedation; 4) during the transition 149 
after re-initiation of sedation and 5) resumption of continuous sedation (see Figure 1 for schematic 150 
illustration of the recording protocol). Phase 1 was recorded for 10 minutes, the other phases had 151 
variable durations (see below). EEG data were recorded using a high-density 128 channel saline 152 
net and an Amps 400 amplifier (Electrical Geodesic, Inc., USA). Data were recorded at a sampling 153 
rate of 1kHz and were referenced to the vertex; electrode impedances were reduced to below 5KΩ 154 
prior to recording.  155 

Patient responsiveness was assessed by the attending nurse using the GCS1 three times during 156 
the protocol: before Phase 1 (GCSsedation); at the end of Phase 3 (GCSobserved); and at the end of 157 
Phase 5 (see Figure 1 for schematic illustration of recording protocol). 158 

Parameters for interruption of sedation were not standardized. Instead, EEG response was 159 
recorded during routine ICU patient assessments. Thus, the initial sedation concentration, duration 160 
of sedation interruption and the need for a re-initialization of sedation were determined for every 161 
patient individually by the attending nurse or intensivist according to standard of care. Initial 162 
concentrations of propofol infusion varied between 16 to 83 µg/kg/min (see Table 1). The total time 163 
between interruption and re-initiation of sedation was determined by the attending nurse based on 164 
medical judgement (i.e., patient’s level of agitation, inter-cranial pressure, respiration) and varied 165 
between 11 and 33 minutes. Of the 47 patients whose EEG was recorded, 6 patients were excluded 166 
due to increased levels of agitation and head movement, which caused excessive noise in the EEG 167 
data. 168 

Of the remaining 41 patients, 20 had no medical need for re-initiation of sedation after interruption 169 
(i.e., they showed good tolerance to the interruption of sedation or began to obey commands). For 170 
these patients, the EEG acquisition was stopped after phase 3 (see Figure 1, see Table 1). For 10 171 
patients, phase 2 (i.e. anesthesia infusion) was not recorded. A total of 21 patients followed the full 172 
protocol of 5 states. To include the maximum number of participants, we report the EEG effect of 173 
interruption of sedation (i.e., Phase 1-3, n = 41). The same analysis on the EEG effect of re-174 
initialization of propofol (i.e., Phase 3-5, n = 21) is provided in the Supplementary Material.  175 

  176 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2024. ; https://doi.org/10.1101/2024.10.02.24314815doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.02.24314815
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

7 

 

Table 1: Demographic information of 41 patients included in this study 
ID: patient identifier; Sex (M: Male, F: Female), Prop: Propofol concentration in mcg/kg/min, 
score of Glasgow coma scale (GCS) in Phase 1 and Phase 3 (E: Eye opening, V: verbal 
Response, M: motor response, T: Intubated); Outcome 1: Survival (W: Withdrawn from life 
sustaining treatment, S: Survived, D: deceased), Outcome 2: Responsiveness (N: no- did not 
regain responsiveness, Y: yes- did regain responsiveness), Outcome 3: maximal score on 
Glasgow outcome scale-extended (GOS-E), Outcome 4: minimal score on Disability Rating 
Scale (DRS).    
 
 

ID 
 

Age 
 

Sex 
 

Etiology 
 

Prop. 
Dose 
[mcg/ 
kg/min] 

GCS 
Phase 1 
(E, V, M) 

GCS 
Phase 3 (E, 
V, M) 

Out 1 
Surv.  
 

Out 2 
Resp. 
 

