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Supplementary methods 
Microbiology 
Blood cultures were obtained and incubated using the BD BACTEC system (Becton, Dickinson and 
Company) and an:microbial suscep:bility results determined by broth microdilu:on using the BD 
Phoenix plaLorm and EUCAST guidelines.  

An-microbial resistance predic-on 
We made predic:ons at two :me points, firstly at the :me the blood culture was obtained and 
secondly when the species was iden:fied. As the exact :me point that the species was iden:fied was 
not recorded in our dataset, we conserva:vely assume that only 24 hours of further data from the 
point of sampling were available for this predic:on.  

Model architecture and data par--oning 
We fit separate models for each an:bio:c (both with and without species informa:on as input 
features). Predic:ons were undertaken using XGBoost which offers amongst the best performance for 
similar tasks using structured tabular data of type analysed here. Model fiSng was performed using 
Python 3.12 and SciKitLearn version 1.5.1. 

We used a temporal training-test split to mimic real-world implementa:on. Data from 01-January-
2017 to 31-December-2021 were used for model training. Performance was tested using a held-out 
data from 01-January-2022 to 31-December-2022 (Test dataset 1). Within the training data we used 
5-fold cross valida:on to undertake hyperparameter tuning using Bayesian op:misa:on (see Table S2 
for a list of hyperparameters, ranges explored, and Table S3 for values chosen). We used Pla[’s 
method as implemented in SciKitLearn’s CalibratedClassifierCV func:on, to ensure an:bio:c 
resistance probabili:es were well calibrated. Thresholds for calling the presence of resistance were 
chosen within the training data to maximise the sum of sensi:vity and specificity.  

Comparison with clinical decision making 
To compare our models with clinical prac:ce, we combined both test datasets and considered 
pa:ents ini:ally treated with a beta-lactam an:bio:c. The an:bio:c chosen by clinicians was 
determined by taking the most recently started beta-lactam with an ac:ve prescrip:on within ±4 
hours from the :me the blood culture was collected. By taking the most recently started beta-lactam 
we aimed to capture the an:bio:c clinicians intended to con:nue.  

Beta-lactams were the most commonly used an:bio:cs in our ins:tu:on, and facilitated establishing 
a hierarchy of an:bio:c choices. We included pa:ents empirically treated with amoxicillin, co-
amoxiclav, ce_riaxone, piperacillin-tazobactam, or a carbapenem (mostly meropenem; a small 
number receiving empirical ertapenem), in order of increasing spectrum of coverage. Alterna:ve 
ordering of ce_riaxone could poten:ally be considered, but we place it above co-amoxiclav as 
resistance to ce_riaxone was less common in our seSng. A_er first considering if any ac:ve an:bio:c 
(beta-lactam or non-beta-lactam) was given in the baseline period, we then focus on if an ac:ve beta-
lactam was given. The most common adjunc:ve an:bio:c in our seSng was single dose gentamicin, 
however we exclude it here from our main analysis, as we have previously shown it does not rescue 
pa:ents with beta-lactam (co-amoxiclav) resistance from associated increases in mortality with 
Escherichia coli bloodstream infec:on.[1]  

We excluded from the clinical comparison neutropenic pa:ents, as from our list of beta-lactams only 
piperacillin-tazobactam or meropenem would be appropriate empirical therapy. We also exclude 
pa:ents where no an:bio:c was given during the baseline period, as the clinical team was presumed 
to have taken the blood cultures for diagnos:c purposes, but not believed ini:ally there was strong 
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enough evidence to start treatment. Blood cultures also needed to have an available suscep:bility 
result for each of the beta-lactams listed above. No pa:ent allergy data were available. 

To compare clinical prac:ce and models predic:ons, we evaluate the number of pa:ents who are i) 
op:mally treated, i.e. receiving the least broad-spectrum beta-lactam to which their blood culture 
isolate is sensi:ve, ii) under-treated, given a beta-lactam with resistance present, and iii) over-
treated, given an ac:ve beta-lactam, but one that was of a broader spectrum than was necessary. We 
also describe the rela:ve usage rates of each an:bio:c.  

