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Prenatal exposure to genocide accelerates epigenetic aging as measured in second-30 

generation clocks among young adults 31 

 Abstract 32 

Prenatal exposure to trauma, including genocide and maternal rape, and adverse childhood 33 

experiences (ACEs), are associated with lifespan reduction. We evaluated whether prenatal 34 

exposure to genocide or genocidal rape, and ACEs among individuals conceived during the 35 

1994 genocide against Tutsi in Rwanda were associated with differences in age acceleration in 36 

three first-generation (Horvath, Hannum, PhenoAge) and four second-generation epigenetic 37 

aging clocks (GrimAge, DunedinPace, YingDamAge, YingAdaptAge), given the association 38 

between biological aging and mortality. No differences in age acceleration were observed with 39 

first-generation age clocks. However, age acceleration was associated with prenatal exposure 40 

to extreme stress for all second-generation clocks, with the greatest acceleration observed in 41 

the genocidal rape conception group. For YingDamAge clock, acceleration effects were 42 

strengthened after inclusion of ACEs. We suggest that prenatal trauma exposure is associated 43 

with epigenetic age acceleration. Second-generation clocks may more accurately capture these 44 

relationships. 45 

 46 
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 51 

     INTRODUCTION 52 

Genocide has profound and long-lasting effects on humanity. In Rwanda, more than 1,000,000 53 

lives were lost in a period of 100 days in the 1994 genocide against the Tutsi1. The genocide not 54 

only impacted the lives of those who directly experienced it but also those who were indirectly 55 

exposed while in utero. Our previous studies demonstrated that young adults conceived during 56 

the genocide against the Tutsi had worse mental and physical function and higher post-57 

traumatic stress disorder (PTSD) scores, anxiety, depression, pain intensity, and sleep 58 

disturbance compared to age- and sex-matched young adults who were not prenatally exposed 59 

to the genocide2. Other studies conducted in Rwanda also reported significantly higher scores of 60 

PTSD, depression and lower cortisol levels among Rwandans prenatally exposed to genocide 61 

when compared with those whose parents were living outside the country during the time of 62 

genocide3, 4.  63 

Rape was used as a systematic weapon during the 1994 genocide and affected approximately 64 

350,000 women, of whom only one in six survived2, 5. While the exact number of children born 65 

as a result of genocidal rape will never be known, the total is estimated between 2,000-10,000 5, 66 

6. Individuals conceived during the genocide, including those conceived through rape, were 67 

exposed to this trauma during the first trimester, which is a critical stage of development. For 68 

those conceived via genocidal rape, stress related to their birth origins extends beyond the 69 

acute period of genocide and continues throughout childhood7, 8. For example, studies 70 

conducted in Rwanda and the former Yugoslavia reported that children born of genocidal rape 71 

face physical and emotional abuse from family and community members and endure poverty 72 

and other socioeconomic hardships7, 9. This can manifest in a significantly higher likelihood of 73 

experiencing adverse childhood experiences 2. 74 
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While research has demonstrated associations between prenatal exposure to genocide and 75 

mental and physical health outcomes2, 10, it is possible that prenatal exposure to genocide and 76 

rape also impacted various aspects of biological regulation, including patterns of DNA 77 

methylation. We previously reported that individuals who were born of genocidal rape, relative to 78 

controls, had DNA methylation that varied at CpGs in BDNF and SLC6A4, and methylation in 79 

these sites was associated with adult mental health outcomes11. While suggestive, site-specific 80 

DNA methylation has not proven to be a useful prognosticator of health; by contrast, DNA 81 

methylation-based aging estimators have been associated with mental health treatment 82 

outcomes12, cancer prognosis, and chronic disease mortality13. There are different machine-83 

learning algorithms to estimate biological aging. First-generation epigenetic age estimators were 84 

created by training neural-net models to predict age by comparing the methylation status at 85 

CpG sites present on arrays with chronological age (e.g., Horvath14, Hannum15); age 86 

acceleration was conceptualized as the positive difference (either raw or residualized) between 87 

estimated and actual age. Such estimators have been critiqued for low test-retest reliability,16 a 88 

lack of generalizability beyond their training data,17 and a limited ability to capture biological 89 

processes and/or epigenetic patterns related to healthy aging and longevity. In response, so-90 

called “second generation” epigenetic clocks have included phenotypic measures known to 91 

associate with biological aging (e.g. PhenoAge) as well as known longitudinal mortality and 92 

longevity data (GrimAge, DunedinPACE) and most recently, causally-constrained epigenetic 93 

markers of adaptive aging or longevity (YingAdaptAge) and/or decreased lifespan or damage-94 

related aging (YingDamAge)18. In this paper, we categorize PhenoAge as a first-generation 95 

clock; while it does include serum biomarkers associated with poor health, it does not include 96 

longitudinal mortality data (e.g. GrimAge), longitudinal age-related decline (DunedinPACE) or 97 

longitudinal age-related morbidity/mortality and longevity outcomes (YingDamAge, 98 

