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Abstract 26	

Deep brain stimulation (DBS) targeting the lateral habenula (LHb) is a promising 27	

therapy for treatment-resistant depression (TRD) but its clinical effect has been 28	

variable, which can be improved by adaptive DBS (aDBS) guided by a neural 29	

biomarker of depression symptoms. A clinically-viable neural biomarker is desired to 30	

classify depression symptom states, track both slow and fast symptom variations 31	

during the treatment, respond to DBS parameter alterations, and be neurobiologically 32	

interpretable, which is currently lacking. Here, we conducted a study on one TRD 33	

patient who achieved remission following a 41-week LHb DBS treatment, during 34	

which we assessed slow symptom variations using weekly clinical ratings and fast 35	

variations using daily self-reports. We recorded daily LHb local field potentials (LFP) 36	

concurrently with the reports during the entire treatment process. We then used 37	

machine learning methods to identify a personalized depression neural biomarker 38	

from spectral and temporal LFP features. The identified neural biomarker classified 39	

high and low depression symptom severity states with a cross-validated accuracy of 40	

0.97, with the most contributing spectral and temporal feature being LFP beta band 41	

power and Hurst exponent, respectively. It further simultaneously tracked both 42	

weekly (slow) and daily (fast) depression symptom variation dynamics, achieving test 43	

data explained variance of 0.74 and 0.63, respectively. It also responded to DBS 44	

frequency alterations. Finally, it can be neurobiologically interpreted as indicating 45	

changes in LHb excitatory and inhibitory balance during DBS treatment. Together, 46	

our results hold promise to identify clinically-viable neural biomarkers to facilitate 47	

future aDBS for treating TRD. 48	
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1. Introduction 49	

Major depressive disorder (MDD) is one of the most common neuropsychiatric 50	

disorders, affecting over 300 million individuals worldwide [1] . Approximately 30% 51	

of MDD patients are treatment-resistant, meaning they do not respond adequately to 52	

at least two antidepressant trials [2]. Deep brain stimulation (DBS) is a neurosurgical 53	

procedure that allows targeted circuit-based neuromodulation [3]. It has emerged as a 54	

promising treatment option for patients with treatment-resistant depression (TRD) [4–55	

6], as shown by open-label studies targeting various brain structures involved in the 56	

brain’s “reward” system that mediates positive motivations. Such targets include the 57	

subcallosal cingulate cortex (SCC) [7], the ventral capsule/ventral striatum (VC/VS) 58	

[8], the medial forebrain bundle (MFB) [9], and the bed nucleus of the stria terminalis 59	

(BNST) [10]. However, several recent double-blinded clinical trials have shown that 60	

the effects of DBS targeting these brain structures are inconsistent across patients 61	

[11–15]. As a potential improvement over DBS, adaptive DBS (aDBS) optimizes 62	

DBS parameters in real-time by using neural signals as feedback for enhancing 63	

clinical efficacy [16]. A recent study implements aDBS targeting VC/VS in a TRD 64	

patient by triggering stimulation only when the local field potential (LFP) signal 65	

pattern indicates worsening of depression symptoms, achieving rapid alleviation of 66	

depression symptoms [17]. 67	

The lateral habenula (LHb) is a hub structure that plays a central role in the brain’s 68	

“anti-reward” system that mediates negative motivations [18–20]. Animal studies 69	

have systematically shown that the local bursting firing patterns in LHb are closely 70	

related to depression-like behaviors and that neuromodulation of LHb has significant 71	
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antidepressant effects [21–23]. Several clinical studies have reported single-patient 72	

depression symptom alleviation following LHb DBS since 2010 [24–27]. On the 73	

other hand, two recent clinical studies on seven or six patients has shown more 74	

variable effects of LHb DBS across patients [28,29]. Similar to other DBS targets, 75	

aDBS for LHb also provides a promising path towards improved and more consistent 76	

treatment effects across TRD patients. 77	

A critical and fundamental requirement for developing LHb aDBS is the 78	

identification of an LHb neural biomarker of depression symptoms during the DBS 79	

treatment to provide the necessary feedback signal [30,31]. A population-level SCC 80	

LFP spectral power biomarker has been identified for tracking depression symptom 81	

recovery with SCC DBS in five TRD patients [32]. Personalized amygdala and BNST 82	

LFP gamma power biomarkers have been identified for optimizing VC/VS DBS [33]. 83	

For LHb DBS, LFP signals have been recorded before the DBS treatment starts but 84	

not during the multi-month-long treatment process [28,29,34] and several studies 85	

have found statistical correlations between pre-treatment LHb LFP spectral features 86	

and after-treatment depression symptom ratings [28,29,34]. However, it is unknown 87	

whether the identified LFP features can classify depression symptom severity states 88	

or track the temporal dynamics of depression symptom variations during the DBS 89	

treatment process. Therefore, a useful neural biomarker for realizing LHb aDBS is 90	

still lacking. 91	

A clinically-viable neural biomarker is desired to be able to track both the slow 92	

and fast temporal dynamics of depression symptom variations during DBS. This is 93	

because both natural and DBS-induced depression symptom changes can vary at 94	

different time scales, with both slow-changing dynamics over months or weeks [35–95	
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39] and fast-changing dynamics over hours or days [9,40–43]. Existing neural 96	

biomarker studies have focused on tracking the temporal dynamics of either slow or 97	

fast symptom variations. The aforementioned SCC neural biomarker for SCC DBS 98	

tracks the temporal dynamics of the weekly symptom variations over 24 weeks [32]. 99	

The aforementioned amygdala and BNST neural biomarkers for VC/VS DBS track 100	

the faster temporal dynamics of symptom variations within several days [17,33]. 101	

Several other studies have also identified resting-state (without DBS) neural 102	

biomarkers of relatively fast depression symptom variations within several days using 103	

multisite intracranial electroencephalography (iEEG) [44–46]. However, to date, 104	

identifying a neural biomarker that can simultaneously track the temporal dynamics 105	

of both slow and fast depression symptom variations, in particular during LHb DBS 106	

treatment, remains elusive. 107	

Moreover, the neural biomarker needs to reflect the dose effect of different DBS 108	

parameters for optimizing stimulation parameters in aDBS. Since the DBS 109	

mechanism for treating TRD is largely unknown [47], only few studies have 110	

experimentally explored the dose effect of different DBS amplitudes on human neural 111	

signals [17,32,33]. On the other hand, DBS frequency also has been shown to play a 112	

key role in altering TRD symptoms [4–6,48]. However, how different LHb DBS 113	

parameters, especially stimulation frequencies, alter neural signals or neural 114	

biomarkers in TRD patients remains unknown. 115	

Finally, the neural biomarker should possess a certain level of neurobiological 116	

interpretability. A critical neurobiological property that has been implicated in the 117	

pathophysiology of MDD [21–23] is the excitatory/inhibitory (E/I) balance of LHb 118	

activity. E/I balance refers to the equilibrium between synaptic excitation and 119	
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inhibition received by neurons [49]. LHb has excitatory and inhibitory connections 120	

with a wide range of brain regions involved in the affect, reward, and cognition 121	

dimensions of MDD symptom, such as the dorsal raphe nucleus, nucleus accumbens, 122	

hippocampus, medial prefrontal cortex, etc [50]. Excessive excitation of LHb has 123	

been implicated in the pathology of MDD [21–23]. By contrast, electrical stimulation 124	

of LHb in animal depression models has been shown to inhibit overly-excited local 125	

neural activity, thus modulating the dopaminergic and serotoninergic activity and 126	

generate complex excitatory and inhibitory effects over a large network that may have 127	

led to depression-like behavior alleviation [51,52]. Furthermore, a prior study has 128	

found a correlation between pre-treatment LHb E/I balance with depression 129	

symptoms in DBS patients [34]. However, how LHb E/I balance changes during 130	

human patient DBS treatment and whether there exists a neural biomarker that can 131	