Out 3  
GOSE 
 

Out 4 
DRS 
 

1 40-44 M Stroke 30 4T   (1,1T,2) 4T   (1,1T,2) W N W W 
2 40-44 M Stroke 50 7T   (1,1T,5) 10T (4,1T,5) S Y 3 13 
3 60-64 F Stroke 33 6T   (1,1T,4) 6T   (1,1T,4) D Y 1 n/a 
4 65-70 F Stroke 30 7T   (1,1T,5) 7T   (1,1T,5) D Y 1 n/a 
5 55-59 F Anoxic 33 3T   (1,1T,1) 3T   (1,1T,1) S Y - - 
6 55-59 M Anoxic 83 3T   (1,1T,1) 3T   (1,1T,1) S Y - - 
7 45-49 F Anoxic 16 3T   (1,1T,1) 6T   (1,1T,4) W N n/a n/a 
8 65-69 F Stroke 30 7T   (2,1T,4) 10T (3,1T,6) S Y 6 1 
9 75-79 F Other 25 3T   (1,1T,1) 7T   (2,1T,4) S Y 8 0 
10 40-45 M Stroke 50 8T   (2,1T,5) 10T (3,1T,6) S Y 7 2 
11 50-54 F Stroke 50 6T   (1,1T,4) 8T   (2,1T,5) S Y 3 8 
12 50-54 M Anoxic 50 3T   (1,1T,1) 4T   (1,1T,2) S Y 7 6 
13 80-84 M Stroke 20 6T  (-, 1T, -) 6T   (-,1T, -) W Y n/a n/a 
14 80-84 M Stroke 25 7T   (1,1T,5) 8T   (1,1T,6) S Y 3 7 
15 30-34 M Anoxic 66 3T   (1,1T,1) 3T   (1,1T,1) D Y 1 - 
16 25-29 M TBI 50 6T   (1,1T,4) 6T   (1,1T,4) S Y 7 1 
17 60-64 M Anoxic 66 3T   (1,1T,1) 10T (4,1T,5) S Y 8 0 
18 60-64 M Anoxic 50 3T   (1,1T,1) 11T (4,1T,6) S Y 6 3 
19 85-89 M TBI 20 6T   (1,1T,4) 6T   (1,1T,4) W N n/a n/a 
20 50-54 F Anoxic 50 3T   (1,1T,1) 7T   (3,1T,3) S Y 3 6 
21 20-24 M TBI 40 7T   (1,1T,5) 6T   (1,1T,4) S Y 8 0 
22 65-69 M Anoxic 50 3T   (1,1T,1) 11T (4,1T,6) S Y 5 4 
23 35-39 M Stroke 25 4T   (1,1T,2) 4T   (1,1T,2) D N 1 - 
24 80-84 M Anoxic 66 3T   (1,1T,1) 3T   (1,1T,1) D N 1 - 
25 30-34 M Anoxic 50 3T   (1,1T,1) 8T   (4,1T,3) W N n/a n/a 
26 35-39 M Anoxic 33 3T   (1,1T,1) 3T   (1,1T,1) W N n/a n/a 
27 85-89 M TBI 20 6T   (1,1T,4) 9T   (3,1T,5) D N 1 - 
28 65-69 F Anoxic 16 6T   (2,1T,3) 8T   (2,1T,5) D Y 1 - 
29 35-39 F TBI 60 9T   (3,1T,5) 11T (4,1T,6) S Y 4 5 
30 35-39 M TBI 50 7T   (1,1T,5) 7T   (1,1T,5) S Y 3 5 
31 65-69 M Anoxic 33 3T   (1,1T,1) 3T   (1,1T,1) S Y - - 
32 40-44 M Stroke 35 3T   (1,1T,1) 4T   (1,1T,2) W N n/a n/a 
33 75-79 M Anoxic 33 3T   (1,1T,1) 3T   (1,1T,1) W N n/a n/a 
34 60-64 M Anoxic 33 3T   (1,1T,1) 11T (4,1T,6) S Y - - 
35 30-34 F Anoxic 50 3T   (1,1T,1) 6T   (-,1T, -) W N n/a n/a 
36 85-89 M Stroke 25 5T   (1,1T,3) 11T (4,1T,6) D Y 1 - 
37 55-59 M Other 20 3T   (1,1T,1) 5T   (3,1T,1) S Y 8 6 
38 80-84 M Other 30 9T   (3,1T,5) 10T (3,1T,6) W Y n/a n/a 
39 40-44 F Anoxic 40 3T   (1,1T,1) 9T   (4,1T,4) S N 2 20 
40 35-39 F TBI 50 6T   (1,1T,4) 9T   (3,1T,5) S Y 8 0 
41 20-24 M TBI 50 9T   (4,1T,4) 9T   (4,1T,4) S Y 3 8 
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2.3 Data preprocessing 178 