YingAdaptAge) in its training data (see Supplemental Table 1). Though effect sizes vary 99 
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depending on the clock used, accelerated epigenetic age has been associated with decreased 100 

lifespan and “healthspan”19. Notably, early life adversity (ELA, e.g. both prenatally and in 101 

childhood) has been associated with accelerated epigenetic age, although these associations 102 

frequently vary depending on the epigenetic clock used and the way adversity is measured20. 103 

For example, in a systematic review of ELA and epigenetic aging in the Horvath and Hannum 104 

clocks, experiences of threat (vs. deprivation) were most related to biological aging21 in children. 105 

In a separate analysis among Congolese newborns, prenatal exposure to general trauma and 106 

war trauma was found to be associated with accelerated epigenetic age in the Hannum extrinsic 107 

age (but not PhenoAge or GrimAge) clocks22. Lower birth weight has also been associated with 108 

accelerated epigenetic aging in the Hannum, DNAmPhenoAge, DunedinPoAm, and DNAmTL 109 

(but not GrimAge) in young male, but not female, adults in the Philippines23. Here, we use DNA 110 

methylation array data from our previously described cohort of individuals conceived during the 111 

1994 genocide against the Tutsi11 to evaluate epigenetic aging using all seven published 112 

epigenetic age estimators. 113 

Hypotheses 114 

The primary aim of this study was to evaluate whether different patterns of prenatal exposure to 115 

maternal stress are associated with epigenetic age. We evaluated three groups, 1) single-116 

exposed - maternal stress related to genocide; 2) double-exposed - maternal stress related to 117 

genocide and rape; 3) control - not directly exposed to genocide or rape. In contrast to previous 118 

work on similar samples, here we assess the influence of both prenatal exposures and postnatal 119 

experiences of adversity, such as adverse childhood experiences (ACEs), on first- and second-120 

generation epigenetic age estimators. For our analysis, we hypothesized that adverse early life 121 

experiences would be associated with accelerated epigenetic age. For the prenatal adversity 122 

groups, we predict that single-exposed individuals will have a significantly accelerated 123 
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epigenetic age compared to unexposed individuals, and double-exposed individuals will have a 124 

significantly accelerated epigenetic age relative to single-exposed and control individuals. We 125 

explored this relationship using first generation (Horvath, Hannum, PhenoAge) and second 126 

generation (GrimAge, DunedinPACE, YingDamAge, YingAdaptAge) epigenetic age estimators. 127 

RESULTS 128 

Sample descriptive statistics are presented in Table 1. As noted earlier, all participants were 24 129 

years of chronological age (mean= 24.1, sd = 0.10) and fairly evenly split by sex (n= 44 female, 130 

n=45 male). The majority (73.7%) had some college education. Reported adverse childhood 131 

events ranged from 1 to 11, with a mean of 5.00, and as previously reported, were highest in the 132 

doubly exposed group2. 133 

Epigenetic age 134 

Caption: Fig 1: Violin plot of epigenetic age residuals by group  135 

The figure depicts the distribution of age residuals by group for each epigenetic clock.  136 

 137 

Predicted epigenetic age ranges varied between clocks (see Supplemental Table 2). For 138 

example, the mean PhenoAge predicted age for the sample was 12.8 years (sd=5.61). We 139 

found no evidence of an association between epigenetic age acceleration and prenatal 140 

genocide exposure (single or double) and/or ACEs in the Hannum, Horvath, or PhenoAge 141 

clocks (Supplemental Tables 3.1- 3.6).  142 

By contrast, epigenetic age acceleration calculated from YingDamAge, YingAdaptAge 143 

DundeinPACE, and GrimAgeAccel clocks were all associated with prenatal genocide exposure 144 

with stronger effects for the double-exposed group seen in the YingDamAge βsingle = 3.601, 145 

βdouble= 6.375, p < 0.05) and YingAdaptAge clocks (βsingle = -6.482, βdouble= -7.725, p < 0.001). 146 
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The relationship between prenatal genocide exposure and epigenetic age acceleration 147 

calculated from YingAdaptAge remained significant and increased in both exposed groups 148 

(βsingle = -7.450, βdouble= -9.436, p < 0.001) even after controlling for ACEs. However, only the 149 

double-exposed group had significant epigenetic age acceleration calculated from YingDamAge 150 

after adjusting for ACEs, with the coefficient increasing after adjustment (βdouble=6.349, p < 151 

0.01). The double-exposed group (but not single-exposed) was significantly associated with age 152 

acceleration in the DunedinPACE  (βdouble= 0.048, p < 0.05) and GrimAgeAccel (βdouble= 1.448, p 153 