track such changes has not been investigated.  132	

Here, to close the above gaps, we conducted LHb DBS on one TRD patient where 133	

we evaluated the patient’s symptoms and concurrently collected daily LHb LFP 134	

signals during the entire 41-week long treatment process (Figure 1). With this unique 135	

longitudinal dataset and by using machine learning techniques, we identified a 136	

clinically-viable neural biomarker from spectral and temporal LHb features, where 137	

the most contributing spectral and temporal features are the β (12-30 Hz) band power 138	

and Hurst exponent, respectively. Our identified neural biomarker (1) accurately 139	

classified high and low depression symptom severity states; (2) significantly tracked 140	

the temporal dynamics of weekly (slower) and daily (faster) depression symptom 141	

variations during the DBS treatment; (3) reflected the depression symptom changes  142	
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Figure 1. Study framework. During the LHb DBS treatment of one TRD patient, we used 
weekly clinical ratings and daily self-reports to evaluate the symptom variations, where we 
simultaneously collected daily LFP signals from LHb. Using machine learning models, we 
identified a neural biomarker that classified high and low depression symptom states during 
the DBS treatment. Using data not used in neural biomarker identification, we evaluated and 
interpreted the neural biomarker in terms of 1) simultaneously tracking the temporal 
dynamics of weekly slow and daily fast variations of depression symptoms; 2) reflecting 
symptom changes when DBS frequencies were altered; 3) indicating changes in LHb E/I 
balance. 

 

in response to DBS frequency alterations. Finally, the neural biomarker can be 143	

interpreted as an indicator of the changes in LHb E/I balance during the DBS 144	

treatment. Together, our results have implications for identifying clinically-viable 145	

neural biomarkers to facilitate future LHb aDBS developments for treating TRD. 146	

2. Materials and Methods 147	

2.1 Participant 148	

This study included a male TRD patient aged 36-40 years old (see Note S1 for detailed 149	

patient medical information) participating in a clinical trial of LHb DBS treatment 150	

starting in October 2021. The patient provided informed consent for participation in 151	
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the clinical trial. This study received approval from the Ethics Committee of Zhejiang 152	

University School of Medicine Second Affiliated Hospital (protocol number 153	

20210218). It was registered at www.clinicaltrials.gov (IR2021001074), where 154	

detailed information regarding the inclusion and exclusion criteria can be accessed. 155	

At the beginning of the clinical trial, two independent psychiatrists evaluated the 156	

patient’s psychotic symptoms using the 17-item Hamilton Depression Rating Scale 157	

(HAMD), the Montgomery Asberg Depression Scale (MADRS), and the Hamilton 158	

Anxiety Rating Scale (HAMA) as baseline assessments. In addition to the psychiatric 159	

assessments, the patient underwent a comprehensive physical examination, various 160	

mental scale assessments, and a magnetic resonance imaging (MRI) examination. We 161	

carefully ensured that other psychiatric diagnoses outlined in the Diagnostic and 162	

Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) were excluded. 163	

2.2 Surgical procedure 164	

A standard DBS implantation procedure was employed. Bilateral quadripolar 165	

electrodes (1200-40, SceneRay, Suzhou, China) were surgically implanted in the LHb 166	

under local anesthesia (Figure 2A). The DBS electrodes had a diameter of 1.27 mm 167	

and a lead length of 400 mm. Each electrode’s four contacts measured 1.5 mm in 168	

length with a spacing of 0.5 mm. The LHb targeting was guided by preoperative MRI 169	

sequences. After confirming the absence of stimulation side effects through 170	

intraoperative testing, an implantable pulse generator (SR1101, SceneRay) was 171	

placed under general anesthesia. The DBS device was also capable of recording and 172	

wireless transmitting LFP signals (Figure 2B). 173	
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Figure 2. Experiment design. (A) MRI visualization showing the DBS lead placement 
within the patient's LHb. The shaded blue area indicates the volume of tissue activated by 
the DBS. (B) Temporal dynamics of example epochs of LFP signals after preprocessing. (C) 
LHb DBS Treatment Timeline. The entire treatment process consisted of six stages. LFP 
signal collection began after the activation of 1 Hz stimulation. (D) Longitudinal data 
collection over time. Data were collected using two different time scales: 1) daily self-
reports and 30-min LFP signals recorded around the self-reports; 2) weekly clinical ratings.  

2.3 Fiber tracking of LHb 174	

We used diffusion tensor images from the magnetic resonance imaging (MRI) 175	

examination to conduct fiber tracking of LHb with a standard procedure reported in 176	

a previous study [53]. First, we manually created the LHb as the region of interest 177	

(ROI) in standard Montreal Neurological Institute 152 (MNI152) space. The ROI in 178	

MNI152 standard space was then registered to the diffusion space of our patient for 179	
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tractography. To ensure the exclusion of non-brain tissue, we employed the 'bet2' 180	

function, and the cerebrospinal fluid mask was used as an exclusion mask. We further 181	

performed the probabilistic tractography processing using tools from the FSL 182	

Diffusion Toolbox. The LHb ROI was used as the seed mask to generate whole-brain 183	

distribution maps using FSL's probtrackX tool. We performed 5000 streamline 184	

samples per voxel with distance normalization to ensure comprehensive coverage. 185	

Subsequently, the resulting fiber distribution maps were non-linearly registered back 186	

to the MNI152 standard space. To eliminate artifactual connections and noise, a 187	

threshold value of 1% was implemented.  188	

2.4 DBS treatment process and symptom evaluations 189	

During the bilateral DBS treatment process, we made multiple adjustments to the 190	

stimulation parameters to achieve the best therapeutic effect. We divided the treatment 191	

process into six stages based on the alterations of stimulation parameters (Figure 2C): 192	

1) the “Preop” stage, the time before DBS implantation; 2) the “Off-1” stage, patient 193	

recovery with DBS turned off; 3) the “1 Hz” stage, activation of 1 Hz stimulation; 4) 194	

the “Off-2” stage, DBS turned off because of unnoticed power off; 5) the “20 Hz” 195	

stage, re-activation of 20 Hz stimulation; 6) the “130 Hz” stage, activation of 130 Hz 196	

stimulation. More details can be found in Note S2. The entire duration of DBS 197	

treatment spanned 41 weeks (starting from DBS implantation). 198	

The efficacy of DBS treatment was evaluated from two perspectives: clinician 199	

evaluation and self evaluation (Figure 2D). For clinician evaluation, a psychologist 200	

blinded to the current stimulation parameters and their adjustments evaluated the 201	

patient’s depression and anxiety symptoms on a weekly basis using standardized 202	
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rating scales (HAMD, MADRS, HAMA). Response is defined as a 50% or greater 203	

improvement on the HAMD score from the pre-treatment baseline. Remission is 204	

defined as achieving a HAMD score of 7 or less. The psychologist also evaluated the 205	

patient’s emotional blunting and cognitive functioning during the treatment. For every 206	

four to six months, the psychologist utilized the Oxford Depression Questionnaire 207	

(ODQ), a self-report tool to assess emotional blunting, along with two cognitive 208	

assessment tools (MATRICS Consensus Cognitive Battery (MCCB) and THINC-209	

integrated tool (THINC-it)) to evaluate the patient's cognitive abilities. For self 210	

evaluation, the patient used the Visual Analogue Scale (VAS) for depression (VAS-D) 211	

and anxiety (VAS-A) to self-report the symptom severity. Self-reported VASA and 212	

VAS-D had been used to assess the rapid effects of antidepressants [54]. To facilitate 213	

daily data collection, we established an online questionnaire system where the patient 214	

could conveniently complete the self-reports via the smartphone or computer. 215	

2.5 LFP signal recording, signal processing, and feature 216	

extraction 217	

After activating the 1 Hz stimulation, we collected daily LFP signals (30 minutes per 218	

day) concurrent with daily self-reported VAS-D and VAS-A (Figure 2D, details in 219	

section 2.4). LFP signals were recorded at a sampling rate of 1000 Hz. Notably, 220	

stimulation was deactivated during the signal acquisition process. We reconstructed 221	

the electrode positions using MRI and selected two contacts in the left hemisphere for 222	

bipolar recording of a single LFP channel. The patient was instructed to attempt daily 223	

