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Abstract Epilepsy is a prevalent brain disorder, characterized by sudden, abnormal brain activity, making it10

difficult to live with. One-third of people with epilepsy do not respond to anti-epileptic drugs. Drug-resistant11

epilepsy is treated with brain surgery. Successful surgical treatment relies on identifying brain regions12

responsible for seizure onset, known as epileptogenic zones (EZ). Despite various methods for EZ estimation,13

evaluating their efficacy remains challenging due to a lack of ground truth for empirical data. To address this,14

we generated and evaluated a cohort of 30 virtual epilepsy patients, using patient-specific anatomical and15

functional data from 30 real drug-resistant epilepsy patients. This personalized modelling, based on the16

patient’s brain data, is called a virtual brain twin. For each virtual patient, we provided data that included17

anatomically parcellated brain regions, structural connectivity, reconstructed intracranial electrodes,18

simulated brain activity at both the brain region and electrode levels, and key parameters of the virtual brain19

twin. These key parameters, which include the EZ hypothesis, serve as the ground-truth for simulated brain20

activity. For each virtual brain twin, we generated synthetic spontaneous seizures, stimulation-induced21

seizures and interictal activity. We systematically evaluated these simulated brain signals by quantitatively22

comparing them against their corresponding empirical intracranial recordings. Simulated signals based on23

patient-specific EZ captured spatio-temporal seizure generation and propagation. Through in-silico24

exploration of stimulation parameters, we also demonstrated the role of patient-specific stimulation location25

and amplitude in reproducing empirically stimulated seizures. The virtual epileptic cohort is openly available,26

and can be directly used to systematically evaluate methods for the estimation of EZ or source localization27

using ground truth EZ parameters and source signals.28
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1 Introduction30

Epilepsy is one of the most common neurological disorders, affecting 1% of the global population. It is charac-31

terized by recurrent spontaneous seizures, which are sudden bursts of abnormal electrical activity of the brain.32

Anti-epileptic drugs are the most common treatment option, however one-third of patients with epilepsy are33

drug-resistant. In such cases, brain surgery is themain alternative treatment, which seeks to resect brain zones34

responsible for seizures, known as epileptogenic zones (EZ) (Ryvlin et al., 2014; Thijs et al., 2019).35

For precise localization of the EZ pre-surgery, intracranial depth electrodes (stereoelectroencephalography,36

SEEG), are inserted in the patient’s brain to locally record electrical brain activity (Isnard et al., 2018). Sponta-37

neous seizures recorded with intracranial electrodes are used to define the EZ. However, due to partial sam-38

pling from the intracranial electrodes, spontaneous seizures may not be sufficient to make a clear diagnosis.39

Intracranial electrical stimulation is performed to contribute to the EZ localization by triggering seizures and40

for functionality mapping of regions explored (Trebuchon et al., 2020). Outside of seizure events and when41

a patient is at rest, interictal activity is recorded, where interictal spikes are analyzed to contribute to the EZ42

localisation. Both ictal and interical activities are used to constrain and define the epileptogenic zone.43

Despite great research and clinical efforts to tackle drug-resistant epilepsy, brain surgery has a failure rate44

of about 50% (Ryvlin et al., 2014). Treatment failure is attributed to a misdiagnosis or a partial diagnosis of the45

EZ. Therefore, a precise EZ diagnosis is crucial to improve treatment of drug-resistant epilepsy. Many methods46

havebeenproposed to diagnose the EZbasedonanalysis of empirical brain recordings (Gnatkovsky et al., 2014;47

Bartolomei et al., 2008). However, they are difficult to evaluate due to absence of ground truth information for48

empirical data. Recent studies evoke the need for synthetic datasets in order to benchmark scientific methods49

(Gonzales et al., 2023; Giuffrè and Shung, 2023). When synthetic datasets capture the structure and features50

of empirical data, they can be useful for hypothesis testing and validation prior to accessing the real dataset51

(Gonzales et al., 2023). Furthermore, synthetic health care datasets protect patient privacy and are easier to52

access compared to empirical data for which strict privacy laws are in place (GDPR, 2016; HIPAA, 1996).53

We sought to build a reliable synthetic dataset of patients with drug-resistant epilepsy, based on parame-54

terized epileptogenic zone information, inferred from empirical spontaneous seizures. This resource could be55

used by the scientific community to test and validate their EZ diagnosis methods. To achieve this, we built for56

each patient a virtual brain twin, using their T1-weighted magnetic resonance imaging (T1-MRI) and diffusion-57

weightedMRI (DW-MRI) to estimate region-to-region connectivity and build awhole-brain networkmodel. SEEG58

electrode locations are reconstructed from post-operative CT. To model brain activity, the Epileptor model is59

employed, which describes spatio-temporal seizure dynamics (Jirsa et al., 2014). Finally, to determine the EZ60

parameters for each patient, we used the Virtual Epileptic Patient (VEP) pipeline (Wang et al., 2023). The VEP61

estimates the epileptogenic zone from empirical seizure recordings, using personalized whole-brain modelling62

and machine learning methods (Hashemi et al., 2020). This pipeline is currently used in a clinical trial, with the63

goal of improving surgical outcome for DRE (EPINOV NCT03643016) (Makhalova et al., 2022;Wang et al., 2023).64

In addition, we used the clinical EZ estimation from expert epileptologists as a second approach.65

As a result, we generated a virtual cohort of 30 drug-resistant epilepsy patients. We introduced metrics to66

systematically compare this virtual cohort against the corresponding empirical cohort. We provided for the67

first time, an extended model for stimulated seizures on the whole-brain level. For each patient, we used one68

virtual brain model to generate synthetic spontaneous seizures, stimulated seizures and interictal activity. We69

also provided the personalized brain network models and parameters used to simulate the data. Addition-70

ally, we interrogated the influence of stimulation location and simulation amplitude on seizure networks. We71

shared this dataset publicly in iEEG-BIDS format (Holdgraf et al., 2019) to help the scientific community when72

systematically evaluating and validating their EZ estimation methods. The unique feature of the virtual cohort73

lies in its known ground-truth from the modeling setting and detailed parameters.74

Despite being an emerging technology, synthetic datasets can enhance clinical research, protect patient75

privacy, and reduce costs (Giuffrè and Shung, 2023). Synthetic SEEG data have been used to validate dynamical76

network biomarkers (Runfola et al., 2023) and validate methods for estimating epileptogenic zones (Hashemi77

et al., 2020; Wang et al., 2023). The novelty of our work is the generation of a comprehensive virtual patient78

cohort, enabling researchers to evaluate their methods using synthetic data that mimic empirical data. Each79
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virtual brain twin contains synthetic spontaneous seizures, stimulated seizures and interictal activity at the80

whole-brain level and at the SEEG level. Here, we present for the first time synthetic seizures triggered by81

SEEG stimulation. Each patient’s estimated EZ serves as model parameters, providing ground-truth data for82

the virtual cohort. This makes our synthetic cohort a valuable tool for assessing data analysis methods. We83

have made this dataset publicly available to help the scientific community test and refine their techniques.84

Thepaper begins by outlining theworkflow for building personalizedbrainmodels for drug-resistant epilepsy.85

It then provides an overview of the cohort, examples of simulated time series, and a systematic comparison86

between simulated and empirical SEEG data. We also assess the significance of model parameters, focusing87

on the EZ hypothesis and stimulation parameters. Finally, the discussion explores limitations and future appli-88

cations for synthetic data in epilepsy.89

2 Results90

2.1 Workflow of the virtual epileptic cohort91

The workflow of the virtual epileptic cohort in Figure 1 illustrates the process of generating patient-specific92

synthetic data using a personalized whole-brain network model derived from patient-specific brain imaging93

data, and conducting a systematic comparison.94

First, we used patient-specific T1-MRI alongside the VEP atlas (Wang et al., 2021) to parcellate the brain into95

anatomo-functional relevant regions, represented as point-like sources. The DW-MRI was used to derive the96

region-to-region connectivity, by counting white matter streamlines to and from each brain region. Secondly,97

regional brain activity was simulated using the Epileptor model (Jirsa et al., 2014). Based on the EZ hypothesis,98

we parametrized themodel’s excitability for each region. We employed two EZ hypotheses: the VEP hypothesis99

and a clinically defined hypothesis. The VEP hypothesis is estimated from spontaneous seizures using Bayesian100

inference methods (Wang et al., 2023). The VEP hypothesis was evaluated retrospectively, reproducing the101

clinically defined EZ network with a precision of 0.6 (Wang et al., 2023). Additionally, the VEP was compared102

to the resected brain regions of 25 patients who underwent surgery. The VEP hypothesis demonstrated lower103

false discovery rates in seizure-free patients (mean, 0.028) compared to thosewhowere not seizure-free (mean,104