We evaluated 4 strategies for applying our machine learning predic:ons. In strategy 1, we used the 
training data to iden:fy resistance probability threshold values for each an:bio:c that matched the 
rela:ve use of each an:bio:c by the model to use by clinicians. Having set the probability thresholds 
using the training data, we then applied them to the test data. In strategy 2, we set the predic:on 
thresholds to match the propor:on of pa:ents receiving each an:bio:c to rates of suscep:bility. 
Because we do not expect our models to perform perfectly, we also perform a sensi:vity analysis 
where we allow a 20% reduc:on in use of each the two narrowest spectrum agents, amoxicillin and 
co-amoxiclav, assigning the remaining use propor:onally. In strategy 3, we match the number of 
pa:ents over-treated by clinicians and the algorithm, but otherwise do not constrain an:bio:c 
choices, albeit s:ll favouring the narrowest spectrum agent where possible. Within this constraint we 
assess if the number of pa:ents receiving ac:ve treatment can be increased. As co-amoxiclav is the 
most commonly used an:bio:c, but also has rela:vely high resistant rates, we also evaluate the 
simple comparator of assuming the first-line an:bio:c guideline was switched to ce_riaxone, such 
that all pa:ents who received amoxicillin or co-amoxiclav are reassigned to ce_riaxone. To provide a 
model-based comparison with this approach, in strategy 4 we choose thresholds for predic:ng 
resistance, such that we match the overall propor:on of pa:ents receiving ac:ve treatment, to 
inves:gate if over-treatment is reduced by the model. 
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Supplementary tables 
 

Antibiotics For amoxicillin, cefalexin, ceftriaxone, ciprofloxacin, co-amoxiclav, co-trimoxazole, 
ertapenem, gentamicin, meropenem, nitrofurantoin, piperacillin-tazobactam, and 
trimethoprim: 
§ Number of hospital prescribed courses in last year 
§ Time since last hospital prescribed course in last year 
 
For any antibiotic: 
§ Number of hospital prescribed courses in last year 
§ Time since last hospital prescribed course in last year  

Clinical syndrome Clinical syndrome (derived from antibiotic indication field, binary presence / absence of 
each): abdominal, ear nose and throat, neurological, no specific source, non-informative 
text, orthopaedic, other specific, prophylaxis, respiratory, skin and soft tissue, uncertain, 
urinary  

Population 
antibiotic 
resistance rate 

In blood cultures, based on samples in the last year: amoxicillin, ceftriaxone, ciprofloxacin, 
co-amoxiclav, co-trimoxazole, ertapenem, gentamicin, meropenem, and piperacillin-
tazobactam 
 
Any sample, based on samples in the last year: amoxicillin, ceftriaxone, ciprofloxacin, co-
amoxiclav, co-trimoxazole, ertapenem, gentamicin, meropenem, and piperacillin-
tazobactam  

For species analysis 
only, Species 
identified 

Citrobacter spp, Enterobacter spp, Escherichia coli, Klebsiella spp, Proteus Providencia 
Morganella spp, Serratia spp, or Other 

Comorbidity Age adjusted Charlson score 
Charlson score 
Each of the individual domains of the Charlson score (binary presence / absence)  

Demographics Age 
Sex 
Index of multiple deprivation score (higher=more deprived)  

Personal history of 
AMR infections 

CRE in last year (binary) 
ESBL in last year 
Time since last ESBL in the last year 
MRSA in last year 
VRE in last year  

Index date Hour of day blood culture taken (as proxy for acuity)  
Labs Count of measurements in last 72 hours:  

§ Full blood count 
§ Renal function 
§ Liver function 
§ CRP 
§ Clotting 
§ Blood gas 

Personal 
microbiology 
results 

For amoxicillin, cefalexin, ceftriaxone, ciprofloxacin, co-amoxiclav, co-trimoxazole, 
ertapenem, gentamicin, meropenem, nitrofurantoin, piperacillin-tazobactam, and 
trimethoprim: 
§ Count of isolates from any sample and any species with resistance in last year 
§ Time since last resistant isolate of any species in the last year 
 
Additionally, for the species analysis for the same antibiotics: 
§ Count of isolates from any sample of the same species with resistance in last year 
§ Time since last resistant isolate of the same species in the last year 
 
Count of positive blood cultures in last year 
Count of positive urine cultures in last year 
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Time since last positive blood culture in last year 
Time since last positive urine culture in last year 
 
Count of blood cultures containing Enterobacterales in last year 
Count of urine cultures containing Enterobacterales in last year 
Time since last blood culture with Enterobacterales in the last year 
Time since last urine culture with Enterobacterales in the last year 
 
Time since last blood culture sent 
Time since last urine culture sent 

Personal factors Body mass index 
Height 
Weight 

Hospital exposure Days since start of hospital admission/attendance at blood culture sampling 
 