LFP recording and VAS-D/VAS-A reporting. Throughout the entire 41-week (287-224	

day) treatment, the patient was able to activate LFP recording and report VAS-D and 225	
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VAS-A on 122 days distributed across 26 weeks. Therefore, the subsequent analyses 226	

focused on the LFP signals, VAS-D, and VAS-A scores recorded from these 122 days, 227	

and the HAMD, MADRS, and HAMA scores recorded for the 26 weeks. 228	

Custom MATLAB scripts (MathWorks Inc., Natick, MA, USA) were used to 229	

preprocess the LFP signals. The LFP signals were first band-pass filtered from 1 to 230	

30 Hz using a Butterworth filter of order 12 to avoid the noise observed in higher 231	

frequency bands. Then, we divided the daily 30-minute LFP signals into 10-second 232	

epochs with a 50% overlap. Next, we used a standard procedure (details in Note S4) 233	

to remove bad epochs from daily LFP signals (example temporal traces of 234	

preprocessed LFP epochs were shown in Figure 2B). 235	

For each remaining LFP epoch, we computed its spectral domain (SD) and 236	

temporal domain (TD) features. SD features included PSD of the four bands (δ (delta, 237	

1-4 Hz), θ (theta, 4-8 Hz), α (alpha, 8-12 Hz), and β (beta, 12-30 Hz)) and phase-238	

amplitude coupling (PAC) for six specific pairs of coupling. TD features included 239	

fourteen temporal domain features used in previous study [55], e.g., Hjorth mobility, 240	

Higuchi fractal dimension, Kurtosis, peak-to-peak amplitude, Hurst exponent, etc. 241	

These features capture the temporal properties of LFP from probabilistic distribution 242	

and information theory perspectives and have been widely used in brain signal 243	

analyses [56,57]. As a result, we obtained 24 features, comprising 10 SD features and 244	

14 TD features for each LFP epoch. Details of these 24 features are included in Table 245	

S1 and Note S3. Finally, we averaged each feature across LFP epochs within the same 246	

day and obtained a single averaged 24-dimensional LFP feature vector. Our 247	

subsequent analyses were based on the daily LFP features as computed above. 248	
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2.6 Correlational analyses between LFP features and symptoms 249	

We conducted Spearman’s rank correlation analyses between LFP features and 250	

symptoms. For each day, we correlated each daily LFP feature with the daily VAS-D 251	

and VAS-A. For each week, we computed the average of LFP features across the days 252	

that belonged to this week, resulting in weekly LFP features; we then correlated each 253	

weekly LFP feature with the weekly clinical evaluation scales HAMD, HAMA, and 254	

MADRS. Bonferroni correction was used to adjust for multiple comparisons. 255	

2.7 Identification of neural biomarker 256	

Next, we used a data-driven method to identify an LHb neural biomarker of 257	

depression symptoms, where we built a machine learning model to use LFP features 258	

to classify high and low depression symptom states. 259	

First, we defined the high and low depression symptom states of the patient by k-260	

means clustering the weekly depression scales HAMD and MADRS similar to prior 261	

work [17]. Among the total 26 weeks (122 days) of LFP data, 7 weeks (29 days) of 262	

LFP data belonged to the low depression symptom state (labeled 0), 4 weeks (22 days) 263	

of LFP data belonged to the high depression symptom state (labeled 1). The remaining 264	

15 weeks (71 days) belonging to the transition symptom state were unlabeled and 265	

used as test data for subsequent biomarker tracking evaluation (see next section). 266	

Second, based on the labeled data, we built a machine learning model to use the 267	

LFP features to classify high and low depression symptom states. We constructed six 268	

machine learning models: logistic regression (LR), multilayer perceptron, adaptive 269	

boosting, support vector machine, random forest, and linear discriminant analysis. We 270	
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trained and tested these models using 5-fold cross-validations that were repeated 200 271	

times, where we computed the averaged cross-validated classification accuracy, 272	

specificity, sensitivity, F1 score, and Receiver Operating Characteristic (ROC) Area 273	

Under the Curve (AUC) score as the performance metrics. The model with the highest 274	

accuracy was selected for further analyses. 275	

Third, the chosen model was retrained with all labeled data, leading to a “neural 276	

biomarker model”. This model takes the LFP feature as input and outputs the decision 277	

variable as the neural biomarker value (e.g., in the LR model, the decision variable 278	

was computed from the decision probability via the inverse sigmoid function). This 279	

allows us to compute a neural biomarker value for any given LFP feature. Higher 280	

neural biomarker values indicate more severe depression symptoms. 281	

In essence, our identified neural biomarker aggregates spectral and temporal 282	

domain features from the LHb LFP signal to classify high and low depression states 283	

during DBS treatment. 284	

2.8 Evaluation of the neural biomarker 285	

We evaluated the neural biomarker in terms of (1) tracking the temporal dynamics of 286	

weekly symptom variations; (2) tracking the dynamics of daily symptom variations; 287	

(3) reflecting changes in symptom variations induced by DBS frequency alterations.  288	

First, we investigated tracking the temporal dynamics of weekly depression and 289	

anxiety symptom scales that were not used in neural biomarker identification. We 290	

took the daily LFP features as inputs to the neural biomarker model and computed the 291	

output daily neural biomarkers. We then averaged the daily neural biomarkers 292	

belonging to the same week to compute the weekly neural biomarkers. We next 293	
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correlated the weekly neural biomarker values with the weekly HAMD, MADRS, and 294	

HAMA scores, respectively, using Spearman’s rank correlation analyses with 295	

explained variance (EV) as an estimation. We further analyzed the temporal dynamics 296	

in the neural biomarker and symptoms, using the dynamic time warping (DTW) 297	

distance [58] to measure the temporal tracking ability of the neural biomarker. Both 298	

the neural biomarker values and the symptom scales were normalized to a range of 0 299	

to 1. We used a size three Sakoe–Chiba warping window in the DTW analysis 300	

following prior work [17,59]. A smaller DTW distance represents better temporal 301	

tracking. To determine the significance of the computed DTW distance, we randomly 302	

shuffled the temporal sequence of the neural biomarker 10,000 times and used the 303	

corresponding shuffled DTW distances as the null hypothesis distribution for 304	

computing the P value. 305	

Second, we investigated tracking the temporal dynamics of the daily VAS-D and 306	

VAS-A self-reports, which were also not used in neural biomarker identification. 307	

Similar to the weekly case, daily LFP features were used to generate daily neural 308	

biomarkers, which were then correlated with daily VAS-D and VAS-A reports. DTW 309	

was again used to assess the temporal tracking of daily depression symptom variations. 310	

Third, we qualitatively compared trends in weekly neural biomarkers and 311	

depression ratings across three DBS frequency alterations (1 Hz to Off-2, Off-2 to 20 312	

Hz, 20 Hz to 130 Hz). We used the two-sided Wilcoxon rank-sum test to check whether 313	

there was a significant difference between the two stages before and after alteration. 314	

We also averaged the neural biomarker values and depression ratings across five time 315	

periods for each case: 1) from the beginning of this stage to two weeks before the 316	

alteration week; 2) during the week before the alteration week; 3) during the alteration 317	
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week; 4) during one week after the alteration week; 5) averaged from two weeks after 318	

the alteration week to the end of this stage. 319	

2.9 Interpretation of the neural biomarker 320	

We then conducted multiple analyses to interpret the neurobiological implications 321	

of the identified neural biomarker. First, we recognized the most contributing spectral 322	

and temporal LFP features of the neural biomarker. To evaluate their contributions, 323	

we performed individual classification of the high and low symptom states using each 324	

feature separately. The performance of the classification provided an indication of the 325	

level of information contained within each feature regarding the symptom state. To 326	

further validate the contribution of these features, we compared the weights of each 327	

feature in the neural biomarker identification model (see Section 2.7).  328	

Second, we related the neutral biomarker to the LHb E/I balance. Following prior 329	

work [60], we computed the LFP spectrum’s 1/f slope as a quantitative indicator of 330	