Preprocessing was performed using MNE python 26. EEG data was re-referenced to 250 Hz, 179 
bandpass-filtered between 0.1 and 50 Hz and Notch-filtered at 60 Hz. Channels with excessive 180 
noise and non-physiological artifacts were selected manually and rejected from the data before 181 
average referencing. Non-brain electrodes were removed from the subsequent analysis, yielding a 182 
maximum of 105 brain channels. Data were segmented in non-overlapping epochs of 10 seconds 183 
and evaluated by a trained experimenter. Epochs with non-physiological or movement artifacts 184 
were rejected from the subsequent analysis. A total of 113 recordings with an average length of 185 
8.6 minutes and 95 channels were included in the final analysis (see Supplementary Material, Table 186 
1).  187 

 
Figure 2: Illustration of EEG feature selection. Colored line represents an example EEG 
feature (illustrated here is total EEG power over all frequency bands). Green, grey and blue lines 
indicate values of phase 1, 2 and 3, averaged over electrodes, respectively. The green shaded 
area indicates the area of  ± 1 standard deviation around the mean of Phase 1 signal. The orange 
shaded area indicates all recording points of Phase 2 and 3 which reached values outside this 
range. The amount of change was determined by the mean average between Phase 3 and 
Phase 1. Certainty was rated as the percentage of points outside the green shaded area.  

 188 
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2.4 Feature extraction 190 

The brain response to the interruption of sedation was estimated using three families of EEG 191 
markers: 1) absolute and relative power; 2) spatial ratios; and 3) the spectral exponent.  The sum 192 
of absolute power of the broadband spectrum and relative power was calculated in five frequency 193 
bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), low beta (13-20 Hz) and high beta (20-30 194 
Hz). Power spectral density between 1 and 45 Hz was estimated using the Welch algorithm with a 195 
2 second window and 50% overlap. Relative power was defined as the area under the power 196 
spectrum in the given frequency range, divided by the total area under the full power spectrum, 197 
resulting in the percentage contribution of a specific bandwidth to the total power. We estimated 198 
the offset and exponential decay of power over frequency using the aperiodic component (referred 199 
to as the spectral exponent). The spectral exponent and offset were estimated using the ‘fitting 200 
oscillation and one over f’ algorithm 27 in the 1-45 Hz range (min_peak_height=0.1, 201 
max_n_peaks=3).  202 

All features were calculated on each 10-second epoch and channel individually. We then 203 
summarized features by extracting 1) the space-averaged feature strength, 2) the standard 204 
deviation of the feature over space, and 3) the posterior-anterior ratio (i.e., the geometric mean of 205 
power in posterior electrodes, divided by geometric mean of power in anterior electrodes), with 206 
each method yielding one value per epoch.  207 

2.5 EEG Dynamic Change 208 

The change in each EEG feature induced by the interruption of propofol was defined as the 209 
difference between each feature’s Phase 1 average and Phase 3 average (See Figure 2, amount 210 
of change). To evaluate whether this difference was induced by the interruption of sedation rather 211 
than spontaneous fluctuations, we assessed the proportion of datapoints post-interruption (i.e., 212 
Phase 2 and 3) that were one standard deviation above or below the Phase 1 features (see Figure 213 
2, certainty of change). The resulting value can be interpreted as a ‘certainty score’, with values 214 
close to 1 indicating high certainty that the respective feature changed after interruption of sedation, 215 
and values of 0 indicating that changes were driven by natural fluctuations in the EEG over time. 216 
For the patients for whom Phase 2 was not recorded, certainty was calculated using data from 217 
Phase 3 only. 218 