Admission type: Elective admission, Emergency admission, Maternity admission, Other 
admission, Outpatient attendance 
 
Count of admissions in last 30 days, 90 days and last year 
Days in hospital in last 30 days, 90 days and last year  

Procedures Any clean surgery in last year 
Any clean contaminated surgery in last year 
Any contaminated surgery in last year 
Any urinary catheter code in last year 

Specialty Specialty at time of blood culture sampling: Acute and general surgery, Acute, emergency 
and geriatric medicine, Critical care, Medical subspecialty, Obstetrics, Others, Paediatrics, 
Surgical subspecialty, Trauma and orthopaedics 

Vitals Count of measurements obtained in last 24 hours 

 

Table S1. List of model features. For counts of laboratory haematology and biochemistry tests and 
vital signs we allowed the window searched to extend back 72 hours and 24 hours respec:vely, and 
forward 4 hours to account for results obtained around the same :me as blood cultures. In the 
species analysis we extended this look forward by a further 24 hours, i.e. 28 hours in total to allow for 
addi:onal tests conducted between blood culture sampling and a species being iden:fied (the exact 
:me of species iden:fica:on was not available in our dataset). 
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Parameter Range for an-bio-cs with more events: 
amoxicillin, co-amoxiclav, co-trimoxazole 

Range for an-bio-cs with fewer events: 
ce;riaxone, piperacillin-tazobactam, 
ciprofloxacin, gentamicin 

n_es[mators range(50, 1500, 20) range(50, 800, 20) 
learning_rate [0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005] [0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005] 
max_depth range(3,12,1) range(3,6,1) 
gamma range(1,20,1) range(3,20,1) 
min_child_weight range(2,20,1) range(3,20,1) 
colsample_bytree [i/20.0 for i in range(1,16)] [i/20.0 for i in range(1,16)] 
subsample [i/20.0 for i in range(1,16)] [i/20.0 for i in range(1,16)] 

  

Table S2. Hyperparameter search spaces for Bayesian hyperparameter op<misa<on. For each 
an:bio:c up to 100 itera:ons of hyperparameter op:misa:on were performed. Search spaces are 
given using python code. 
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Antibiotic 
Species 

data 
included 

n_ 
estimators 

learning
_rate 

max_ 
depth gamma 

min_ 
child_ 
weight 

colsample
_bytree subsample 

Amoxicillin 

No 

390 0.005 5 7 3 0.6 0.75 

Co-amoxiclav 690 0.002 5 7 2 0.35 0.75 

Ceftriaxone 770 0.001 5 9 5 0.75 0.4 
Piperacillin-
tazobactam 750 0.0002 4 3 3 0.5 0.65 

Ciprofloxacin 670 0.005 3 7 10 0.55 0.6 
Co-

trimoxazole 1090 0.002 4 7 6 0.45 0.7 

Gentamicin 250 0.005 3 4 3 0.7 0.35 

Amoxicillin 

Yes  

1230 0.002 5 11 4 0.75 0.75 

Co-amoxiclav 730 0.005 4 1 6 0.45 0.6 

Ceftriaxone 750 0.002 4 3 3 0.45 0.6 
Piperacillin-
tazobactam 550 0.005 3 3 7 0.75 0.6 

Ciprofloxacin 690 0.002 5 3 7 0.35 0.6 
Co-

trimoxazole 1210 0.005 11 6 4 0.25 0.6 

Gentamicin 750 0.005 5 5 7 0.65 0.7 
 

Table S3. Selected model hyperparameters. 
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An[bio[c n Resistant, 
n  

Resistant, 
% 

AUC (95%CI) Sensi[vity 
(95% CI) 

Specificity 
(95% CI) 

Posi[ve predic[ve 
value (95% CI) 

Nega[ve predic[ve 
value (95% CI) 