0.407)(Wang et al., 2023). The clinical hypothesis is defined by clinical experts (JM and FB). Finally, from post-105

implantation CT scan we estimated the coordinates of SEEG electrodes. The distance between brain sources106

and SEEG sensors and the size of source regions is used to evaluate the source-to-sensor gain matrix. The107

gain matrix maps simulated source-level activity to sensors, obtaining synthetic SEEG activity. For each patient,108

one personalized brain model was used to simulate three different states: spontaneous seizures, stimulated109

seizures and the interictal period with spikes (Figure 1).110

2.2 Overview of virtual epileptic cohort111

The virtual epileptic cohort consists of 30 virtualized drug-resistant epilepsy patients (Table 1) and follows stan-112

dardized BIDS-IEEG structure (Holdgraf et al., 2019). For a detailed overview of this structure, see supplemen-113

tary ??. Following this standard, the data was categorized into simulated data and derived data. The simulated114

data contain simulated brain activity at the SEEG electrode level, with three modalities: spontaneous seizures,115

stimulated seizures and interictal activity. See Table 1 for a summary of the number of simulations for each116

modality per patient. The derived data are extracted from MRI and CT-scan brain imaging, capturing the brain117

anatomy of each patient. This includes: (i) spatial coordinates of brain regions, (ii) coordinates of implanted118

SEEG electrodes, (iii) region-to-region connectivity matrix, and (iv) source-to-sensor gain matrix. Finally, per-119

sonalized model parameters (including the EZ hypothesis) and simulations at the whole-brain level are made120

available. In this paper, we define ground truth as the chosen model parameters which gave rise to simulated121

brain activities at the SEEG level.122
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Figure 1. Workflow of the virtual epileptic cohort. Patient-specific T1-MRI, dw-MRI and CT-scan are integrated within a
common virtual brain model. The VEP atlas is applied on the T1-MRI to parcellate the brain into anatomical regions,
represented as network nodes. From the dw-MRI a tractography is computed, made of estimated white matter fiber
connections,from which region-to-region connectivity is derived, represented as network edges. On each node of the
virtual brain a neural mass model is used to simulate brain activity. The EZ hypothesis informs the excitability parameter
for each brain region, can be derived from ictal SEEG data. Based on this brain model, three different states can be
simulated: spontaneous seizures, stimulated seizures and interictal spikes. Whole-brain network activity is mapped onto
the reconstructed SEEG electrodes using the source-to-sensor forward solution, thus obtaining simulated SEEG time series.
The simulated SEEG time series are systematically compared against the empirical SEEG recordings using spatio-temporal
data features.
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Table 1. Patient information of the virtual epileptic cohort. Abbreviations: FCD, focal cortical dysplasia; HS, hippocampal
sclerosis; L, left; NA, not applicable; PMG, polymicrogyria; PNH, periventricular nodular heterotopia; R, right; R>L: right
hemisphere onset propagating to left hemisphere; R&L: right and left onset; NSS, number of simulated spontaneous
seizures; NIS, number of simulated induced seizures; NII, number of simulated interictal timeseries.

ID Sex Age range Epilepsy type MRI Histopathology Side NSS NIS NII

1 F 31-35 Temporal Normal HS R 2 0 1
2 F 26-30 Temporo - occipital L temporo - occipital PNH NA L 2 1 1
3 M 36-40 Temporo - frontal R temporo - occipital scar FCD I R 1 1 1
4 F 26-30 Temporal R temporal mesial gangli-

oglioma
Ganglioglioma R 2 0 1

5 M 21-25 Parietal L postcentral - parietal gyra-
tion asymmetry

NA L 2 0 1

6 M 56-60 Frontal Normal NA L 2 0 1
7 M 56-60 Temporal Normal mild gliosis R>L 1 1 1
8 F 46-50 Temporal L amygdala enlargement mild gliosis L 3 1 1
9 F 41-45 Bifocal: parietal tem-

poral
R parietal lesion mild gliosis R 2 1 1

10 F 41-45 Temporal L hippocampal sclerosis HS L 3 1 1
11 F 41-45 Frontal L frontal scar(abcess) Gliosis L 1 1 1
12 F 26-30 Bilateral temporo -

frontal
Bilateral hippocampal and
amygdala T2-hypersignal

NA R&L 2 2 1

13 M 16-20 Frontal Normal mild gliosis L 1 0 1
14 F 21-25 Premotor Normal FCD IIb L 1 0 1
15 M 41-45 Temporal R temporal PMG and multi-

ple PNH
NA R 2 1 1

16 M 26-30 Temporo - fronto -
parietal

R temporo-parieto-insular
& L temporo-parietal necro-
sis

NA R>L 3 0 1

17 M 26-30 Temporal L temporo-polar hypothro-
phy and HS

HS L 2 0 1

18 M 21-25 Parieto - temporal "L Parieto - occipital necro-
sis"

NA L 1 0 1

19 M 41-45 Temporo - insular Normal NA L>R 1 0 1
20 F 26-30 Temporal Normal HS R 1 1 1
21 F 21-25 Occipital Normal FCD Ic L 2 0 1
22 F 26-30 Parietal L parietal FCD FCD IIb L 1 1 1
23 M 61-65 Temporal Normal NA L 1 0 1
24 M 26-30 Temporal Normal NA R 3 0 1
25 M 41-45 Insular Normal NA L 3 2 1
26 F 26-30 Occipital PNH NA R 1 0 1
27 M 26-30 Frontal R prefrontal gliotic scar (ar-

teriovenous malformation)
Gliosis R>L 1 1 1

28 F 21-25 Temporo - frontal Anterior temporal necrosis Gliosis R 1 0 1
29 F 26-30 Bilateral temporal Bilateral posterior PNH NA R>L 3 1 1
30 M 56-60 Temporo - frontal R Frontal FCD FCD IIb R 2 0 1

2.3 Spontaneous seizures123

2.3.1 Simulation of spontaneous seizures124

We simulated spontaneous seizure data for each patient in this virtual epileptic cohort. We used the VEP hy-125

pothesis estimated from the VEP pipeline (Wang et al., 2023). This pipeline uses patient-specific data to build126

virtual brainmodels and bayesian inference algorithms to obtain estimated distributions of excitability for each127

brain region, in the [0, 1] range. We linearly transformed epileptogenicity values to the excitability parameter 𝑥0128

into a range [−2.2,−1.2] in the Epileptor model (3). The critical value 𝑥0𝑐 is approximately −2.0 depending on the129

global connectivity matrix (Wang et al., 2023). For any given region, if 𝑥0 > 𝑥0𝑐 the region can autonomously gen-130
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erate seizures, otherwise it remains in the normal state. For each patient, we simulated one seizure for each131

empirical seizure type. We defined each seizure type qualitatively based on the seizure spatial propagation132

patterns observed at the SEEG level. While the seizure onset network was the same, the seizure propagation133

network varied across seizure types (see also supplementary ??). As a second approach, the clinical hypothesis134

was used to parameterize the epileptogenic network, with results presented in the supplementary ??. Epilep-135

togenic, propagation and healthy regions were coupled according to the structural connectome, which gave136

rise to whole-brain seizure dynamics. We simulated a total of 53 spontaneous seizures for each EZ hypothesis137

(1 − 3 per patient).138

Examples of spontaneous seizures from two patients of the VEC are shown in Figure 2.Empirical and sim-139

ulated seizure activity are shown for patient 1 with temporal lobe epilepsy (Figure 2A). Empirical recordings140

indicated an early recruitment in the hippocampus of the right hemisphere. The estimated epileptogenic net-141

work using the VEP pipeline included the hippocampus-anterior, hippocampus-posterior and amygdala of the142

right hemisphere. The propagation network included the right-STS-anterior, the left-supramarginal-anterior,143

the left-temporal-pole, the left-rhinal-cortex and the left-Heschl-gyrus. From this estimation, we determined144

the excitability parameters for all brain nodes and simulated the SEEG time series. The SEEG signal power over145

the whole activity is visualized on the reconstructed electrodes. Secondly, the same data are shown for patient146

5 with parietal epilepsy in Figure 2B. Here, the estimated epileptogenic network included the postcentral-gyrus,147

superior-parietal-lobule, and angular-gyrus of the left hemisphere. The propagation network extended to both148

right and left hemisphere brain regions.149

2.3.2 Evaluating spontaneous seizures150

To evaluate the spatio-temporal information captured by the virtual epileptic cohort, we compared simulated151

and empirical SEEG time series for 53 spontaneous seizures (Figure 3). In addition, to evaluate the importance152

of personalized parameters in the subsequent simulated data, we built a randomized cohort (RC) of 15 simu-153

lated spontaneous seizures. This cohort was constructed using virtual brain models from the VEC cohort and154

changing only their EZ hypothesis by random selection from another patient.155

We showed four metrics to compare empirical and simulated spatio-temporal seizure dynamics in Figure 3156

(all 16metrics shown in ??). We captured high frequencies of the signal during seizure activity using a high-pass157

filter followed by envelope smoothing using a low-pass filter. When the envelope crossed a defined threshold,158

we marked the corresponding electrode as seizure electrode. By marking the timestamps when the envelope159

jumps from and returns to baseline, we estimated the seizure onset and offset times, respectively (see Fig-160

ure 3A). Next, each electrode’s activity was binarized in time at each timestep (0-no seizure activity; 1- seizure161

activity) (see Figure 3B). The binarized synthetic and empirical SEEG were compared using Pearson correlation.162