The amount of change in each feature was weighted by the certainty score (i.e., amount of change 219 
* certainty of change). This dynamic change score was calculated individually on the mean, 220 
standard deviation and posterior-anterior ratio of each feature (i.e., total power, delta, theta, alpha, 221 
low beta, high beta, exponent and offset), yielding a total of 24 features (i.e., 8 mean, 8 standard 222 
deviation, 8 posterior-anterior ratio). We present all analyses on EEG recordings during interruption 223 
of sedation (i.e., Phase 1-3) in the main manuscript; the analysis was reproduced for the re-initiation 224 
of sedation (i.e., Phase 3-5) and described in the Supplementary Material (see Supplementary 225 
Methods) 226 

2.6 Grouping according to behavioral response 227 

Participant behavioral responsiveness was assessed using the GCS before, during and after the 228 
interruption of sedation (see Figure 1). The change in behavioral responsiveness (DGCS) during 229 
the NWT was defined as the difference between GCS score off sedation and pre-interruption of 230 
sedation: DGCS = GCSobserved – GCSsedation.  231 

DGCS and GCSobserved were used to categorize patients into three groups: Nine patients regained 232 
ability to obey commands during the NWT and were assigned to ‘Group A: regained 233 
responsiveness’ (see Figure 3, green markers, see Table 1). Thirteen patients showed increased 234 
levels of behavior during interruption of sedation (i.e., DGCS ³ 2), despite not obeying commands 235 
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and were categorized as ‘Group B: Some behavioral change’ (see Figure 3, orange markers). 236 
Nineteen patients did not show any or only minimal behavioral change during NWT (i.e., DGCS < 237 
2) and were assigned to ‘Group C: No behavioral change’ (see Figure 3, red markers).  238 

 
Figure 3: Behavioral response groups. Summary of 41 patients’ GCS score before 
interruption of sedation and difference in GCS during interruption of sedation (DGCS). Each 
marker indicates a single patient, colored by response group. Marker shape encodes etiology. 
All participants were intubated at the time of assessment. GCS: Glasgow Coma Scale, TBI: 
Traumatic Brain Injury 

 239 
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2.7 Machine learning analysis 241 

We developed a machine learning model (a Linear Ridge regression trained using scikit learn 28) 242 
that used the EEG dynamic change score to predict the DGCS of Group A participants. For the 243 
training, participants’ age, concentration of sedation and time without sedation were combined with 244 
the 24 EEG features. Model performance was evaluated using mean absolute error (i.e., average 245 
error between true and predicted DGCS) and a leave-one participant out cross validation. A good 246 
model performance indicates that the model has learned to identify EEG patterns which are related 247 
to behavioral responsiveness during the NWT. 248 

We then used the model to predict the change in GCS (DGCSpredicted) during the NWT in participants 249 
who showed ambiguous or absent behavioral response (Group B and C). Behavioral 250 
responsiveness can be dissociated from the cognitive presence of consciousness (i.e. covert 251 
consciousness) 2–4. We therefore did not expect to see a high prediction accuracy for Group B and 252 
C. Instead, a high deviation between DGCS and DGCSpredicted could indicate that participants show 253 
electrophysiological signs of waking-up despite absent or ambiguous behavioral responsiveness. 254 

2.8 Outcome assessment and prognostic analysis 255 

Functional outcome was assessed at 3, 6 and 12 months post-EEG recording using a phone 256 
assessment of the Glasgow Outcome scale-extended (GOS-E) 29,30 and the Disability Rating Scale 257 
(DRS) 31. Depending on the participant’s functional capabilities, questions were answered by the 258 
participant or participant’s next of kin. Four follow-up calls could not be completed due to changed 259 
contact information and inability to reach patients’ next of kin. We quantified functional outcome as 260 
the maximal GOS-E score (i.e., 0 indicating death) and minimal DRS score (i.e., 0 indicating no 261 
disability) reached within one-year post-EEG. In the case of death, we additionally asked whether 262 
the participant regained capacity to obey commands at any time prior to death.  263 