Amoxicillin 3260 2193 67 0.739 (0.721 - 0.756) 62.4 (60.3 - 64.5) 75.0 (72.2 - 77.5) 83.7 (81.9 - 85.3) 49.3 (46.7 - 51.8) 
Co-amoxiclav 3257 1377 42 0.751 (0.734 - 0.767) 63.4 (61.0 - 66.0) 74.9 (73.0 - 76.8) 64.9 (62.3 - 67.4) 73.6 (71.8 - 75.5) 
Cehriaxone 3264 363 11 0.916 (0.901 - 0.929) 86.5 (82.9 - 89.9) 80.1 (78.7 - 81.5) 35.2 (32.2 - 38.6) 97.9 (97.4 - 98.4) 
Piperacillin-tazobactam 3273 214 7 0.944 (0.929 - 0.957) 88.3 (84.3 - 92.4) 87.5 (86.3 - 88.6) 33.1 (28.8 - 37.2) 99.1 (98.7 - 99.4) 
Ciprofloxacin 3275 414 13 0.908 (0.896 - 0.920) 86.2 (82.6 - 89.4) 78.9 (77.5 - 80.5) 37.2 (34.2 - 40.3) 97.5 (96.9 - 98.1) 
Co-trimoxazole 3202 761 24 0.942 (0.934 - 0.950) 89.4 (87.0 - 91.5) 87.8 (86.4 - 89.0) 69.5 (66.4 - 72.5) 96.4 (95.5 - 97.1) 
Gentamicin 3266 307 9 0.834 (0.812 - 0.858) 81.8 (77.2 - 86.1) 71.1 (69.5 - 72.8) 22.7 (20.4 - 25.4) 97.4 (96.7 - 98.1) 

 

Table S4. Model performance for predic<ng an<bio<c resistance at blood culture sampling in training dataset 1, 01 January 2017 – 31 December 2021. AUC, 
area under the receiver opera:ng curve. Confidence intervals were generated by bootstrapping with 1000 itera:ons. 
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An[bio[c n Resistant, 
n  

Resistant, 
% 

AUC (95%CI) Sensi[vity 
(95% CI) 

Specificity 
(95% CI) 

Posi[ve predic[ve 
value (95% CI) 

Nega[ve predic[ve 
value (95% CI) 

Amoxicillin 3260 2193 67 0.680 (0.639 - 0.721) 80.9 (77.3 - 84.5) 42.4 (36.2 - 48.4) 72.9 (69.1 - 76.5) 53.7 (47.1 - 60.9) 
Co-amoxiclav 3257 1377 42 0.684 (0.643 - 0.725) 79.5 (74.7 - 83.9) 39.2 (34.7 - 43.8) 47.1 (42.6 - 51.4) 73.8 (67.8 - 79.5) 
Cehriaxone 3264 363 11 0.737 (0.672 - 0.798) 79.5 (69.9 - 88.7) 45.7 (41.8 - 49.7) 15.5 (11.9 - 19.3) 94.7 (92.2 - 97.2) 
Piperacillin-tazobactam 3273 214 7 0.708 (0.641 - 0.781) 85.9 (77.6 - 94.0) 37.7 (33.9 - 41.6) 12.1 (9.1 - 15.1) 96.4 (93.9 - 98.5) 
Ciprofloxacin 3275 414 13 0.726 (0.657 - 0.790) 76.7 (67.4 - 85.4) 44.0 (40.1 - 48.1) 16.0 (12.8 - 19.5) 93.2 (90.2 - 95.9) 
Co-trimoxazole 3202 761 24 0.698 (0.636 - 0.756) 70.7 (61.8 - 78.9) 52.6 (48.6 - 56.5) 24.5 (20.1 - 28.9) 89.2 (85.6 - 92.7) 
Gentamicin 3266 307 9 0.700 (0.628 - 0.775) 72.0 (62.0 - 82.5) 51.2 (47.3 - 55.1) 15.0 (11.5 - 18.7) 93.9 (91.2 - 96.3) 

 

Table S5. Model performance for predic<ng an<bio<c resistance at blood culture sampling in held-out test dataset 1, 01 January 2022 – 31 December 2022 
targe<ng 80% sensi<vity. AUC, area under the receiver opera:ng curve. Confidence intervals were generated by bootstrapping with 1000 itera:ons. Thresholds 
for determining resistance set to target sensi:vity of 80% using test dataset 2 (used as a separate valida:on dataset for this purpose).  
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An[bio[c n Resistant, 
n  

Resistant, 
% 

AUC (95%CI) with 
species informa[on 

Sensi[vity 
(95% CI) 

Specificity 
(95% CI) 

Posi[ve predic[ve 
value (95% CI) 

Nega[ve predic[ve 
value (95% CI) 