E/I balance, where a larger absolute 1/f slope indicates more inhibition. More 331	

specifically, after calculating the PSD of the remaining epochs after the removal of 332	

bad epochs (see Section 2.5), we averaged the spectrum across LFP epochs within the 333	

same day and selected a frequency range of interest to be 1-30 Hz (our signal spectrum 334	

range). We then estimated 1/f slope from the log-transformed PSD using linear 335	

regression, with the coefficient representing the 1/f slope. We next normalized the E/I 336	

indicator by computing the percentage change relative to the 1/f slope of the first LFP 337	

recording day. We finally correlated this E/I indicator with the identified neural 338	

biomarker and its most contributing features using standard Spearman’s rank 339	

correlation analyses.  340	
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3. Results 341	

3.1 LHb DBS improved the patient’s depression symptoms, 342	

emotional blunting, and cognitive functions 343	

We first examined the TRD patient’s depression and anxiety symptom changes 344	

throughout the LHb DBS treatment process. At the beginning of treatment, the 345	

patient’s baseline HAMD score was 20, MADRS score was 25, and HAMA score 346	

was 16. In terms of the weekly clinical ratings (Table 1 and Figure 3A), the patient 347	

responded at week 14 (HAMD score dropped to 10; MADRS score dropped to 19; 348	

HAMA score dropped to 8) and achieved remission by the end of the 41-week 349	

treatment (HAMD score was 7; MADRS score was 9; HAMA score was 6). The daily 350	

self-reports followed a similar decreasing trend (Figure 3B). Such a consistent trend 351	

was confirmed by the strong positive correlation between the daily self-reports and 352	

weekly clinical ratings (Spearman’s 𝜌	 > 	0.5 , 𝑃	 < 	0.05  for all pair-wise 353	

correlations; see Table S2 and Figure S1 for details).  354	

Table 1. Assessment of depression and anxiety symptoms with weekly clinical 355	
ratings. mean±s.e.m. 356	

Weekly 
clinical 
ratings 

LHb DBS treatment stage 

Baseline 

N=1 
 

1Hz 
N=4 

Off-2 
N=3 

20Hz 
N=15 

130Hz 
N=14 

HAMD 20 11.00±0.41 12.33±0.88 9.20±0.46 6.86±0.25 

MADRS 25 18.75±0.48 21.00±1.00 17.93±0.63 10.64±0.56 

HAMA 16 9.75±0.48 11.67±0.33 9.80±0.39 8.29±0.38 

 357	
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Figure 3. Changes of weekly and daily symptom scores during the LHb DBS treatment. (A) 
Changes of weekly clinical ratings during the treatment. The vertical dashed lines represent 
different treatment stages indicated by the x-axis labels. (B) Changes of daily self-reports 
during the treatment. The vertical dashed lines represent different treatment stages indicated 
by the x-axis labels. 

 

Besides alleviating depression and anxiety symptoms as indicated by the weekly 358	

clinical ratings and daily self-reports, LHb DBS also improved the patient’s emotional 359	

blunting and cognitive functioning. The total scores of ODQ dropped from the 360	

presurgery baseline of 117 to 94, and most of the ODQ subdomains continuously 361	

decreased during the DBS treatment (Table 2), indicating an improvement of 362	

emotional blunting. MCCB and THINC-it as cognitive function instruments 363	

suggested cognitive performance improved compared to the presurgery baseline 364	

(Table 3). Specifically, in the MCCB test, persistent improvements were found in 365	

processing speed, verbal learning, visual learning, reasoning/problem solving, and 366	

social cognition, while attention and working memory temporarily improved but 367	

fluctuated during the treatment. In the THINC-it test, the performance of Symbol 368	

check and Trail task, which were highly related to working memory [61] and 369	
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executive functioning [62], showed persistent improvements, while PHQ-D-5, 370	

Spotter, and CodeBreaker task performance fluctuated. 371	

Table 2. Assessment of emotional blunting with Oxford Depressive Symptoms 372	
Questionnaire (ODQ). 373	

Domains of ODQ Follow up after activation of stimulation 

Baseline 69 days 173 days 270 days 

General Reduction 23 24 23 19 

Reduction in Positive 25 25 24 20 

Emotional Detachment 25 25 16 18 

Not Caring 22 23 18 18 

Antidepressant as Cause 22 22 18 19 

Total 117 119 99 94 

Table 3. Assessment of cognitive functioning with MATRICS Consensus 374	
Cognitive Battery (MCCB) and THINC-it. 375	

MATRICS 
Consensus 
Cognitive 
Battery 

Domains of MCCB Follow up after activation of stim. 

Baseline 173 days 271 days 

Processing Speed 27 55 55 

Attention/Vigilance 24 41 37 

Working Memory 47 58 52 

Verbal Learning 36 40 43 

Visual Learning 52 63 63 

Reasoning/Problem Solving 30 44 42 

Social Cognition 25 29 28 

THINC-it 

Domains of THINC-it Follow up after activation of stim. 

Baseline 69 days 271 days 

PHQ-D-5 600 400 1000 

Spotter (Reaction time) 2128 2192 656 

Symbol check (N-back) 1332 2000 2334 

CodeBreaker (Digit symbol 
substitution) 

850 1150 950 

Trails (Trail making test) 1103 2096 2191 
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3.2 Multiple spectral and temporal LHb LFP features 376	

significantly correlated with symptom changes 377	

During the LHb DBS treatment process, we recorded daily LHb LFP signals. 378	

Therefore, we then investigated how the LFP features correlated with the patient’s 379	

symptom changes (Figure 4A). We found that many of the temporal and spectral 380	

domain LHb LFP features were significantly correlated with the weekly clinical  381	

 

Figure 4. Correlations between the symptom evaluations (weekly and daily symptom 
scores) and the LFP features (temporal and spectral domain features). (A) Schematic 
diagram of correlation analysis. (B) Heatmap of the correlation coefficients. Each cell shows 
the correlation coefficient (CC) value between one LFP feature (y-axis) and one symptom 
score (x-axis), and cells marked with * indicate the coefficients that are significantly 
different from zero (Bonferroni corrected p<0.05). (C) Positive and negative correlation 
examples with the weekly HAMD score and daily VAS-D score as shown by the yellow 
boxes in (B). 
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ratings and daily self-reports (Figure 4B). For example, Hurst exponent exhibited the 382	

strongest correlations with both weekly HAMD scores and daily VAS-D scores 383	

(Figure 4C). The results indicate that it is feasible to identify an LHb neural biomarker 384	

of depression symptoms from the LFP temporal and spectral domain features. 385	

3.3 Accurate classification of high and low symptom severity 386	

states led to the identification of an LHb neural biomarker 387	

We next used the LFP temporal and spectral features to identify a neural biomarker 388	

that can classify high and low depression symptom severity states (Figure 5A). We 389	

started by defining a state of high symptom severity and a state of low symptom 390	

severity via clustering the weekly depression scales HAMD and MADRS (Figure 5B). 391	

The high symptom state (7 weeks) had an average HAMD score of 12.8 and an 392	

average MADRS score of 22.5, while the low symptom state (4 weeks) had an 393	

average HAMD score of 6.3 and an average MADRS score of 9.0. We then used LFP 394	

temporal domain and spectral domain features from these 11 weeks to classify the 395	

high and low symptom severity states via six machine learning models in cross-396	

validation. Among these six models, the LR model performed better than other more 397	

complicated models (Figure 5C and table S3). Specifically, for the LR model, the 398	

cross-validated classification accuracy was 0.973±0.002 (mean ± s.e.m.), the 399	

specificity was 0.961±0.003, the sensitivity was 0.988±0.002, the F1-score was 400	

0.970±0.002, and the AUC score was 0.974±0.001, which were all significantly 401	

higher than other models (Wilcoxon rank sum test, Bonferroni corrected P < 0.05 for 402	

all comparisons), suggesting that the LR model was best suited for classifying the 403	

collected data. We thus selected the LR model for further analyses. Then, we retrained 404	
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the LR model using the 11 weeks’ labeled data, resulting in the neural biomarker 405	

model, which model took the LFP features as input and output the model decision 406	

value as the neural biomarker, with higher values indicating worse symptoms.  407	