We also compared the intersection of SEEG seizure channels between the empirical and synthetic time series,163

resulting in our overlap metric. Finally, based on seizure onset times, we categorized each channel as either164

seizure onset (SO), seizure propagation (SP) or no seizure. Each category was compared using the Jaccard sim-165

ilarity coefficient (see Figure 3D, see also Methods and Materials). We performed a permutation test for each166

metric (𝐻0 : mean(VEC) ≤ mean(RC), 𝐻1 : mean(VEC) > mean(RC)). The virtual epileptic cohort performs signif-167

icantly better than the randomized cohort (𝑝 < 0.0001). In addition, results with EZ hypothesis based on the168

clinical hypothesis are presented in ??A.169

2.4 Stimulated seizures170

2.4.1 Simulation of stimulated seizures171

We provided 16 SEEG stimulated seizures for 14 patients. We used the EZ hypothesis estimated from spon-172

taneous seizures and the same stimulation parameters which clinicians used in the clinical recordings. In Fig-173

ure 4A, we show an example of a focal temporal seizure from patient 3, triggered by stimulation of electrodes174

B2 and B3, as anode and cathode, respectively. The epileptogenic network is estimated from the spontaneous175

seizure of the same patient using the VEP pipeline. The epileptogenic zones are T2-anterior and hippocampus-176

anterior of the right hemispheres. The propagation zones are SFS-rostral, amygdala and fusiform gyrus of the177
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Figure 2. The corresponding empirical and simulated spontaneous seizure activity for: A) Patient 1 with temporal lobe
epilepsy showing right-hemisphere hippocampal early involvement propagating after several seconds in the contra-lateral
hemisphere, and B) Patient 5 with parietal epilepsy. In both A) and B), on the left-side panel, the estimated epileptogenic
network from the empirical spontaneous seizure is plotted for each brain region. Red, orange and light blue represent EZ,
PZ and HZ respectively. The top middle panels display empirical SEEG recordings. The bottom middle panels represent
corresponding simulated recordings based on the EZ network. Red vertical lines denote the seizure onset and offset,
determined by clinicians for the empirical recordings and by our model in the simulated time series. Right-side panels show
the signal power distribution for all channels. The colorbar displays normalized signal power, where blue and red represent
low and high signal power, respectively.
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Figure 3. Comparison among spontaneous simulated SEEG signals with empirical recordings. A)Left, simulated SEEG
seizure. Right, empirical SEEG timeseries of seizure dynamics. For each electrode, the envelope data feature is computed
by band-pass filtering the electrical brain signal. Seizure onset and seizure offset time points, shown as blue circles, are
computed for each electrode based on the envelope’s jump from and return to baseline. B) Each empirical and simulated
SEEG electrode is binarized in time, where 0 (white) corresponds to no seizure activity and 1 (black) corresponds to seizure
activity. C) The time reference bar is used for both empirical and simulated SEEG to categorize recording electrodes into
two groups: SO (Seizure Onset) and SP (Seizure Propagation). An electrode is labeled as SO when its onset time point aligns
with the horizontal purple line, typically within the first few seconds of the entire seizure duration. Whereas, an electrode is
labeled as SP when its onset time point aligns with the horizontal light blue line. D) Four metrics to quantify the comparison
of SEEG recordings in virtual epilepsy cohort (VEC, N = 53 in blue) and the randomized cohort (RC, N=15 in red) against the
empirical SEEG recordings. Each point in the plot corresponds to one metric for one empirical and simulated SEEG pair. The
dark red point in each metric represents the mean value for each category. Results are shown in box plots, overlayed over
individual data points. Middle box represents the interquartile range (IQR), with a line at the median. The whiskers extend
from the box to the data point lying within 1.5x the IQR. Points past the whiskers are marked as fliers. ∗∗∗∗𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.0001;
permutation test.
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right hemisphere. Following the stimulation period, a seizure is triggered in the stimulating electrodes and178

other nearby electrodes. The second example consists of a bilateral temporo-frontal seizure from patient 12,179

applied using electrodes B3 and B4 (Figure 4B). The epileptogenic network is estimated from the spontaneous180

seizure of the samepatient. The epileptogenic zones are left orbito-frontal-cortex, right F3-pars-opercularis and181

right occipito-temporal-sulcus. Propagation zones have an extended network including the right hippocampus-182

anterior where the stimulating electrodes are located. Seizure activity is first observed in the right-temporal-183

lobe, and later propagates to frontal regions and the contra-lateral hemisphere (B’ electrodes located in the184

left temporal lobe). In both examples, normalized signal power distribution on reconstructed SEEG electrodes185

displays the large network of seizure organization.186

2.4.2 Evaluating stimulated seizures187

We used three approaches to evaluate synthetic stimulated seizures (Figure 5). Before comparison, we re-188

moved the time series corresponding to the stimulus current and only compared the post-stimulus time series.189

In the first approach, similarly to spontaneous seizures, four metrics were compared against a randomized co-190

hort (all tested metrics in ??). The randomized cohort was generated using random EZ hypothesis and contains191

in total 15 stimulated seizures. Thus, for the same patient, an EZ hypothesis was chosen from a random pa-192

tient. Then, we applied the same stimulation parameters to simulate seizure dynamics induced by stimulation.193

We employed a permutation test on the comparative metrics that specifically compared means. The results194

demonstrate a significantly better performance for the virtual epileptic cohort compared to the randomized co-195

hort (p<0.001), as shown in Figure 5A. Results with EZ hypothesis based on the clinical hypothesis are presented196

in ??B.197

In the two other approaches, we investigated the role of two stimulation parameters in inducing seizures:198

stimulation location and stimulation amplitude. We varied these stimulation parameters and compared the199

simulated outcome against the empirical stimulated seizure. We varied stimulation location by randomly se-200

lecting 10 electrode pairs from each of four distance groups to stimulate for seven patients, shown in Figure 5B.201

The distance groups are defined by 𝑑𝑒 the distance from the empirical stimulation location: Dist1: 𝑑𝑒 ≤ 1; Dist2:202

𝑑𝑒 ∈ [1, 2], Dist3: 𝑑𝑒 ∈ [2, 3] and Dist4: 𝑑𝑒 ≥ 3. For each patient, stimulation parameters are all the same as203

their empirical cases, except for the stimulation locations. As stimulation location was selected incrementally204

further away from the empirical location, the similarity between the simulated and empirical seizure dynamics205

deteriorated, as observed across our four metrics (see also supplementary ??). Both structural connectome206

and the EZ network configurations determined the stimulated seizure patterns.207

For varying stimulation amplitude, we could evaluate the capacity of ourmodel in generating seizure dynam-208

ics for a particular stimulation amplitude (Figure 5C). For each patient, first, we adjusted the model parameters209

to induce seizures by stimulation using the same stimulation amplitude as the empirical case. Then, we varied210

stimulation amplitude using common amplitudes used clinically (two lower and two higher amplitudes than211

the empirical one) to simulate the signals and evaluate the post-stimulus response by comparing it with the212

empirical stimulated seizure. Lower stimulation amplitudes did not induce a seizure, which translated to low213

similarity values across metrics. Higher stimulation amplitudes induced synthetic seizures which were similar214

to the empirical amplitudes, but longer lasting (see ??).215

In summary, on average of sevenpatients, the virtual epileptic cohort is capable of capturing spatio-temporal216

features of stimulated seizure data based on its personalized EZ hypothesis, stimulation location and stimula-217

tion amplitude.218

2.5 Interictal spikes219

2.5.1 Simulation of interictal spikes220

In our virtual epileptic cohort, we simulated brain activity and SEEG recordings during the interictal period for221

all 30 patients. We simulated interictal time series based on the EZ hypothesis, such that the EZ network could222

generate interictal spiking. We illustrated simulated SEEG and empirical SEEG for patient 8, shown in Figure 6A.223