As this study aimed to investigate the value of EEG in patients with absent or ambiguous behavioral 264 
responses, the analysis of prognostic value was only performed on participants from Group B and 265 
C (n = 32). Group A was used for model training and was not included in the prognostic analysis. 266 

Prognostic analysis was performed based on three outcome criteria: 1) survival; 2) recovery of 267 
responsiveness; and 3) functional outcome (i.e., GOS-E and DRS). For the prognostication of 268 
survival, 23 patients were included (16 survived, 7 died within three months post-recording). Due 269 
to uncertainty of the natural progression of their recovery, participants who had a withdrawal of life 270 
sustaining treatment (WLST) were excluded from this analysis (n = 9, see Table 2). For the 271 
prognostication of recovery of responsiveness, 24 patients were included (20 regained 272 
responsiveness, 4 did not). Participants who had a WLST and had never regained responsiveness 273 
(n=8) were excluded from this analysis. For the prognostication of functional outcome, 20 274 
participants were included (9 WLST excluded, 3 missed follow-ups, see Table 2).  275 

  276 
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 277 

Table 2: Summary of outcome measures, split by response groups 
GOS-E: Glasgow Outcome Scale-Extended, DRS: Disability rating score, N: Number of 
participants, WLST: withdraw of life-sustaining treatment 
 

 N N 
Regained 

responsiveness 

N  
Did not regain 
responsiveness 

N  
Follow-up 

calls 

GOS-E DRS 

       

Group A (n = 9)       
Survivors 7 

 
7  
 

0  6 
(1 missed) 

 

Mean: 5.16 
Std: 1.34 

Range: 3 - 7 

Mean: 3.67 
Std: 1.97 

Range: 1 - 7 
 

Non-survivors 1 
 

1 0 - GOSE = 1 N.A. 

WLST 1 1 0 - - - 
Group B (n = 13) 
 

      

Survivors 8 
 

7  
 

1  8 
 

Mean: 5.37 
Std: 2.64 

Range: 2 - 8 

Mean: 6.63 
Std: 6.65 

Range: 0 - 20 
 

Non-survivors 2 
 

1 1 - GOSE = 1 N.A. 

WLST 3 0 3 (excluded) - - - 
Group C (n = 19) 
 

      

Survivors 8 
 

8  
 

0  5 
(3 missed) 

 

Mean: 5.6 
Std: 2.15 

Range: 3 - 8 

Mean: 4.0 
Std: 3.03 

Range: 0 - 8 
 

Non-survivors 5 
 

3 2 - GOSE = 1 N.A. 

WLST 6 1 5 (excluded) - - - 
 
 
 

 278 

2.9 Outcome prediction by attending physicians 279 

To compare our proposed tool to bedside clinical practice, we collected clinicians’ prognostication 280 
of participant functional recovery. Attending physicians were asked to predict their patient’s 6- and 281 
12-month GOS-E score. They were also asked to rank their confidence in their prediction on a 282 
scale from 0 to 4, with 0 indicating not confident and 4 being very confident. Outcome prediction 283 
questionnaires were completed between 1 and 24 hours after the EEG recording. Patient’s 284 
APACHE score 33 was calculated by a trained clinician. For three patients, an APACHE score could 285 
not be determined due to missing clinical information. 286 

2.10 Statistical analysis 287 

The prognostic value of the EEG model to predict survival and recovery of responsiveness was 288 
performed using a Python implementation of the one-sided Mann-Whitney-U test 34, with the 289 
expectation of a larger DGCSpredicted for patients with a favorable outcome. In addition, we defined 290 
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an optimal decision-threshold by identifying the value which maximized the distance between the 291 
favorable and unfavorable group. Using this linear split, we defined values of accuracy, specificity 292 
and sensitivity of the group-separability. It is important to note that the machine learning model from 293 
the first part of this study only predicted an expected DGCS, but not patient outcome. The purpose 294 
of the optimal threshold was solely to compare how clinically informative the EEG-predicted 295 
response was, compared to the observed behavioral response. The prognostic value for functional 296 
outcome was assessed using a Spearman-rank test 34.  297 