Amoxicillin 3260 2193 67 0.823 (0.810 - 0.836) 62.7 (60.7 - 64.7) 89.8 (87.8 - 91.5) 92.7 (91.1 - 93.9) 54.0 (51.6 - 56.3) 
Co-amoxiclav 3257 1377 42 0.819 (0.805 - 0.834) 68.0 (65.7 - 70.5) 80.1 (78.4 - 81.9) 71.5 (69.0 - 74.0) 77.4 (75.6 - 79.3) 
Cehriaxone 3264 363 11 0.914 (0.898 - 0.928) 90.1 (87.0 - 93.3) 74.5 (72.9 - 76.1) 30.6 (28.0 - 33.5) 98.4 (97.8 - 98.9) 
Piperacillin-tazobactam 3273 214 7 0.901 (0.879 - 0.923) 86.4 (81.9 - 91.1) 76.9 (75.4 - 78.4) 20.7 (18.1 - 23.4) 98.8 (98.3 - 99.2) 
Ciprofloxacin 3275 414 13 0.911 (0.897 - 0.923) 85.3 (81.6 - 88.6) 80.0 (78.6 - 81.4) 38.1 (35.0 - 41.3) 97.4 (96.7 - 98.0) 
Co-trimoxazole 3202 761 24 0.927 (0.917 - 0.936) 86.7 (84.3 - 89.1) 84.3 (82.8 - 85.7) 63.3 (60.4 - 66.4) 95.3 (94.4 - 96.2) 
Gentamicin 3266 307 9 0.883 (0.864 - 0.903) 75.2 (70.3 - 80.2) 84.8 (83.5 - 86.0) 33.9 (30.4 - 37.5) 97.1 (96.4 - 97.7) 

 

Table S6. Model performance for predic<ng an<bio<c resistance at blood culture species iden<fica<on in training dataset 1, 01 January 2017 – 31 December 
2021. AUC, area under the receiver opera:ng curve. Confidence intervals were generated by bootstrapping with 1000 itera:ons. 
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Supplementary figures 
 

 

 

Figure S1. SHAP (SHapley Addi<ve exPlana<ons) plot showing feature importance and impacts on 
model output for predic<ng co-amoxiclav resistance at blood culture sampling. 
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Figure S2. SHAP (SHapley Addi<ve exPlana<ons) plot showing feature importance and impacts on 
model output for predic<ng ceUriaxone resistance at blood culture sampling. 
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Figure S3. SHAP (SHapley Addi<ve exPlana<ons) plot showing feature importance and impacts on 
model output for predic<ng piperacillin-tazobactam resistance at blood culture sampling. 
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Figure S4. SHAP (SHapley Addi<ve exPlana<ons) plot showing feature importance and impacts on 
model output for predic<ng ciprofloxacin resistance at blood culture sampling. 
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Figure S5. SHAP (SHapley Addi<ve exPlana<ons) plot showing feature importance and impacts on 
model output for predic<ng co-trimoxazole resistance at blood culture sampling. 
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Figure S6. SHAP (SHapley Addi<ve exPlana<ons) plot showing feature importance and impacts on 
model output for predic<ng gentamicin resistance at blood culture sampling. 
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Figure S7. SHAP (SHapley Addi<ve exPlana<ons) plot showing feature importance and impacts on 
model output for predic<ng amoxicillin resistance at blood culture species iden<fica<on. 
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Figure S8. SHAP (SHapley Addi<ve exPlana<ons) plot showing feature importance and impacts on 
model output for predic<ng co-amoxiclav resistance at blood culture species iden<fica<on. 
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Figure S9. SHAP (SHapley Addi<ve exPlana<ons) plot showing feature importance and impacts on 
model output for predic<ng ceUriaxone resistance at blood culture species iden<fica<on. 
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Figure S10. SHAP (SHapley Addi<ve exPlana<ons) plot showing feature importance and impacts on 
model output for predic<ng piperacillin-tazobactam resistance at blood culture species 
iden<fica<on. 
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Figure S11. SHAP (SHapley Addi<ve exPlana<ons) plot showing feature importance and impacts on 
model output for predic<ng ciprofloxacin resistance at blood culture species iden<fica<on. 
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Figure S12. SHAP (SHapley Addi<ve exPlana<ons) plot showing feature importance and impacts on 
model output for predic<ng co-trimoxazole resistance at blood culture species iden<fica<on. 
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Figure S13. SHAP (SHapley Addi<ve exPlana<ons) plot showing feature importance and impacts on 
model output for predic<ng gentamicin resistance at blood culture species iden<fica<on. 
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Figure S14. Model training, retraining and model upda<ng <mes. All :mes are from training using a 
single Apple M3 Max core. Original and repeat training include hyperparameter op:misa:on, 
incremental updates are based on previously obtained hyperparameters from ini:al training.  
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