The detailed shapes of interracial spikes in both simulated and empirical SEEG are illustrated as well. We also224
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Figure 4. Stimulated seizures induced by adjacent SEEG electrodes for two patients with different propagation patterns. A)
Focal temporal seizure of patient 3, induced by high-frequency stimulation of electrode pairs B2-B3, located in the right
hippocampus anterior. Stimulation waveform is a bipolar pulse applied at 50 Hz frequency, 2.2 mA amplitude, with pulse
width of 1 millisecond and 5 second duration. B) Bilateral seizure of patient 12, induced by low-frequency stimulation of
electrode pairs B3-B4, also located in the right hippocampus anterior. Stimulation waveform is a bipolar pulse applied at 1
Hz frequency, 1 mA amplitude, with pulse width of 2 milliseconds and 19 second duration. In both A) and B), left-side panels
display stimulation parameters, and the epileptogenic network estimated from the spontaneous seizure of the same
patient. Red, orange and light blue represent EZ, PZ and HZ respectively. The middle panels show empirical and simulated
SEEG time series for a few electrodes. Red vertical lines denote the seizure onset and offset, determined by clinicians for
the empirical recordings and by our model in the simulated time series. The right-side panels show the normalized signal
power distribution for all channels. Color bar represents signal power, where blue and red represent low and high signal
power, respectively.
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Figure 5. Comparison among simulated SEEG signals with empirical recordings for stimulation induced seizures. A) Four
metrics to quantify the comparison of stimulated SEEG seizure time-series in virtual epileptic cohort (VEC, N=16 in blue) and
the randomized cohort (RC, N=15 in red). Each point in the plot corresponds to one metric comparing one empirical and
simulated SEEG pair. Dark red points in each metric represent the mean value. ∗∗∗∗𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.0001, ∗∗∗𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.001;
permutation test. B) Performance metrics for varying only stimulation locations in seven patients, measured by the
distance from the empirical stimulation locations. We randomly stimulated 10 pairs of electrodes within four main distance
groups located outside of the empirical locations. If we define 𝑑𝑒 as the distance in cm from the empirical locations, Dist1:
𝑑𝑒 ≤ 1; Dist2: 𝑑𝑒 ∈ [1, 2]; Dist3: 𝑑𝑒 ∈ [2, 3]; and Dist4: 𝑑𝑒 ≥ 3. Four metrics are used to compare the five distance groups in four
box plots for seven patients, with individual data points overlayed (in blue). C) Performance metrics for varying only
stimulation amplitude in seven patients. Empirical stimulation amplitude varied from 1.8-2.2 mA. Then we performed
simulations using the same stimulation parameters but 2 lower amplitudes (0.5 mA, 1 mA) and 2 higher amplitudes (3 mA,
4 mA). Four metrics are used to compare across the five stimulation amplitude groups. In all cases, results are shown in box
plots, overlayed over individual data points. Middle box represents the interquartile range (IQR), with a line at the median.
The whiskers extend from the box to the data point lying within 1.5x the IQR. Points past the whiskers are marked as fliers.
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Figure 6. A) Interictal activity of one patient shown by SEEG signals in empirical and simulated cases, with interictal spikes in
multiple electrodes. One interictal spike is shown by zooming in on channel B’3-4 for both the simulated and empirical
cases. B) Interictal spike (IIS) count across all implanted SEEG electrodes are displayed in axial and saggital view for the
simulated and empirical SEEG time series. Spike count values are normalized and displayed in logarithmic scale. C)
Boxplots for correlation of simulated and empirical IIS count. Correlation values are plotted for all virtual epileptic cohort
patients (VEC, N=30, in blue) and randomized cohort (RC, N=15, in red). Middle box represents the interquartile range (IQR),
with a line at the median. The whiskers extend from the box to the data point lying within 1.5x the IQR. Points past the
whiskers are marked as fliers. A permutation test was computed to evaluate the significance of the difference between the
two group average values, where ∗∗∗𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.001; permutation test.

mapped interictal spike counts across all implanted SEEG electrodes in 3D space (Figure 6B).225

2.5.2 Comparing empirical and simulated interictal spikes226

To evaluate the simulated interictal spikes, we measured interictal spike count for each SEEG electrode, which227

is the fraction of spikes in each electrode compared to all detected spikes. Spikes are detected after bandpass228

filtering the signal and detecting peaks above calculated thresholds as described by Quiroga et al. (2004). Next,229

we compared the empirical and simulated spike counts across all patients of the virtual epileptic cohort and230

calculated the correlation of their spike counts in the left box of Figure 6C. In addition, we generated a ran-231

domized cohort for 15 patients by using the same brain models but randomly selecting an EZ network from232

other patients in the cohort. We also calculated spike count correlation with the empirical data in the random-233

ized cohort. Our second approach using the clinical hypothesis was also evaluated in ??C. Permutation testing234

showed a significant difference between the two groups (𝐻0: mean(VEC) ≤mean(RC); p-value < 0.001).235

3 Discussion236

In this paper, we provided a cohort of 30 virtualized drug-resistant epilepsy patients for hypothesis testing237

and validation. For each patient, we used one virtual brain model to generate synthetic spontaneous seizures,238

stimulation-induced seizures and interictal activity with spikes. Here, we present for the first time synthetic239

seizures induced by stimulation. In addition, we systematically evaluated our synthetic SEEG time series by240

comparing them against their corresponding empirical SEEG recordings. The synthetic SEEG data are simulated241

using personalized brain models, based on patient-specific brain connectivity, alongside reconstructed brain242

sources and SEEG sensors (Proix et al., 2017). We used the Epileptor model, which captures spatio-temporal243

seizure dynamics and interictal spikes. We showed that the synthetic data respect the structure and features of244

the empirical dataset. In particular, we demonstrated that the parameters used to simulate synthetic SEEG data245
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are important in capturing spatio-temporal features of epileptic activity, such as seizure propagation, stimula-246

tion outcome and interictal spike count. These parameters serve as ground truth for evaluating data analysis247

methods in clinical epilepsy research.248

The precise mechanisms contributing to seizure emergence are still not fully understood. Studies have249

shown that the transition to seizure is a slow process, characterized by a progressive loss of neural network250

resilience (Chang et al., 2018; Rich et al., 2022), a build-up of low-amplitude high-frequency activity and a pro-251

gressively increasing sensitivity of the network to electric stimulation (Jiruska et al., 2010). In addition, seizure252

generation has been linked to specific changes in ion dynamics such as extracellular potassium (Fröhlich et al.,253

2008), intracellular chloride (Lillis et al., 2012) and extracellular calcium (Wenzel et al., 2019), although ion254

dynamics are highly intertwined (Raimondo et al., 2015). We hypothesized that repetitive stimulation leads255

to a slow accumulation of ion imbalances which can trigger a seizure. We implemented this behaviour us-256

ing the Epileptor model and making 𝑚 time-varying, which influences the oscillatory dynamics of the seizure257

state (El Houssaini et al., 2020). When stimulation is applied, 𝑚 slowly increases and when reaching a defined258

seizure threshold, it pushes the system to the seizure state (see supplementary ??). In our approach, we tuned259

the seizure threshold parameter based on the EZ hypothesis and the empirical stimulation parameters. There-260

fore, when modifying only stimulation amplitude the response depends on the accumulation variable crossing261

the seizure threshold. Lower stimulation amplitudes failed to cross the defined seizure threshold, whereas262

empirical and higher stimulation amplitudes cross this threshold (see supplementary ??). In future studies, this263

approach can be extended and be more precise for each patient when more empirical stimulation data are264

integrated for model inversion.265

To ensure the quality and usefulness of the synthetic data, we implemented a set of comparative metrics,266

although to the best of our knowledge there is no standardmethod for validating synthetic data. We focused on267

specific data features of the real SEEG signal such as the envelope function, seizure onset and offset times and268

interictal spikes. Although these features are important for understanding epileptic brain activity, they could269

not account for all the complexity of recorded brain activity. We focused on simple spatio-temporal network270

features because, although the Epileptor captures common properties of brain activity during seizures (Jirsa271

et al., 2014), it does not account for all seizure dynamotypes (Saggio et al., 2020). This was shownby ourmetrics,272

where empirical data features were captured by the synthetic data, albeit only to a certain extent. However, the273

same metrics were applied to a randomized cohort and demonstrated that non-informative parameters fail to274

capture the same empirical data features. In addition, our simulations were not biased by surgical outcome275

(??).276

Furthermore, for stimulated seizures, we systematically varied stimulation location and amplitude and com-277

pared the outcome against the empirical data. In the clinical setting, these parameters exhibit the greatest278

variation. Other parameters such as stimulation frequency are typically chosen as either 1 Hz or 50 Hz, while a279

standard range is adhered to for pulse width (0.5-3ms) and stimulation duration (20-60 sec for 1 Hz stimulation;280

3-8 s for 50 Hz stimulation) (Isnard et al., 2018). However, the seizure propagation metric (SP) did not perform281

as well for stimulated seizures compared to spontaneous seizures, highlighting a limitation of our study. Addi-282

tionally, we compared spike count correlations between simulated and empirical interictal data. Despite using283

the same EZ parametrization, the average correlation was lower than that of seizure dynamics. This discrep-284

ancymay be explained by studies indicating that propagation zones can generate independent interictal spikes,285

suggesting the epileptogenic and irritative zone overlap but are not identical (Bourien et al., 2005; Bartolomei286

et al., 2016). The main contribution of these simulated interictal data is their ground truth information that can287

be used to evaluate data analysis methods for interictal spikes (e.g. source localization).288

We used the VEP brain atlas to simulate spatio-temporal seizure dynamics (Wang et al., 2021). This con-289

strains the complexity of simulated propagation patterns, as compared to empirical SEEG data. Each brain290

source represents on average ∼ 16 𝑐𝑚2 of the cortical surface. Conversely, neural field models use finer spatial291

scales (∼ 1𝑚𝑚2 of the cortical surface) and consider short-range cortical connections in addition to long-range292

white matter connectivity. In addition, dipole orientations of brain sources are not taken into account by the293

forward solution used to compute the SEEG time series. The current dipole is mainly attributable to pyramidal294

cells in the cortical gray matter and is aligned perpendicular to the brain surface (Buzsáki et al., 2012). Neural295

field models provide more realistic source to sensor mapping by considering both orientation and distance be-296
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tween the dipole sources and the sensors (Jirsa, 2009; Proix et al., 2018). However, unlike neural field models,297

neural mass models are typically more efficient in terms of computational resources, simulation duration and298

parameter exploration. They remain reliable in capturing various features of brain activity, including seizure299

dynamics (Jirsa et al., 2014; Proix et al., 2018).300

In the future, the current dataset can be enriched by other data imaging modalities, such as EEG, MEG301

and fMRI, directly through the forward solution on the same brain source signals. Additional data modalities302

can also be integrated to better inform the virtual brains and improve the synthetic data, such as PET/SPECT303