 
Figure 5. Accurate classification of high and low depression symptom severity states by the 
identified neural biomarker. (A) Schematic diagram of neural biomarker identification. Note 
that the identification was conducted using supervised learning and cross-validation purely 
based on the weekly data in the high and low symptom states. The rest weekly data in the 
transition symptom state were used later to test the tracking performance of the identified 
neural biomarker. (B) Clustering of depression symptom severity states. We clustered the 
HAMD and MADRS scores to obtain three distinct symptom states: a high depression 
symptom severity state (shaded in red), a low depression symptom severity state (shaded in 
blue), and a transition state (shaded in grey). Each point represents data of a week. The 
average HAMD and MADRS scores of the high and low clusters are also indicated in the 
figure. (C) Classification performance of different classifiers. The bar represents mean and 
the whiskers represent the 95% confidence interval. Six classification models (different 
colors) were compared in terms of five performance matrices (different x-axis groups): 
accuracy, specificity, sensitivity, F1-Score and AUC. The best model was indicated by a 
yellow star for each metric. Classification model abbreviations: logistic regression (LR), 
multilayer perceptron (MLP), adaptive boosting (AdaBoost), support vector machine 
(SVM), random forest (RF), and linear discriminant analysis (LDA). 

 



	

	 23 

3.4 The identified neural biomarker simultaneously tracked the 408	

temporal dynamics of weekly and daily depression symptom 409	

variations during LHb DBS treatment 410	

After identifying the neural biomarker of depression symptoms, we evaluated its 411	

ability to track the temporal dynamics of slow (weekly) and fast (daily) depression 412	

symptom variations during the LHb DBS treatment. For slow weekly variations, we 413	

used the identified neural biomarker model to compute weekly neural biomarker 414	

values (see Section 2.8). We used the weekly neural biomarker values to predict the 415	

associated weekly clinical ratings, where we strictly excluded the weekly data that 416	

were used to identify the neural biomarker (i.e., the prediction was based on unseen 417	

transition symptom state data not used in training the neural biomarker model, Figure 418	

6A). We found that the weekly neural biomarker values significantly predicted the 419	

HAMD scores (Figure 6B, EV=0.74, 𝑃	 = 	1.1	 ×	10!"). Further, considering the 420	

temporal dynamics in detail by using the DTW distance analysis (see Section 2.8), 421	

we found that the weekly neural biomarker significantly tracked the temporal 422	

dynamics of weekly HAMD score variations (random shuffle P = 0.00001). 423	

Consistently, the weekly neural biomarker values significantly predicted the MADRS 424	

scores (Figure 6C, EV=0.34, 𝑃	 = 	0.039), and tracked the temporal dynamics in the 425	

DTW distance analysis with marginally significant statistics (random shuffle P = 426	

0.1079). Conversely, the weekly neural biomarker values did not predict the HAMA 427	

scores (Figure 6D, EV=0.03, 𝑃	 = 	5.2 × 10!#) or tracked the temporal dynamics 428	

(random shuffle P = 0.5865). 429	

 430	
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Figure 6. Accurate tracking of the temporal dynamics of weekly depression symptom 
variations by the identified neural biomarker. (A) Schematic diagram of analyzing the neural 
biomarker’s weekly tracking performance. The neural biomarker, derived from the training 
data of weekly high and low symptom states, was tested by tracking the unseen weekly 
clinical ratings of transition symptom state. (B) Left: correlation between the identified 
neural biomarker values and the weekly HAMD scores. CC: correlation coefficient. EV: 
Explained variance. Middle: neural biomarker tracking of the weekly HAMD score 
dynamics over time. Right: the DTW distance analysis result for evaluating the significance 
of tracking in the middle panel. Smaller DTW distance represents better tracking. Note that 
we normalized both the neural biomarker values and the symptom scales to a range of 0 to 
1 using min-max normalization for better visualization. (C) same as (B) but for the weekly 
MADRS scores. (D) same as (B) but for the weekly HAMA scores. 

 

For fast daily variations, we used the identified neural biomarker model to 431	

compute daily neural biomarker values and used the daily neural biomarker values to 432	

predict the associated daily self-reports (again, data not used in training the neural 433	

biomarker model, Figure 7A). We found that the daily neural biomarker values 434	
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Figure 7. Accurate tracking of the temporal dynamics of daily depression symptom 
variations by the identified neural biomarker. (A) Schematic diagram of analyzing the neural 
biomarker’s daily tracking performance. The neural biomarker, derived from the training 
data of weekly high and low symptom states, was tested by tracking the unseen daily self-
reports. (B) Left: correlation between the identified neural biomarker values and the daily 
VAS-D scores unseen in neural biomarker identification. EV: Explained variance. Middle: 
neural biomarker tracking of the daily VAS-D score dynamics over time. Right: the DTW 
distance analysis result for evaluating the significance of tracking in the middle panel. 
Smaller DTW distance represents better tracking. (C) same as (B) but for the daily VAS-A 
scores. 

 

significantly predicted the VAS-D scores (Figure 7B, EV=0.63, 𝑃	 = 	1.3 × 10!$%) 435	

and showed significant tracking of VAS-D dynamics (random shuffle P = 0.0001). 436	

By contrast, while the daily neural biomarker values predicted the VAS-A scores 437	

(Figure 7C, EV=0.51, 𝑃	 = 	5.3	 ×	10!#&) but the daily neural biomarker did not 438	

significantly track VAS-A dynamics (random shuffle P = 1.00). 439	

 440	
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In summary, the results show that the identified neural biomarker significantly 441	

tracked the temporal dynamics of both weekly and daily variations in depression 442	

symptoms during the LHb DBS treatment and specifically tracked depression 443	

symptoms rather than anxiety symptoms. 444	

3.5 The identified neural biomarker reflected changes of 445	

depression symptoms in response to DBS parameter 446	

alterations 447	

A useful neural biomarker for DBS also needs to reflect the effect of different DBS 448	

parameters. We thus evaluated if the identified neural biomarker could reflect changes 449	

in depression symptoms in response to DBS parameter alterations. We applied three 450	

different DBS frequencies during the treatment: 1 Hz, 20 Hz, and 130 Hz. For the 451	

DBS alteration from 1 Hz to stimulation off (Off-2, the DBS device shut down due to 452	

unnoticed power off), there was a trend of increasing for the neural biomarker, HAMD, 453	

and MADRS while the statistical tests were not significant due to the limited sample 454	

size (Figure 8A, 1Hz vs. stimulation off, normalized mean±s.e.m., neural biomarker: 455	

0.912±0.055 vs. 0.956±0.026, P=0.35; HAMD: 0.562±0.062 vs. 0.688±0.036, 456	

P=0.16; MADRS: 0.656± 0.031 vs. 0.734± 0.053, P=0.35), which indicated a 457	

rebound trend of depression symptoms due to the disruption of DBS treatment. For 458	

the DBS alteration from stimulation off (Off-2) to 20 Hz stimulation, the neural 459	

biomarker, HAMD, and MADRS consistently decreased (Figure 8B, stimulation off 460	

vs. 20 Hz, neural biomarker: 0.905±0.095 vs. 0.545±0.059, P=0.04; HAMD: 461	

0.875±0.125 vs. 0.375±0.072, P=0.05; MADRS: 0.875±0.000 vs. 0.606±0.061, 462	

P=0.08). Specifically, the neural biomarker, HAMD and MADRS scores all  463	
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Figure 8. The consistent trend between the neural biomarker and the depression symptom 
changes when DBS frequencies were altered. (A) DBS frequency was altered from 1 Hz to 
Off-2. Top: comparison of the values of the biomarker, HAMD scores and MADRS scores 
between the 1Hz stage and Off-2 stage. Two-sided Wilcoxon rank-sum test was used for 
significance test. Asterisks indicate the significance *p<0.05 and ns indicates no 
significance. Row two: changes in the identified neural biomarker time-locked to the DBS 
frequency alteration week (vertical dashed line). Row three: changes in HAMD time-locked 
to the DBS frequency alteration week. Bottom: changes in MADRS time-locked to the DBS 
frequency alteration week. (B) same as (A) but for DBS frequency alteration from Off-2 to 
20 Hz. (C) same as (A) but for DBS frequency alteration from 20 Hz to 130 Hz. 