 
Figure 4: Case examples of contradicting EEG and GCS response. 
(Top Right) Observed GCS difference (i.e. GCS off sedation – GCS on sedation) and GCS 
difference predicted by the model. Colors indicate the previously defined response groups. For 
four highlighted and annotated cases, the EEG response to interruption of sedation is visualized. 
Each box visualizes a time-resolved spectrogram and topographic maps of spectral exponent 
for the highlighted case. Dotted lines in the spectrogram indicate the beginning of a new 
recording phase. In case 4, phase 2 was not recorded. Red arrows indicate the moment when 
propofol sedation is interrupted. 
GCS: Glasgow Coma Scale 
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3 Results 299 

3.1 EEG features can be decoupled from participant behavioral response  300 

Using the Linear Ridge Regression, the DGCS of participants in Group A was predicted from the 301 
EEG model with a mean absolute error of 1.57. The most important features for the prediction were 302 
the relative power in the low beta, theta and alpha bandwidth and the magnitude and posterior-303 
anterior ratio of the spectral exponent.  304 

The DGCSpredicted for Groups B and C had an overall error of 2.15. Model prediction for Group B 305 
varied between -0.69 and 8.35; model prediction for Group C varied between -0.88 and 8.06. High 306 
values of DGCSpredicted indicate the presence of electrophysiological patterns of waking up, similar 307 
to participants with high DGCS in Group A. Negative values indicate EEG dynamic changes which 308 
were even weaker than the training example with the lowest DGCS.  309 

Figure 4 illustrates the predicted and observed DGCS. Although the predicted difference of most 310 
Group B participants matched the observed difference, some participant’s DGCSpredicted were highly 311 
under- or over-estimated. We use four case examples of the maximally under- and over-estimated 312 
DGCSpredicted to elucidate the different types of brain responses during the NWT. Case 1 and 2 313 
(Patient 33 and 11 in Table 1) showed an absent (DGCS = 0) or ambiguous (DGCS = 2) behavioral 314 
response during the NWT. However, based on the EEG reaction to interruption of sedation, the 315 
model generated a DGCSpredicted of 8.06 and 8.53, respectively. In contrast, Case 3 and 4 (Patient 316 
4 and 7 in Table 1) showed an absent (DGCS = 0) or ambiguous (DGCS = 3) response during the 317 
NWT. In both cases, the model generated a negative DGCSpredicted.  318 

The time-resolved spectrogram and topographic maps of spectral exponent for the four highlighted 319 
cases reveal electrophysiological patterns underpinning the prediction (see Figure 4). While Cases 320 
1 and 2 show a prominent increase of global power and flattening of the spectral exponent following 321 
sedation interruption, no such effect was observed for Cases 3 and 4. 322 

Altogether, these cases demonstrate that dynamic EEG changes reveal heterogeneity in the group 323 
of participants whose response to the NWT was ambiguous or absent. Despite remaining 324 
completely unresponsive, some participants showed EEG patterns that have previously been 325 
associated with an increased behavioral response. Our results indicated that EEG features can be 326 
decoupled from behavioral responsiveness during the NWT. 327 

3.2 EEG response to interruption of sedation has prognostic value for participants with 328 
absent or ambiguous behavioral responsiveness. 329 