(La Fougère et al., 2009), sodium MRI (Azilinon et al., 2023), MEG (Pizzo et al., 2019) and high-resolution EEG304

(Kural et al., 2020). Models that account for a vast combination of clinical seizure patterns (Saggio et al., 2020),305

or other biophysically groundedmodels (Bandyopadhyay et al., 2021;Alonso et al., 2023) link parameters closer306

to underlying biological mechanisms. Replacing neural mass models by neural field models which account for307

cortical geometry and short-range connectivity is an additional future goal. This would allow for the integration308

of high-resolution brain imaging data (e.g. ultra-high field MRI [≥ 7 𝑇 ]) which can improve model creation and309

patient specificity (Jirsa et al., 2023). Overall, these informative features and modelling approaches can be310

integrated in the virtual epileptic cohort to provide a richer repertoire of simulated seizure dynamics.311

4 Methods and Materials312

4.1 Study design313

This study consisted of using a cohort of 30 patients with drug-resistant epilepsy alongside a methodology of314

personalized virtual brain modeling to build a synthetic copy of the dataset, called the virtual epileptic cohort.315

The objective of this study was to provide researchers and other potential users a virtual dataset with ground316

truth for testing and validation of their methods. We provided this dataset alongside comparative metrics317

between the synthetic and empirical data to gauge the capacity of the virtual cohort in capturing relevant data318

features.319

We used noninvasive T1-MRI and DW-MRI to reconstruct patient-specific whole-brain network models. The320

Epileptor (Jirsa et al., 2014) model was used to simulate brain activity for each network node. The Epileptor was321

extended to account for stimulated seizures, alongside its existing dynamical regimes for interictal and spon-322

taneous ictal dynamics. The model’s excitability parameter was defined using the EZ hypothesis, which was es-323

timated using the VEP pipeline (Wang et al., 2023). A second EZ hypothesis was defined from a team of clinical324

experts (JM and FB). For each empirical SEEG recording, a synthetic copy was simulated andwas either interictal325

activity (N=30), spontaneous seizure (N=54) or stimulated seizure (N=16). Simulations were performed on the326

whole-brain level and were mapped onto reconstructed SEEG electrodes using a source-to-sensor gain matrix.327

Electrode locations were obtained from cranial CT-scan after electrode implantation. The synthetic SEEG time328

series were compared against empirical SEEG recordings using 16 metrics comparing spatio-temporal seizure329

network dynamics and interictal spike organization. We selected four metrics to describe the main data fea-330

tures that were captured, but provided all of them in the supplementary material. To assess to what extent a331

personalized EZ hypothesis captured features of the empirical recordings, we constructed a surrogate cohort332

of 15 patients using random EZ hypothesis. The randomized cohort was also compared against the empirical333

recordings. Then, the virtual epileptic cohort and the randomized cohort metrics were compared and a permu-334

tation test was applied for significance testing. Finally, stimulation location and amplitude were systematically335

varied in-silico and compared against empirical stimulated seizures.336

4.2 Patient data337

4.2.1 Empirical patient data338

A total of 30 retrospective patients with drug-resistant epilepsy underwent a standard presurgical protocol at339

La Timone hospital in Marseille, France. Informed written consent was obtained for all patients in compliance340

with ethical requirements of the Declaration of Helsinki. The study protocol was approved by the local Ethics341

Committee (Comité de Protection des Personnés sud Mediterranée 1). All patients underwent comprehensive342
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presurgical assessment, including medical history, neurological examination, neuropsychological assessment,343

fluorodeoxyglucose-PET, high-resolution 3T-MRI, long-term scalp-EEG, and invasive SEEG recordings. All pa-344

tients had invasive SEEG recordings obtained by implanting multiple depth electrodes, each containing 10-18345

contacts (2mm long) separated by 1.5- or 5-mm contact spacing. The SEEG recordings were performed as part346

of routine clinical management, in line with French national guidelines (Isnard et al., 2018). Recordings were347

stored separately for each seizure, with seizure onset and offset times marked by expert epileptologists. For348

stimulation-induced seizures, stimulation parameters (channels, frequency, amplitude, pulse width and du-349

ration) were additionally provided. SEEG recordings during rest were stored separately. Following electrode350

implantation, a cranial CT-scan was performed to obtain locations of electrodes in the brain.351

4.2.2 Virtual Epileptic Cohort data352

The virtual epileptic cohort of 30 patients is provided in a BIDS-iEEG compatible format (Holdgraf et al., 2019).353

Following this format, each patient’s synthetic data are saved into two categories: simulated data and derived354

data. The simulated data contains simulated SEEG time series. The derived data contains structural information355

extracted from brain imaging scans (T1-MRI, DW-MRI and CT-scan) and underlying model parameters used to356

generate the simulated data.357

For each patient, synthetic SEEG time series are provided in BrainVision format (ieeg folder in supplemen-358

tary ??). These synthetic time series are grouped into three different folders for each type (ses-01: simulated359

seizure, ses-02: stimulated seizure, ses-03: stimulated interictal spikes). Each synthetic SEEG file contains the EZ360

hypothesis type used in its filename (VEPhypothesis or ClinicalHypothesis). Also, if multiple synthetic SEEG files361

are provided, they each have a unique run number (starting from run-01). For all synthetic SEEG files, electrode362

names and coordinates are provided as tsv files. For every patient, the number of simulated brain activities for363

each condition are summarized in Table 1.364

In addition, we provided structural information (struct folder in supplementary ??), notably their connec-365

tome and gain matrix. The connectome comes in the form of a zip file (TVB-compatible data format) and con-366

tains information about connectivity weights (MxM matrix, M=162 brain regions), connectivity centers, center367

orientations, connectivity areas and volumes, tract lengths and cortical/non-cortical region flags (for more in-368

formation, see TVB-UserGuide (2024)). The gain matrix is saved as a tsv file, this MxNmatrix contains M regions369

and N sensors and maps the simulated brain activity from the brain region level to the SEEG sensors, thus370

obtaining synthetic SEEG time series.371

Finally, correspondingmodel and simulator parameters are provided for each synthetic SEEGfile (parameters372

folder in supplementary ??). Stimulationparameters are also provided for stimulation-induced synthetic seizures.373

The synthetic time series on the brain source level are also provided for each synthetic SEEG file. A VEP atlas374

(Wang et al., 2021) is provided as a tsv file for mapping source labels to brain region names.375

4.3 Data processing376

The data processing method used here has been described in Wang et al. (2023). Here, we briefly explain the377

method used. To construct the virtual epileptic patients, we first preprocessed the T1-MRI and DW-MRI data.378

Volumetric segmentation and cortical surface reconstruction were obtained from the patient-specific T1-MRI379

data using the recon-all pipeline of the FreeSurfer software package. The cortical surface was parcellated ac-380

cording to the VEP atlas (code available at https://github.com/HuifangWang/VEP_atlas_shared.git). We used the381

MRtrix software package to process the DW-MRI, employing an iterative algorithm to estimate the response382

functions and subsequently used constrained spherical deconvolution to derive the fiber orientation distribu-383

tion functions. The iFOD2 algorithm was used to sample 15 million tracts. The structural connectome was384

constructed by assigning and counting the streamlines to and from each VEP brain region. This results in a385

162x162 connectivity matrix which is symmetric (there is no directionality information available in the white386

matter fibers). The diagonal entries of the connectome matrix were set to 0 to exclude self-connections within387

areas and the matrix was normalized so that the maximum value was equal to one. We obtained the location388

of the SEEG contacts from post-implantation CT scans using GARDEL as part of the EpiTools software package389
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(Villalon et al., 2018). Then we coregistered the contact positions from the CT scan space to the T1-MRI scan390

space of each patient.391

4.4 Neural mass models392

A neural mass model describes the activity of a population of neurons, thus it can describe the local activity of393

a brain region. It is defined by a set of differential equations that govern their dynamics. Just like brain regions394

are connected through long range white fibers, neural masses are linked through the structural connectome395

to form a whole brain network. The global equation for such a model can be given by396

𝜓̇𝑖(𝑡) = 𝐹 (𝜓𝑖(𝑡)) +𝐾
𝐿
∑

𝑗=1
𝑊 (𝑖, 𝑗)𝑆(𝜓𝑖(𝑡), 𝜓𝑗(𝑡)) (1)

where 𝜓𝑖(𝑡) is a state vector of neural activity at brain region 𝑖 and time 𝑡. 𝜓̇ is the temporal derivative of397

the state vector. 𝐹 is a function of the state and captures the local neural activity. In our case, 𝐹 reflects the398

Epileptor model, described above. 𝑊 is a matrix of heterogeneous connection strengths between node 𝑖 and399

𝑗. 𝑆 is a coupling function of the local state 𝜓𝑖 and the distant delayed state 𝜓𝑗 . That a node receives input400

through the network is given by the sum across the number of nodes 𝐿 and scaled by a constant 𝐾 . In this401

paper, this set of differential equations is solved using an Euler integration scheme with a step size of 0.5 ms.402