 

decreased at the week of DBS frequency alteration, further decreased one week after 464	

the alteration and continued to decrease with more obvious changes after week two. 465	

For the DBS alteration from 20 Hz to 130 Hz stimulation, the neural biomarker, 466	

HAMD, and MADRS also consistently decreased (Figure 8C, 20 Hz vs. 130 Hz, 467	

neural biomarker: 0.524±0.060 vs. 0.088±0.029, P=0.001; HAMD: 0.323±0.054 vs. 468	

0.042±0.026, P=0.004; MADRS: 0.573±0.056 vs. 0.062±0.016, P=0.001). More 469	

specifically, the neural biomarker, HAMD and MADRS scores already showed a 470	

trend of decreasing before the DBS frequency alteration, and the alleviated symptoms 471	

stayed relatively stable during the alteration week, at week one after the alteration, 472	
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and the same stable trend continued after week two. The results suggested that the 1 473	

Hz DBS did not induce an obvious change in depression symptoms, while the 20 Hz 474	

and 130 Hz DBS had more meaningful effects. The results further showed that the 475	

neural biomarker indeed reflected the different change patterns in depression 476	

symptoms when the DBS frequencies were altered. 477	

3.6 Neural biomarker identification and testing was robust to 478	

adequate decreasing of data sample size 479	

The neural biomarker was identified and tested by a dataset consisting of 122 days of 480	

data samples. Due to the difficulty of obtaining a large amount of longitudinal data, 481	

we investigated the robustness of neural biomarker identification and testing in terms 482	

of data sample size decreasing. We decreased the data sample size gradually from 122 483	

to 10 with a step size of 2, randomly removed data from neural biomarker 484	

identification and testing for each data sample size, and then repeated the entire neural 485	

biomarker classification and tracking analyses. We found that the neural biomarker 486	

classification accuracy consistently maintained above 0.95 even by decreasing the 487	

sample size to 70 but had a large decrease below a sample size of 40 (Figure 9A). 488	

Similarly, the neural biomarker tracking performance (EV in prediction) maintained 489	

relatively stable by decreasing the sample size to 70 but had much larger fluctuations 490	

below a sample size of 40 (Figure 9B). These results suggest that our data sample size 491	

of 122 days was sufficient to obtain a robust neural biomarker.  492	
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Figure 9. Changes of the neural biomarker identification and tracking performance by 
gradually decreasing the data sample size. (A) The accuracy of classifying the high and low 
symptom states. (B) The tracking performance of depression symptoms (weekly HAMD, 
weekly MADRS, and daily VAS-D). 

 

3.7 The identified neural biomarker was mainly contributed by 493	

the β band spectral feature and the Hurst exponent temporal 494	

feature  495	

Having demonstrated the usefulness and robustness of the identified neural biomarker, 496	

we next aimed to provide neurobiological interpretations for the neural biomarker 497	

from multiple aspects. We started by investigating the most contributing spectral and 498	

temporal LFP features in the neural biomarker. We recognized the most contributing 499	

spectral and temporal LFP features by separately classifying the high and low weekly 500	

symptom states using each individual spectral and temporal LFP feature (Figure 10A). 501	

The best temporal domain feature was the Hurst exponent, with a cross-validated 502	

classification accuracy of 0.93. While the best spectral domain feature was the β band 503	

PSD, with an average accuracy of 0.80. Overall, temporal domain features (average 504	

accuracy: 0.78) outperformed spectral domain features (average accuracy: 0.71). 505	

Notably, combining all the LFP features yielded superior performance compared to 506	
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individual features. Consistently, by investigating the logistic regression coefficients 507	

of the neural biomarker model (Figure 10B), we found that the features with better 508	

classification accuracy also had larger coefficients in the neural biomarker model, 509	

again showing the importance of β band PSD and Hurst exponent.  510	

 We then examined the variations of β band PSD and Hurst exponent at the high, 511	

transition and low symptom states. In terms of the spectral domain, the overall LFP 512	

PSD showed obvious changes during the three symptom states (Figure 10C), with the 513	

β band PSD showing a significant and consistent decrease when changing from high 514	

state, to transition state, and finally to low state (Figure 10D). By contrast, no 515	

significant change was found for the θ band PSD and less consistent changes was 516	

found for the δ band and α band PSD (Figure 10D). In terms of the temporal domain, 517	

the Hurst exponent showed an increase when changing from high state, to transition 518	

state, and finally to low state (Figure 10E and 10F) while other representative 519	

temporal domain features showed less obvious changes (Figure 10F). Together, these 520	

results demonstrated the important contribution of the β band spectral feature and the 521	

Hurst exponent temporal feature to the identification of neural biomarker and the 522	

tracking of depression symptom state.  523	
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Figure 10. Importance of the β band spectral feature and the Hurst exponent temporal 
feature to the identification of neural biomarker and the tracking of the depression 
symptom state. (A) Classification accuracy of individual features and all LFP features by 
separately training LR models. The individual spectral domain (SD) features are in green, 
and their indices are ordered based on classification accuracy. The individual temporal 
domain (TD) features are in blue, and their indices are ordered by classification accuracy. 
The combination of all LFP features is in brown. The best individual feature was indicated 
by a yellow star for each domain. (B) The absolute coefficients of each feature in the LR 
model trained with all LFP features. The feature indices are the same as in (A). (C) Changes 
in the average LFP spectrum from the high symptom state (High) to the transition symptom 
state (Trans), and finally to the low symptom state (Low). (D) Changes in each of the four 
frequency bands with individual feature classification accuracy (Acc) indicated below. Two-
sided Wilcoxon rank-sum test was used for significance test. Asterisks indicate the 
significance levels *p<0.05, **p<0.01, ***p<0.001, and ns indicates no significance. (E) 
Changes in the temporal domain feature Hurst exponent from High to Trans to Low state. 
(F) Same as (D) but for four example temporal domain features. 
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3.8 The identified neural biomarker and its contributing features 524	

indicated changes in LHb excitatory/inhibition (E/I) balance  525	

We then interpreted the identified neural biomarker by relating it to the E/I balance 526	

of LHb activity. We used the LHb LFP spectrum’s 1/f slope as a possible indicator of 527	

LHb E/I balance, where a larger absolute 1/f slope indicates more inhibition (see 528	

Section 2.9). We found that after DBS treatment, the LHb activity changed to a more 529	

inhibitory state (Figure 11A). More specifically, the LHb E/I balance indicator 530	

increased when high symptom state changed to low symptom state (Figure 11B) and 531	

showed a trend of increase during the entire DBS treatment process (Figure 11C), 532	

consistently indicating an increase of inhibition. Moreover, we found a significant 533	

positive correlation between the identified neutral biomarker and the LHb E/I balance 534	

indicator (Figure 11D, Spearman’s 𝜌	 = 	0.78, 𝑃	 = 	2.7 × 10!&). Further, the most 535	

contributing Hurst exponent temporal feature and β band spectral feature both 536	

significantly correlated with the LHb E/I balance indicator (Figure 11D, Hurst 537	

exponent: Spearman’s 𝜌	 = 	−0.80, 𝑃	 = 	1.9 × 10!$' ; β band PSD: Spearman’s 538	

𝜌	 = 	0.20, 𝑃	 = 	2.8 × 10!$). These results suggest that LHb E/I balance changed 539	

towards more inhibition following DBS treatment and our identified neural biomarker 540	

and its most contributing features significantly tracked such a change in LHb E/I 541	

balance.  542	
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Figure 11. Changes of E/I balance during LHb DBS treatment and its’ correlations with the 
identified neural biomarker and the most contributing features. (A) Overview of the LHb 
E/I balance change after DBS treatment. (B) LHb LFP spectrum’s 1/f slope of two example 
days in high symptom state and low symptom state, respectively. The LFP spectrum’s 1/f 
slope is taken as the E/I balance indicator. (C) Temporal trace of baseline-normalized daily 
LHb E/I balance indicator. (D) Correlation between the E/I balance indicator and the 
identified neural biomarker (left), between the E/I balance indicator and the Hurst exponent 
(middle), and the E/I balance indicator and the β band PSD (right). 