Of the 23 participants included in the prognostic analysis of survival, only 11 had an observed 330 
DGCS above zero during the NWT. The observed DGCS had low predictive value for survival, with 331 
an accuracy of 0.61, specificity of 0.56 and sensitivity of 0.71 (Figure 5A). Participants’ maximum 332 
observed GCS score was also poorly predictive of survival, with an accuracy of 0.61, specificity of 333 
0.62 and sensitivity of 0.57 (Figure 5B). In contrast, the DGCSpredicted had higher prognostic value, 334 
with an accuracy of 0.74, specificity of 0.75 and sensitivity of 0.71 (Figure 5A). The predicted 335 
maximal GCS only minimally increase group separability, with an accuracy of 0.65, specificity of 336 
0.69 and sensitivity of 0.57 (Figure 5B). Observed GCS scores did not significantly differentiate 337 
participants according to their outcome; in contrast, the EEG model generated significantly higher 338 
DGCSpredicted for participants who survived (U = 87, p<0.05) (Figure 5A). Supplementary Figure 1 339 
visualizes this effect for each response group individually.  340 
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Figure 5: Comparison of observed and EEG-predicted behavioral response.  
A) Observed (left) and model-predicted (right) difference in Glasgow Coma Scale (GCS) during 
neurological wake- up test, split by patient’s outcome. B) Observed (left) and model-predicted 
(right) maximal Glasgow Coma Scale (GCS) during neurological wake- up test; The dotted line 
represents the value which best separates the favorable and unfavorable group. The grey box 
indicates performance matrices of group- separation based on this threshold (TN: true 
negative, FN: false negative, TP: true positive, FP: false positive, with positive indicating non-
survivors, ACC: accuracy, Spec: specificity, Sens: sensitivity). C) Visualization of group-
separability based on the behaviorally observed response on sedation (i.e. GCS Phase 1) and 
the observed (left) and model-predicted (right) gain in GCS during NWT.  

 341 

The prognostic value for recovery of responsiveness remained unchanged between GCSobserved 342 
and DGCSpredicted (Supplementary Figure 2). No significant correlation was identified between 343 
observed or predicted DGCS and maximal GOS-E and DRS score within one -year post-recording.  344 
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The analysis was repeated using a separate model trained on the brain response to induction of 345 
sedation (i.e., Phase 3-5, n = 21) (see Supplementary Methods). Although the effects are reduced 346 
due to the smaller sample size, there is a better prognostic separability for survival and recovery of 347 
responsiveness using the dynamic EEG changes compared to the observed behavior (Figure S3).  348 

Altogether, we demonstrated that the EEG response following interruption of sedation has 349 
prognostic value for survival of participants with absent or ambiguous behavioral responsiveness 350 
during the NWT. Based on the EEG response, participants who survived showed a higher 351 
DGCSpredicted compared to participants who did not. All analyses were repeated using only the 352 
averaged EEG features from Phase 1 and Phase 3 independently. There was no increase in 353 
prognostic value using the EEG from Phase 1 (Figure S3), though the EEG from Phase 3 had 354 
prognostic value for recovery of responsiveness (Figure S3). Figure 5C clearly illustrates the 355 
improvements offered by a combined neuro-behavioral assessment during the wake-up test. 356 

3.3 Prognostic value of EEG response to interruption of sedation could benefit clinical 357 
decision making  358 

Physicians’ predicted GOS-E score at 6 months positively correlated with participants’ GCSobserved 359 
(rho(28)= 0.39, p < 0.05, partial correlation corrected by age). As expected, a patient’s behavioral 360 
responsiveness had a strong influence on the physician’s prediction of long-term functional 361 
outcome, with more responsive patients correlated with predictions of better recovery.   362 

Physicians rated their predictions with a confidence of 1.82 ± 0.71, with 1 indicating ‘slightly 363 
confident’ and 2 being ‘fairly confident’. The lowest average confidence score (1.8 ± 0.35) appeared 364 
in Group B, who showed an ambiguous behavioral response. Overall, there was a high level of 365 
uncertainty in the functional outcome of unresponsive patients, which was maximal when patients 366 
show an ambiguous behavioral response.  367 

The absolute distance between the real and the physician-predicted GOS-E score was 1.80 ± 1.42 368 
(Supplementary Material, Figure S4). However, when binarizing patient outcomes according to 369 
survival (GOS-E > 1) or recovery of responsiveness (GOS-E > 2), physician predictions could not 370 
separate good from poor outcomes (Supplementary Material, Figure S5). Similarly, the APACHE 371 
score achieved a maximal prognostic accuracy of 0.37 for survival and 0.62 for recovery of 372 
responsiveness (Supplementary Material, Figure S5). Our results confirm that prognostication after 373 
brain injury in the tested sample is accompanied by an overall high uncertainty and suggests a 374 
tendency to overestimate functional outcome. 375 