4.4.1 Forward solution with neural mass models403

Mapping the neural activity from the sources (VEP brain regions) to the sensors (SEEG contacts) is done by404

solving the forward problem and estimating a source-to-sensor matrix (gain matrix). As sources for our model,405

we used the vertices of the pial surface and volume bounding surfaces for the cortical and subcortical regions406

respectively. Surfaces are represented as triangularmeshes. We estimate that thematrix 𝑔𝑗,𝑘 from source brain407

region 𝑗 to sensor 𝑘 is equal to the sum of the inverse of the squared Euclidean distance 𝑑𝑖,𝑘 from vertex 𝑖 to408

sensor 𝑘 weighted by the area 𝑎𝑖 of the vertex on the surface.409

𝑔𝑗,𝑘 =
𝑁𝑗
∑

𝑖=0

𝑎𝑖
𝑑2
𝑖,𝑘

(2)

Here vertex 𝑖 belongs to region 𝑗 which has 𝑁𝑗 vertices in total. The area 𝑎𝑖 of vertex 𝑖 is obtained by sum-410

ming up one-third of the area of all the neighboring triangles. Vertices belonging to the same brain region411

are summed to obtain the gain for a single region of our brain network model. The resulting gain matrix has412

dimensions𝑀𝑥𝑁 , with𝑀 being the number of regions and𝑁 the number of sensors. Matrix multiplication of413

the simulated source activity with the gain matrix yields the simulated SEEG signals.414

4.5 The Epileptor model415

We used whole brain network models to generate synthetic SEEG time series. Within a brain network model,416

each brain region is represented as a node and the connections between regions are represented as edges.417

The brain regions are obtained by the FreeSurfer parcellation using the VEP atlas. The connection strength418

between regions is inferred from the structural connectome derived from DW-MRI data. The brain activity of419

each brain region is represented by a neural mass model, here we used the phenomenological 6D Epileptor420

model. There are 6 coupled differential equations in this model, which model 3 neural populations acting on a421

fast, intermediate and slow time scale.422
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𝑥̇1 = 𝑦1 − 𝑓1(𝑥1, 𝑥2) − 𝑧 + 𝐼𝑒𝑥𝑡1
𝑦̇1 = 𝑐 − 𝑑𝑥21 − 𝑦1
𝑥̇2 = −𝑦2 + 𝑥2 − 𝑥32 + 𝐼𝑒𝑥𝑡2 + 0.002𝑔 − 0.3(𝑧 − 3.5)

𝑦̇2 =
1
𝜏
(−𝑦2 + 𝑓2(𝑥2))

𝑧̇ = 𝑟(4(𝑥1 − 𝑥0) − 𝑧 + 𝑓3(𝑧) +𝐾
𝑁
∑

𝑗=1
𝐶𝑖,𝑗(𝑥

𝑗
1 − 𝑥

𝑖
1))

𝑔̇ = −0.01(𝑔 − 0.1𝑥1)

where

𝑓1(𝑥1, 𝑥2) =

⎧

⎪

⎨

⎪

⎩

𝑎𝑥31 − 𝑏𝑥
2
1 if 𝑥1 < 0

−(𝑚 − 𝑥2 + 0.6(𝑧 − 4)2)𝑥1 if 𝑥1 ≥ 0

𝑓2(𝑥2) =

⎧

⎪

⎨

⎪

⎩

0 if 𝑥2 < −0.25

𝑎2(𝑥2 + 0.25) if 𝑥2 ≥ −0.25

𝑓3(𝑧) =

⎧

⎪

⎨

⎪

⎩

−0.1𝑧7 if 𝑧 < 0

0 if 𝑧 ≥ 0

(3)

The state variables 𝑥1 and 𝑦1 describe the activity of the neural population acting on a fast time scale to423

model fast discharges during epileptic seizures. The state variables 𝑥2 and 𝑦2 describe the activity of the neural424

population acting on an intermediate time scale to to model spike and wave phenomena during seizures. The425

state variable z acts on a slow time scale and drives the system autonomously in and out of the ictal state. In426

addition, the state variable 𝑔 acts as a low-pass filter of the coupling from 𝑥1 to 𝑥2 and generates the preictal427

and ictal spikes.428

The excitability parameter 𝑥0 represents the degree of epileptogenicity and determines whether the system429

converges towards an ictal or healthy state. If 𝑥0 > 𝑥0𝑐, where 𝑥0𝑐 is the critical value of epileptogenicity, the430

Epileptor shows seizure activity autonomously and is referred to as epileptogenic; otherwise the Epileptor is431

in its (healthy) equilibrium state and does not trigger seizures autonomously. The default parameters are432

𝑟 = 0.00035, 𝜏 = 10, 𝐼𝑒𝑥𝑡1 = 3.1, 𝐼𝑒𝑥𝑡2 = 0.45, 𝑎 = 1, 𝑎2 = 6, 𝑏 = 3, 𝑐 = 1, 𝑑 = 5 and 𝑚 = 0.433

In addition, the Epileptor model is coupled to N other Epileptors via a linar approximation of permittivity434

coupling 𝐾∑𝑁
𝑗=1 𝐶𝑖,𝑗(𝑥

𝑗
1 − 𝑥

𝑖
1). In this coupling term, 𝐾 scales the global connectivity and can be varied between435

simulations to investigate different scenarios. The patient’s connectome is represented by 𝐶𝑖,𝑗 which defines436

region-to-region connection weights.437

4.6 The Epileptor-stimulation model438

To model stimulated seizures, we needed to determine the relationship between stimulus and brain activity.439

During stimulated seizures, we observed a slow increase in oscillatory response, followed by a sudden switch440

to the seizure state, likely due to ion imbalances (e.g., extracellular potassium) reaching a critical threshold.441

To model this, We used the phenomenological Epileptor model. We transformed the parameter 𝑚 into a vari-442

able that accumulates stimulus effects slowly which influences the excitability of the model. When reaching a443

critical seizure threshold value 𝑚𝑡ℎ𝑟𝑒𝑠ℎ, it can push the system from its normal state to the seizure state via the444

permittivity variable 𝑧, which guides the system in and out of seizures (see supplementary ??). The extended445

Epileptor-stimulation model is as follows:446
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𝑥̇1 = 𝑦1 − 𝑓1(𝑥1, 𝑥2) − 𝑧 + 𝐼𝑒𝑥𝑡1 + 𝑛𝐼𝑠𝑡𝑖𝑚
𝑦̇1 = 𝑐 − 𝑑𝑥21 − 𝑦1
𝑥̇2 = −𝑦2 + 𝑥2 − 𝑥32 + 𝐼𝑒𝑥𝑡2 + 0.002𝑔 − 0.3(𝑧 − 3.5)

𝑦̇2 =
1
𝜏
(−𝑦2 + 𝑓2(𝑥2))

𝑧̇ = 𝑟(4(𝑥1 − 𝑥0 −𝐻(𝑚 − 𝑚𝑡ℎ𝑟𝑒𝑠ℎ)) − 𝑧 + 𝑓3(𝑧) +𝐾
𝑁
∑

𝑗=1
𝐶𝑖,𝑗(𝑥

𝑗
1 − 𝑥

𝑖
1))

𝑔̇ = −0.01(𝑔 − 0.1𝑥1)

𝑚̇ = 𝑟2(𝑘|𝐼𝑠𝑡𝑖𝑚| − 0.3𝑚)

where

𝑓1(𝑥1, 𝑥2) =

⎧

⎪

⎨

⎪

⎩

𝑎𝑥31 − 𝑏𝑥
2
1 if 𝑥1 < 0

−(𝑚 − 𝑥2 + 0.6(𝑧 − 4)2)𝑥1 if 𝑥1 ≥ 0

𝑓2(𝑥2) =

⎧

⎪

⎨

⎪

⎩

0 if 𝑥2 < −0.25

𝑎2(𝑥2 + 0.25) if 𝑥2 ≥ −0.25

𝑓3(𝑧) =

⎧

⎪

⎨

⎪

⎩

−0.1𝑧7 if 𝑧 < 0

0 if 𝑧 ≥ 0

(4)

All default parameters are the same as in the original Epileptormodel, except for the additional parameters:447

𝑚𝑡ℎ𝑟𝑒𝑠ℎ = 1.5, 𝑘 = 20, 𝑟 = 0.00035, 𝑟2 = 0.006, 𝑛 = 3, 𝑥0 = −2.2. The Epileptor-stimulation model is coupled to N448

other Epileptors-stimulation using the same permittivity coupling described in the previous section. 𝐼𝑠𝑡𝑖𝑚 is449

a time varying input describing the perturbation signal at each time step, and matches the clinically applied450

stimulus waveform. Spatially, it is weighted by a scalar corresponding to the estimated electric field magnitude451

for each brain region (for more detail, see the subsection below). 𝐻 is the Heaviside function, 𝑚𝑡ℎ𝑟𝑒𝑠ℎ is the452

threshold for 𝑚 which when crossed changes the state of the system by pushing it in the upstate.453