 

 543	
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3.9 The DBS treatment involved a critical LHb-DRN circuit that 544	

possibly regulates depression via E/I balancing 545	

After finding a connection between the neural biomarker and LHb E/I balance, we 546	

finally investigated the underlying neural circuits of LHb E/I balance. We used 547	

diffusion tensor imaging to obtain white matter fibers related to LHb and found that 548	

strong white matter fiber connections exist between LHb and the dorsal raphe nucleus 549	

(DRN) in our patient (Figure 12A).  550	

The LHb-DRN circuit is a critical pathway involved in central serotonergic 551	

regulation. This circuit plays a role in regulating cognition and reward, both of which 552	

are essential symptom dimensions associated with depression. The involvement of 553	

the LHb-DRN circuit suggests a possible mechanism of DBS treatment in our patient 554	

(also see Section 4.3). Specifically, prior studies have shown that in depressed 555	

patients, the LHb activity is overly excited (unbalanced E/I towards excitation), thus 556	

exerting substantial inhibition on the DRN via the inhibitory connections between 557	

LHb and DRN, consequently leading to reduced serotonin output from the DRN. 558	

Such a reduction in serotonin further inhibits the hippocampus and medial prefrontal 559	

cortex activity, possibly asserting influence on the cognitive dimension of depression; 560	

it also inhibits the nucleus accumbens activity, possibly asserting influence on the 561	

reward dimension of depression (Figure 12B). Our results suggest that LHb DBS 562	

treatment moved the LHb activity to a more inhibitory state, possibly restoring the 563	

LHb E/I balance towards a normal state and improving the depression symptoms 564	

(especially cognition functions and emotion blunting, see Section 3.1) via the critical 565	

regulation pathway involving LHb and DRN.  566	
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Figure 12. Diffusion tensor imaging of the white matter tracks related to LHb and a possible 
regulation pathway for depression. (A) Diffusion tensor imaging of the white matter tracks 
related to LHb. The DBS target (left LHb) and the connected brain area (DRN) were circled 
in red. Note that while the right LHb was not stimulated, its related white matter fibers are 
also shown. (B) LHb-DRN circuit and its possible role in regulating the cognition and 
reward dimensions of depression symptom. Hip: hippocampus; mPFC: medial prefrontal 
cortex; NAc: nucleus accumbens. 

4. Discussion 567	

4.1 Improvement of depression symptoms, emotional blunting, 568	

and cognitive function during DBS treatment 569	

The clinical evaluation results show that our patient not only achieved improvements 570	

of HAMD, MADRS, and HAMA ratings that are typically used as clinical gold 571	

standard in prior DBS studies [11,13,17], but also achieved notable improvements of 572	

emotional blunting and cognition functioning. Almost three-quarters of patients in the 573	

acute phase of depression and one-quarter of those in remission reported severe 574	

emotional blunting. Approximately 56% of patients considered their emotional 575	

blunting to be caused by their depression, while 45% believed that their 576	

antidepressant medication was negatively affecting their emotions [63]. Emotional 577	

blunting has a substantial negative impact on patients’ daily functioning, well-being, 578	

and quality of life in both the acute and remission phases of depression [64]. On the 579	
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other hand, cognitive deficits may be inherent to TRD and occur independently of 580	

affective symptomatology [65]. Objective cognitive assessment for the clinical 581	

evaluation for patients with TRD is important [66]. Thus, in our TRD patient, we 582	

specifically addressed the evaluation of both emotional blunting and cognitive 583	

functioning and showed improvements along both aspects.   584	

However, our results regarding emotional blunting and cognitive functioning 585	

should be interpreted cautiously because of the lack of controlled data. Due to limited 586	

data about cognition in this case, we did not identify a neural biomarker to classify 587	

these cognitive states. The cognitive impact of DBS has usually been previously 588	

evaluated for epilepsy, movement disorder, and obsessive-compulsive disorder 589	

patients but rarely in controlled studies on TRD. Our study found no cognitive decline 590	

and suggests positive effects of DBS on cognitive functioning in TRD consistent with 591	

a previous report [67]. 592	

4.2 A data-driven LHb neural biomarker for tracking slow and 593	

fast depression symptom variations during DBS treatment 594	

A mechanism-driven neural biomarker for depression is currently lacking mainly 595	

because the neural circuitry underlying depression has not been clearly delineated 596	

[68]. Therefore, current neural biomarkers of depression symptoms for tracking DBS 597	

effects have largely used data-driven machine learning methods to map LFP features 598	

to depression symptom ratings [17,32,33]. The usefulness of data-driven neural 599	

biomarkers critically depends on the type of data used to identify the neural biomarker. 600	

For example, a recent work [32] focused on a cingulate neural biomarker that was 601	

trained with and accordingly predicted longer-term (on the time scale of weeks) 602	
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clinical ratings. On the other hand, another recent work [17] only trained and tested a 603	

neural biomarker with shorter-term (on the time scale of minutes) self-reports. Our 604	

work is unique in that, while we identified our LHb neural biomarker based on weekly 605	

clinical ratings, we demonstrated that the neural biomarker predicted not only weekly 606	

clinical ratings (data not used in identification) but also daily self-reports (data again 607	

not used in identification). The results suggest that our LHb neural biomarker could 608	

track the temporal dynamics of both slow and fast depression symptom variations, 609	

which was useful for developing new aDBS strategies that are robust across different 610	

time scales. It is worth noting that our LHb neural biomarker specifically tracked the 611	

temporal dynamics of weekly and daily depression symptom scores but not the 612	

anxiety symptom scores. It suggests that despite the overlapping of depression-related 613	

and anxiety-related brain networks [69], LHb neural activity is mainly related to 614	

depression, which is supported by prior animal studies [21–23]. 615	

Both population-level and personalized neural biomarkers of depression 616	

symptoms have been identified for tracking DBS effects. Population-level neural 617	

biomarkers are derived from data collected from several patients and have the benefits 618	

of being directly applicable to a new patient and robust interpretability of the neural 619	

biomarker’s biophysical mechanism across patients [32]. By contrast, personalized 620	

neural biomarkers are derived from data collected from an individual patient, which 621	

is more powerful in capturing the unique characteristics of depression symptoms in 622	

each patient, especially given the large inter-individual variability in depression-623	

related brain networks [70]. With the emerging capability of recording more data 624	

within a single patient using mobile devices, personalized neural biomarker models 625	

can be more accurate in tracking the temporal dynamics of depression symptom 626	
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variations. With such trends, a personalized neural biomarker has been identified and 627	

used for realizing aDBS targeting VC/VS [17]. Our study identified a personalized 628	

neural biomarker that achieved accurate classification and tracking of depression 629	

symptom variations during the DBS treatment targeting LHb, confirming the 630	

usefulness of personalization. Nevertheless, population-level and personalized neural 631	

biomarkers can complement each other. For example, one can leverage a large amount 632	

of population data to train an interpretable population-level neural biomarker model, 633	

followed by fine-tuning with personalized data to further improve its accuracy, which 634	

is an important future research direction. 635	

A critical issue in identifying data-driven neural biomarker, especially 636	

personalized neural biomarker, is the collection of sufficient amounts of data. A recent 637	

population-level study collected LFP and clinical rating data from 5 individuals on a 638	

weekly basis over a span of 24 weeks [32], resulting in a total data sample size of 120, 639	

which was deemed sufficient for obtaining a neural biomarker at the population level. 640	