4 Discussion 376 

In this study, we demonstrated that the EEG dynamic change during the NWT can improve 377 
prognostication of severely brain injured patients who show an absent or ambiguous behavioral 378 
response to interruption of sedation. The EEG response to interruption of sedation showed 379 
electrophysiological signs of waking-up despite behavioral unresponsiveness in some patients. 380 
Moreover, the EEG dynamic change during the NWT predicted patient survival better than 381 
behavioral responses alone. This has the potential to improve clinical prognostication, as the 382 
attending physician’s outcome prediction was highly dependent on the patient’s observed behavior. 383 
Assessing covert neurophysiological function alongside behavior can improve clinician confidence 384 
in neuroprognostication and decision-making in acute care settings for severely brain injured 385 
patients.  386 

Of the four case examples highlighted in the results, the EEG of two changed dynamically in 387 
response to interruption of sedation despite the absence of a behavioral response. The first patient 388 
suffered an anoxic brain injury and showed a strong EEG dynamic change during the NTW, while 389 
his GCS remained constant at 3T. However, these results are inconclusive, as this patient was 390 
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withdrawn from life sustaining treatment and the natural course of his recovery remains unknown. 391 
The second case patient suffered a stroke and had an ambiguous behavioral response during the 392 
NWT. Her EEG had strong neurophysiological signs of waking up, which aligned with her survival 393 
and recovery of consciousness. The EEG of the third and fourth case examples remained static 394 
during the NWT. The third case was a stroke patient who passed away in palliative care but 395 
regained the capacity to follow commands in the ICU; the fourth suffered an anoxic brain injury and 396 
was withdrawn from life sustaining treatment. This case series illustrates the potential benefits, but 397 
also the limitations of the proposed tool. Although the EEG response during the NWT may capture 398 
the brain’s capacity for recovery, patient survival and long-term functional outcome are also 399 
determined by factors including age, organ function, treatment availability, social support and the 400 
occurrence of secondary medical events unrelated to the original brain injury. The technique 401 
proposed in this study is thus not intended to be used in isolation, but rather to complement current 402 
state-of-the-art medical assessments to generate a better informed prognosis.  403 

The results of this study need to be considered in light of several limitations. First, while all EEG 404 
was recorded during a complete interruption of propofol, other medications including morphine, 405 
fentanyl (4 patients), midazolam (3 patients), Keppra (2 patients) and haloperidol (2 patients) were 406 
not discontinued during the NWT. Second, before the NWT, patients were continuously sedated 407 
for durations ranging from hours to days and were exposed to different concentrations of propofol. 408 
We accounted for this potential confound in our analysis by adding the concentration of propofol 409 
as a feature to the linear regression. No significant difference was found between the concentration 410 
of propofol and participant survival or recovery of responsiveness. Third, EEG markers of 411 
consciousness are highly variable across etiologies 20,35, and this study analyzed brain-injured 412 
participants from anoxic, traumatic and stroke etiologies as a single group. However, our study 413 
investigated the propofol-induced relative change in EEG features, using a within-subject 414 
comparison to account for the specifics in each participant’s brain injury. Fourth, the effect of 415 
anesthesia on the brain and behavior differs across sex and age 36–38. We accounted for age-416 
related differences by including age as a feature in the machine learning model, however, a larger 417 
dataset is necessary to identify relevant EEG features in different populations. Fifth, we only 418 
extracted features based on fixed EEG bandwidths using a 128-channel EEG system. A larger 419 
feature space that accounts for the raw spectrogram over time could be implemented on a larger 420 
sample of patients. Finally, all features extracted from the EEG were calculated on a single-channel 421 
level. It remains to be validated whether EEG features of clinal EEG systems would be sufficient to 422 
provide similar results. 423 
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