4.7 Calculation of the electric field of SEEG stimulation454

The French guidelines on SEEG stimulation state that bipolar and biphasic current should be used between455

two contiguous contacts to target a region of interest (Isnard et al., 2018). In this setting, one contact acts as a456

cathode (negative electric potential, sink of current) and the other one as an anode (positive electric potential,457

source of current). Current flows from the anode to the cathode, hyperpolarizing the neural elements nearest458

the anode and depolarizing the neural elements nearest the anode. This generates a local electric field in the459

area where the electrodes are located. A bipolar configuration is preferred for SEEG stimulation because it may460

be less likely to elicit side effects thanks to the current being more focused than a monopolar configuration461

and less likely to spread into adjacent structures (Kovac et al., 2016; Kuncel and Grill, 2004). A symmetrical462

biphasic pulse waveform is used to reduce tissue damage by producing a zero net-charge. The parameters463

used clinically are restricted to frequencies of either 1 Hz or 50 Hz, weak amplitudes ranging from 0.5 to 5464

mA, and pulse widths of 500 - 3000 microseconds and duration of 0.5-40 seconds (short duration for 50 Hz465

stimulation and longer duration for 1 Hz stimulation).466

Wemodeled the stimulus that was clinically applied by generating a bipolar signal following the stimulation467

parameters. The electric field generated by the stimulus was estimated by approximating the electrode con-468

tacts as point sources (𝑞+ and 𝑞−), which is sufficiently accurate for our neural mass modeling approach (Alonso469

et al., 2023). We then mapped the stimulus signal onto the parcellated brain areas based on the distance, re-470

sulting in an estimated electric field at the whole-brain level. We used the estimated field magnitude |𝐸⃗(𝑟)| as471
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an input to the 𝐼𝑠𝑡𝑖𝑚 parameter of the Epileptor-stimulation model (4). The field magnitude at a brain location 𝑟472

is computed as:473

|𝐸⃗(𝑟)| = |𝑘𝑞(
𝑟 − ⃗𝑟𝑞+

|𝑟 − ⃗𝑟𝑞+|3
−

𝑟 − ⃗𝑟𝑞−
|𝑟 − ⃗𝑟𝑞−|3

)| (5)

4.8 Spontaneous seizures474

To simulate brain dynamics for each patient, we used their virtual brain model and the extended Epileptor475

model, parametrized by the patient’s EZ hypothesis. The EZ hypothesis was based on the VEP pipeline as a first476

approach and on the clinical hypothesis as a second approach.477

To obtain spontaneous seizures, two main parameters were adjusted in the Epileptor model: 𝑥0 and 𝐾 .478

Firstly, the 𝑥0 parameter determines regional excitability. To simulate spontaneous seizures, the epileptogenic-479

ity heatmap obtained from the EZ hypothesis was translated into 𝑥0 parameter values. For this, normalized480

epileptogenicity values were linearly transformed into an 𝑥0 range of [−2.2,−1.2], such that seizures occurred481

autonomously. For 𝑥0 values below −2.062 the model settles into a fixed point in the down-state which corre-482

sponds to an interictal state. For −2.062 < 𝑥0 < −1.025 the model generates a stable oscillation in the up-state483

which corresponds to a seizure-like event (SLE). For 𝑥0 values above −1.025 the model settles into a stable fixed484

point in the up-state. The brain regions that are epileptogenic have 𝑥0 values corresponding to the SLE state485

and brain regions that are non-epileptogenic have values corresponding to the interictal state.486

Secondly, the global coupling parameter (noted as 𝐾) is a key parameter which influences the resulting487

seizure dynamics. This parameter adjusts the coupling strength between nodes, which are connected to each488

other via a fast-to-slow coupling, also known as permittivity coupling (Proix et al., 2018). This parameter is489

adjusted according to the empirical SEEG recordings. Both 𝑥0 and 𝐾 determine the simulated spatiotemporal490

seizure dynamics. For instance, seizures can propagate to non-epileptogenic areas if they’re connected to491

epileptogenic areas. It can also happen than seizures do not propagate to an epileptogenic area in particular492

cases when that area is connected to multiple healthy regions, which act as seizure inhibitors.493

4.9 Stimulated seizures494

To generate stimulated seizures, we adjusted the parameters 𝑥0,𝑚𝑡ℎ𝑟𝑒𝑠ℎ and 𝐼𝑠𝑡𝑖𝑚. The parameter𝐾 valuewas the495

same as in the spontaneous seizure. Weused the same epileptogenicity heatmap from the EZ hypothesis of the496

spontaneous seizures. To trigger seizures by external stimulation rather then them occuring spontaneously,497

we set the excitability 𝑥0 values to a sub-critical threshold for seizing, linearly mapping them to an 𝑥0 range of498

[−2.2,−2.07]. The seizure threshold 𝑚𝑡ℎ𝑟𝑒𝑠ℎ parameter was also set from the EZ hypothesis, by linearly mapping499

them to a [0.5, 10] range. Epileptogenic brain regions have lower seizure thresholds than healthy brain regions.500

Bipolar current stimulation via SEEG electrodes is applied in order to trigger seizures for epileptogenic zone501

diagnosis. For this, clinicians stimulate across multiple electrode pairs and across stimulation parameters. This502

is not done systematically, it rather follows the clinician’s hypothesis of the epileptogenic zone and their ex-503

perience with stimulation parameters. We have selected the clinical stimulation parameters which induced504

a seizure in the patient. We used the same stimulation electrodes and stimulation parameters in our model.505

The generated effects of the stimulus are mapped onto the brain regions using the sensor-to-source forward506

solution. This resulted in an estimated electric field magnitude, represented as scalar weights across brain re-507

gions, with the strongest weights located near the stimulating electrode pair. The 𝐼𝑠𝑡𝑖𝑚 parameter was defined508

for each brain region depending on the stimulus weights. It then varied in time following the stimulus bipolar509

waveform. The variable 𝑚 is related to regional excitability and it depends on this parameter. When 𝐼𝑠𝑡𝑖𝑚 is510

non-zero, 𝑚 slowly increases, otherwise it slowly returns to baseline. When 𝑚 > 𝑚𝑡ℎ𝑟𝑒𝑠ℎ, the system is pushed to511

the seizure state. Then, the structural connectivity influences the spatio-temporal triggered seizure dynamics.512

4.9.1 Varying stimulation location513

We wanted to interrogate the robustness of our model by systematically changing stimulation location and514

comparing the outcome to the empirical stimulation-induced seizure. For this we followed the following steps515
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for each of seven patients which had stimulation-induced seizures in the clinic.516

We used the same brain models for each patient that were used for the virtual epileptic cohort. We repro-517

duced the same parameters using the VEP hypothesis, taken from the cohort’s derivatives database, with the518

only free parameter being stimulation location. To define this parameter, we grouped all SEEG contacts into519

four categories using the empirical stimulation location as a reference point. If we define 𝑑𝑒 as the distance in520

cm from the empirical stimulation location, Dist1: 𝑑𝑒 ≤ 1; Dist2: 𝑑𝑒 ∈ [1, 2]; Dist3: 𝑑𝑒 ∈ [2, 3]; and Dist4: 𝑑𝑒 ≥ 3.521

Next, we randomly stimulated up to 10 pairs of electrodes within the fourmain distance groups located outside522

of the empirical location. This resulted in up to 40 simulations containing the modelled stimulation input and523

whole-brain response (induced seizure or no seizure).524

The comparativemetrics between the synthetic SEEG stimulation responses and the empirical SEEG stimulation-525

induced seizure were performed (Figure 5). In total, 243 simulations were generated and compared against526

the empirical SEEG recordings.527

4.9.2 Varying stimulation amplitude528

We wanted to interrogate the robustness of our model by systematically changing stimulation amplitude and529

comparing the outcome to the empirical stimulation-induced seizure. For this we followed the following steps530

for each of seven patients which had stimulation-induced seizures in the clinic.531

We used the same brain models for each patient that were used for the virtual epileptic cohort. We repro-532

duced the same parameters using the VEP hypothesis, taken from the cohort’s derivatives database, with the533

only free parameter being stimulation amplitude. In the empirical stimulation parameters, all patients had a534

stimulation amplitude between 1.8 mA and 2.2 mA (mean=2mA, std=0.12). We varied this parameter at the fol-535

lowing amplitudes: 0.5 mA, 1 mA, 3 mA and 4mA. We ran simulations for each stimulation amplitude, resulting536

in four simulations per patient containing the modelled stimulation input and whole brain response (induced537

seizure or no seizure).538

The comparativemetrics between the synthetic SEEG stimulation responses and the empirical SEEG stimulation-539

induced seizure were performed (Figure 5). In total, 28 simulations were generated and compared against the540

empirical SEEG recordings.541

4.10 Interictal spikes542

We generated interictal activity for each patient, containing normal activity with interictal spiking in certain543

locations. We adjusted the parameters 𝐼𝑒𝑥𝑡 and 𝑥0. We used the same global coupling parameter 𝐾 of the544

spontaneous seizures.545

We set 𝐼𝑒𝑥𝑡 = 6.0 andmapped the epileptogenicity values to an 𝑥0 range of [−3,−2.8], with additive stochastic546

noise for irregular spiking. This allowed for interictal spikes to be obtained by the model, but it is not the only547

method (El Houssaini et al., 2020). The combination of 𝑥0 values close to the seizure threshold alongside the548

structural connectivity scaled by 𝐾 yields the interictal zone network for each patient. This results in interictal549

spike time series which are personalised to each patient.550

The present literature relates the epileptogenic zone network to the interictal spike network (Bourien et al.,551

2005). Thus, we used the epileptogenicity heat map obtained from both the VEP hypothesis and the clinical552

hypothesis to set the EZN close to the critical threshold for seizure-like events.553