Several personalized studies collected LFP or iEEG and self-report data over several 641	

days, with a data sample size of around 30 for each individual [17,33]. By contrast, 642	

our study involved daily data collection over a much longer period of 41 weeks. Even 643	

after removing noisy data epochs, our data-driven neural biomarker analyses were 644	

based on a substantial data sample size of 122 days, which significantly exceeded the 645	

data sample size of one individual in the aforementioned studies. Our robustness 646	

analyses confirmed the sufficiency of our data sample size, showing that in our patient, 647	

the neural biomarker performance maintained stable even after reducing the data 648	

sample size to around 70 but had significant variations after reducing the data sample 649	

size below 40. This result indicates the importance of collecting sufficient data for 650	
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identifying personalized neural biomarkers. The ongoing advancements in data 651	

recording devices offer exciting prospects for recording more data samples within an 652	

individual, thus facilitating the future development of personalized neural biomarkers. 653	

4.3 Neurobiological interpretation of the identified neural 654	

biomarker and its contributing features in terms of LHb E/I 655	

balance  656	

Previous studies have exclusively used LFP spectral domain features to identify 657	

neural biomarkers for depression [17,32,33]. By contrast, we found that both the LFP 658	

temporal domain and spectral domain features contributed to our neural biomarker 659	

and that the temporal domain features contributed relatively more than the spectral 660	

domain features. The main contributing temporal domain feature was the Hurst 661	

exponent. The Hurst exponent mainly indicates the stochasticity and predictability of 662	

a time-series [71]. We found that during the high and transition symptom states, the 663	

LHb LFP Hurst exponent values were mostly below 0.5, which indicated more 664	

stochastic and random-walk-like neural dynamics [72]. By contrast, during the low 665	

symptom state towards the end of DBS treatment, the LHb LFP Hurst exponent values 666	

were approaching and even surpassing 0.5, which indicated more predictable and 667	

stable neural dynamics [73]. Stochastic vs. predictable neural dynamics have been 668	

reported to relate with E/I balance of neural firing [74]. Related to this explanation, 669	

Hurst exponent has been widely used to examine E/I balance of the neural circuits in 670	

other neuropsychiatric disorders such as autism [75,76]. Our results suggest that a 671	

DBS-induced increase in LHb inhibition led to an increase in the Hurst exponent, 672	

moving LHb activity to a more E/I balanced state.  673	
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The main contributing spectral domain feature was the β band PSD. The LHb β 674	

band oscillation was also found to correlate with depression symptoms before DBS 675	

treatment in a previous study [28]. The β band oscillation might reflect the abnormal 676	

E/I balance of LHb neural ensembles underlying depression because it can depend on 677	

the firing patterns of a network of inhibitory interneurons gated by their mutually 678	

induced GABA( action [77]. Moreover, LHb β band oscillation might be related to 679	

the abnormal burst spiking phenomena of LHb neurons found in rodents exhibiting 680	

depression-like behaviors [21–23]. These findings highlight the significance of the β 681	

band oscillations in LHb as related to depression. 682	

Existing neuroscience findings provide evidence that LHb E/I balance 683	

influences the dopaminergic and serotoninergic projections from LHb and directly 684	

affects two neural pathways: the LHb-VTA (ventral tegmental area) pathway mainly 685	

regulates the dopaminergic activity, while the LHb-DRN pathway primarily regulates 686	

the serotoninergic activity [34]. Our white fiber tracking results predominantly 687	

reflected the influence of DBS on the LHb-DRN pathway. The DBS might have 688	

inhibited overly-excited LHb activity, activating overly-inhibited DRN activity, and 689	

restoring downstream neural activity related to cognition and reward circuits related 690	

to depression, which finally led to the multi-faceted improvement of depression 691	

symptoms, emotional blunting, and cognitive functioning of our patient. However, 692	

due to the complexity of LHb-related circuits, the exact neural activity changes of the 693	

LHb-related circuit in DBS treatment of depression requires further investigation by 694	

collecting multimodal neural data from more brain regions.  695	

It is worth noting that due to the limitation of DBS electrode, we only used a 696	

simple LFP 1/f slope as an indirect indicator for LHb E/I balance. The E/I balance is 697	
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directly related to the spiking activity of excitatory neurons and inhibitory neurons, 698	

and further related to the neuronal homeostasis and the formation of neural 699	

oscillations [78,79]. The underlying excitatory and inhibitory neuron synaptic 700	

currents mix together to give rise to the 1/f-like nature of the LFP PSD [34]. Previous 701	

study found that alterations of E/I balance within neural circuits can indeed be inferred 702	

from changes in the LFP 1/f slope [80]. Nevertheless, the LFP signal represents the 703	

collective activity of multiple neurons and only provides an indirect measure of E/I 704	

balance. Future work can use more advanced micro-macro electrodes [81] to record 705	

LHb spiking activity to more directly quantify LHb E/I balance. 706	

4.4 DBS frequency deferentially modulates the depression 707	

symptom and neural biomarker 708	

Prior studies have shown that DBS frequency can significantly influence the treatment 709	

efficacy for TRD, e.g., high-frequency DBS has generally yielded better treatment 710	

outcomes than low-frequency DBS [24,82,83]. Consistently, we discovered that a 711	

very low DBS frequency of 1 Hz was not effective in alleviating the depression 712	

symptoms in our patient, but higher frequencies of 20 Hz and 130 Hz were more 713	

effective. Beyond the depression symptom ratings, we additionally found that the 714	

neural biomarker was also consistently modulated by the different DBS frequencies. 715	

DBS frequency might influence the release of neurotransmitters in depression-716	

targeted pathways [84], thus modulating the neural biomarker and the depression 717	

symptoms. However, similar to other DBS targets, the optimal DBS frequency at LHb 718	

is still also an open question that requires further research. 719	



	

	 42 

5. Limitations 720	

Our study has several limitations. First, while our study had a sufficient within-patient 721	

data sample size, the patient sample size was limited (n-of-1); further studies with 722	

more patients are needed to confirm our findings on LHb neural biomarkers. Second, 723	

despite its powerful classification and tracking performance, our neural biomarker 724	

was identified using only one channel of LFP signals due to the limitation of device 725	

hardware configuration. Incorporating multi-channel LFP signals in future studies 726	

would allow for finding neural biomarkers with even better performance and a more 727	

comprehensive understanding of the neural mechanism underlying neural biomarker 728	

identification. Third, due to the high-frequency recording noise of our DBS device, 729	

we filtered the LFP signal below 30 Hz to ensure noise rejection. Future work with 730	

better recording capability should investigate how higher-frequency LFP temporal 731	

and spectral domain features contribute to the identification of neural biomarkers. 732	

Finally, to remove the confounding factor of stimulation artifact, when we recorded 733	

LFP, we completely turned off stimulation. While this approach ensured stimulation-734	

artifact-free LFP signals, it is important to consider using LFP signals during 735	

stimulation to identify better responsive neural biomarkers in the future, but this 736	

requires high-performance stimulation artifact removal, which remains challenging 737	

[85]. 738	

6. Conclusion 739	

One patient with TRD reached remission after 41 weeks of LHb DBS treatment. With 740	

a unique longitudinal data collection of concurrent daily and weekly depression 741	
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symptom scores and LHb LFP signals during the entire treatment process, we used 742	

machine learning to identify an LHb neural biomarker of depression symptoms, with 743	

the most contributing spectral feature being LFP β band power and temporal feature 744	

being Hurst exponent. We demonstrated that our LHb neural biomarker accurately 745	

classified high and low depression symptom severity states, simultaneously tracked 746	

the temporal dynamics of weekly (slow) and daily (fast) depression symptom 747	

variations during the DBS treatment process, and reflected the depression symptom 748	

changes in response to DBS frequency alterations. We also interpreted the neural 749	

biomarker as indicating changes in LHb excitatory/inhibition balance during DBS 750	

treatment. Our methods and results hold promise in identifying clinically-viable 751	

neural biomarkers to facilitate future adaptive DBS developments for treating TRD. 752	
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