4.10.1 Interictal spike detection554

A spike is defined as a transient distinguished from background activity, with pointed peak and duration be-555

tween 20-70 ms and varying amplitude typically > 50𝜇𝑉 (Kane et al., 2017). A bandpass butterworth noncasual556

filter was applied on the data (lowcut 1 Hz, highcut 70 Hz). To detect a spike, we looked for the peaks of the557

signal which crossed a defined threshold. The threshold was defined following the spike detection method in558

(Quiroga et al., 2004). If we define |𝑥| as the bandpass-filtered signal, then the threshold is equal to 4𝜎, where559

𝜎 = 𝑚𝑒𝑑𝑖𝑎𝑛
{

|𝑥|
0.6745

}

. In this case, 𝜎 is an estimate of the standard deviation of the background noise. The stan-560

dard deviation of the signal could lead to very high threshold values, especially in cases with high firing rates561
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and large spike amplitudes. By using the estimation based on the median, the interference of the spikes is562

diminished (see a demo in Quiroga et al. (2004)). In the empirical spike case, we only took spikes that had an563

amplitude above 25𝜇𝑉 . In addition, if two or more peaks were detected within 250 ms (or 256 timesteps in our564

algorithm) they were counted as a single spike, to ensure that poly-spikes are not counted as multiple spikes.565

4.10.2 Estimation of interictal spike count566

To evaluate the synthetic interictal time series, we compared their interictal spike count (IIS) against the empir-567

ical recording. We used 15 minutes of SEEG interictal activity and 10000 timesteps of synthetic SEEG interictal568

time series, with a step size 0.05.569

If the total number of spikes for a channel 𝑖 is 𝑆𝑖 and there are𝑁 channels, then the IIS for that channel was570

computed as follows,571

𝐼𝐼𝑆𝑖 =
𝑆𝑖

∑𝑁
𝑖=1 𝑆𝑖

(6)

As a result, we obtained two vectors of length 𝑁 , containing the interictal spike count for the synthetic and572

the empirical SEEG time series. We compared these two vectors using the Pearson correlation coefficient.573

4.11 Randomized cohort574

We generated three randomized cohorts for each simulation type: spontaneous seizures, stimulation induced575

seizures and interictal spikes. Each randomized cohort contained in total 15 synthetic SEEG time series for576

each EZ hypothesis (VEP hypothesis or Clinical hypothesis). The following approach was applied to generate577

one randomized cohort.578

First, for each patient, the same parameters used to run the virtual epileptic cohort simulations were reused579

with the exception of the parameter 𝑥0. For this parameter, instead of using the patient’s own EZ hypothesis,580

we select it randomly from another virtual epileptic cohort patient of the cohort. This operation was performed581

3 times for each patient. Thus, 3 synthetic simulations are obtained for each patient using a random EZ hypoth-582

esis.583

Next, we compared the synthetic SEEG seizure from the randomized cohort with the empirical SEEG record-584

ing of that patient. If the patient hasmultiple SEEG recordings for the same type, we select one andwe compare585

all 3 simulations to this SEEG simulation. We do this because seizure features and interictal features within the586

same patient tend to be more similar than those between patients.587

We followed this procedure for 5 patients of our cohort, resulting in 15 simulated seizures for each EZ588

hypothesis. We used the randomized cohort simulations to compute similarity metrics between the empirical589

and simulated data. We then compared the samemetrics between the virtual epileptic cohort and the random-590

ized cohort. The virtual epileptic cohort cohort showed a significantly higher resemblance with the empirical591

seizure features as compared to the randomized cohort. This shows that patient-specific EZ hypothesis plays592

an important role for simulating spatio-temporal seizure dynamics.593

4.12 Comparing simulated and empirical SEEG traces594

To compare the simulated SEEG time series to the empirical SEEG recording we first captured spatio-temporal595

features in both data. First, we computed an envelope function for each SEEG electrode as explained inWang596

et al. (2023) (see also supplementary ??). We used this envelope to mark each electrode as either seizure597

(containing seizure activity) or non-seizure (not containing any seizure activity) electrode. If the envelope’s peak598

amplitude crossed a determined threshold, the SEEG electrodes were marked as seizure electrodes, otherwise599

they weremarked as non-seizure electrodes. The threshold was the same for all electrodes and it wasmanually600

determined to be higher than the envelope’s baseline amplitude . We compared the overlap of seizure and non-601

seizure electrodes between the simulated and empirical SEEG. In the electrodes where seizure activity was602

marked, we used the timepoints when the envelope jumped from its baseline and returned back to baseline603

to mark seizure onset and offset, respectively. Using this information, we binarized all SEEG traces in time: 0604
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for no seizure, 1 for seizure (Figure 3B). We then compared the binarized simulated and empirical SEEG using605

2D pearson correlation.606

Next, we divided SEEG electrodes marked as seizure electrodes into two groups: seizure onset (SO) and607

seizure propagation (SP) electrodes (Figure 3C). A seizure electrode was marked as SO when its onset time was608

belonged to the first few seconds of the total seizure length (corresponding to the first 5-15%of the total seizure609

duration), otherwise it was marked as SP. Then, the Jaccard similarity coefficient was employed to compare610

synthetic and empirical SO groups, and synthetic and empirical SP groups.611

We computed these measurements for each pair of simulated SEEG and it’s corresponding empirical SEEG,612

for both the spontaneous and stimulation-induced seizures. We repeated the samemeasurements for both the613

Virtual Epileptic Cohort (VEC) and the Randomized Cohort (RC). All measurements were plotted together and a614

boxplot was overlayed to compare the VEC against the RC (Figure 3D and Figure 5A). The boxplot is constructed615

as follows. Middle box represents the interquartile range (IQR), with a line at the median. The whiskers extend616

from the box to the data point lying within 1.5x the IQR. Points past the whiskers are marked as fliers.617

We compared how significantly higher the mean for each metric of VEC was to the mean for each corre-618

sponding metric of RC using permutation testing ((Nichols and Holmes, 2002)) (𝐻0 : mean(VEC) ≤mean(RC),𝐻1619

: mean(VEC) > mean(RC)). For all measurements, p<0.001 therefore it is very unlikely that VEC performs better620

than RC by chance.621

The complete set of all measurements that were performed can be found in the supplementary ??.622

4.12.1 Computing the 2D pearson correlation623

We compare the two binarized images using Pearson correlation and overlap.624

𝑟 =
∑

(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄)
√

∑

(𝑥𝑖 − 𝑥̄)2
∑

(𝑦𝑖 − 𝑦̄)2
(7)

Where 𝑥𝑖 is the binary value of a pixel in the empirical case, 𝑦𝑖 is the binary value of a pixel in the simulated case.625

Note: r ∈ [−1, 1].626

4.12.2 Binary overlap627

𝐵𝑖𝑛𝑎𝑟𝑦𝑜𝑣𝑒𝑟𝑙𝑎𝑝 =
|𝐸𝑏𝑖𝑛 ∩ 𝑆𝑏𝑖𝑛|

|𝐸𝑏𝑖𝑛|
(8)

The ratio between the amount of identical timepoints divided by the entire amount of timepoints.628

4.12.3 Jaccard similarity coefficient629

We compare the seizure onset (SO) and seizure propagation (SP) groups using Jaccard similarity coefficient.630

𝑆𝑂𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =
|𝐸𝑆𝑂 ∩ 𝑆𝑆𝑂|
|𝐸𝑆𝑂 ∪ 𝐸𝑆𝑂|

𝑆𝑃𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =
|𝐸𝑆𝑃 ∩ 𝑆𝑆𝑃 |
|𝐸𝑆𝑃 ∪ 𝐸𝑆𝑃 |

(9)

where 𝐸𝑆𝑂, 𝐸𝑆𝑃 are the empirical seizure onset and seizure propagation channels, respectively. 𝑆𝑆𝑂, 𝑆𝑆𝑃631

are the simulated seizure onset and seizure propagation channels, respectively.632

4.12.4 Signal power633

For each SEEG bipolar sensor, the signal power is computed for both the empirical and the synthetic time series634

and plotted in 3D (e.g. Figure 2, right panel).635

𝑃 = 1
𝑁

𝑁
∑

𝑡=0
𝑠2𝑡 (10)

where 𝑠𝑡 represents the electrode’s signal amplitude at timepoint 𝑡, 𝑁 is the total number of time points, 𝑃636

is the signal power for one electrode. The signal power across all electrodes is then normalized between 0 and637

1.638
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4.13 Permutation test639

We performed a permutation test (Nichols and Holmes, 2002) for each metric (𝐻0 ∶ 𝑚𝑒𝑎𝑛(𝑉 𝐸𝐶) ≤ 𝑚𝑒𝑎𝑛(𝑅𝐶),640

𝐻1 ∶ 𝑚𝑒𝑎𝑛(𝑉 𝐸𝐶) > 𝑚𝑒𝑎𝑛(𝑅𝐶)). This test showed the likeliness of the average metric values of the VEC cohort641

being higher than the RC cohort being attributed to chance.642

5 Data availability643

The virtual epilepsy patient cohort has been uploaded to the European Brain Research Infrastructure (EBRAINS,644

2019). The dataset card canbe foundusing the link: https://search.kg.ebrains.eu/live/c1702a5b-bc8f-486e-a0ee-4758a707ff00.645
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