< 0.05) clocks. These effects were attenuated by adjustment for postnatal ACEs, especially in 154 

the DunedinPace and GrimAge2 clocks (see Tables 2.1 - 2.8). Visual examination of regression 155 

diagnostic plots in the performance package demonstrated good model performance for each 156 

second generation clock.  157 

We calculated the standardized mean difference to compare effect sizes across each of the 158 

models tested (Figure 1). The confidence intervals for each of the Horvath, Hannum, and 159 

PhenoAge models contained zero; in DunedinPACE and GrimAge, the single-exposed contrast, 160 

but not the double-exposed, also contained zero. Effect sizes were progressively greater (and 161 

greater for the double-exposed) in each second-generation clock tested. The largest effect size 162 

was for reduced adaptive aging in the double-exposed (YingAdaptAge SMD = -0.98, (95% CI = 163 

-1.54, -0.52) in Model 1 (unadjusted for ACEs) and Model 2 (YingAdaptAge SMD = - 1.19, 95% 164 

CI= -1.73, -0.66). 165 

DISCUSSION 166 

Previous research has demonstrated the sustained impacts of exposure to genocide and war-167 

related trauma on the epigenome of individuals4, 22, 24, 25. Here, we reported the results of an 168 

analysis of epigenetic age among two groups of individuals conceived in Rwanda during the 169 

1994 genocide and one group of individuals conceived outside of Rwanda during that time. We 170 
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find a pattern of increased epigenetic aging between both prenatal exposure groups among 171 

second generation but not first generation epigenetic aging clocks, with stronger effects for the 172 

more severely exposed. Adjustment for postnatal adversity only slightly attenuated these 173 

effects, confirming the importance of prenatal developmental conditions. Our findings are 174 

provocative because they indicate that recent efforts to improve epigenetic clock construction by 175 

capturing physiological and/or causal variation in aging related DNA methylation may also better 176 

capture the impact of prenatal insults on healthspan. The effect sizes were greatest for the 177 

YingDamAge and YingAdaptAge, with the former increasing with adjustment for ACEs. While all 178 

of the second generation clocks were significantly different for the single-exposed group when 179 

adjusting for sex and immune cell composition, YingAdaptAge was the only measure that was 180 

significantly different once ACEs were added to the model. Similarly, effect sizes between 181 

exposure and epigenetic aging were greater in the second generation clocks, with the largest 182 

effect seen in reduced adaptive aging (YingAdaptAge) in the double-exposed. Links between 183 

prenatal conditions and earlier onset of age-related disease and decreased lifespan have been 184 

theorized within the Developmental Origins of Health and Disease (DOHaD) framework26, 27. 185 

Low birthweight, prenatal exposure to stress and famine, and other indicators of poor 186 

developmental conditions have been associated with increased risk of chronic disease, 187 

decreased healthspan, and premature death in a well-established literature28, 29. Research 188 

exploring epigenetic age acceleration in young adults and associations with early life or prenatal 189 

conditions, however, is an emerging field; due to an individual’s limited ability to report on their 190 

own prenatal exposures, most studies in this field have investigated aging in children with 191 

parental report of exposure, or childhood adversity as self-reported by adults.  Epigenetic age 192 

acceleration has been found in adults with in utero exposure to the Great Depression30, the 193 

Dutch Hunger Winter31, and other documented adverse developmental conditions. Our study 194 

adds to this literature by demonstrating the impact of prenatal exposure to genocide and 195 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 2, 2024. ; https://doi.org/10.1101/2024.10.01.24314372doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.01.24314372


 

 

9 
 

genocidal rape in relatively healthy young adults. Whether these responses represent 196 

constraint, adaptation, or pathology is currently unclear, and should be a focus of study in future 197 

research32.  198 

Our study also contributes to understanding some of the challenges and limitations of epigenetic 199 

clocks33, discerning causal relationships between epigenetic aging and healthspan, and the 200 

generalizability of epigenetic aging algorithms to non-Western populations17. We note, 201 

especially for the first generation clocks, the substantial variation in estimated age in these 202 

measures. The Hannum and PhenoAge clocks predicted age ranges between 2.40 - 32.1 years 203 

and 0.445 - 30.1 years, respectively. According to these predictions, some individuals had 204 

epigenetic age deceleration on the order of 23 years, which is remarkable considering the study 205 

participants were 24 years of chronological age at the time of assessment. It is also notable that 206 

outliers demonstrated epigenetic age deceleration and not acceleration and that the most 207 

extreme values were found in the double-exposed group. The Horvath clock had a more 208 

reasonable range (23.0, 38.3), with a slightly longer right tail to the distribution, reflecting more 209 

acceleration than deceleration results. It is worth noting that all the included epigenetic clocks 210 

are trained on reference datasets that are not representative of the Rwandan population in 211 

terms of ancestry and that were not exposed to such extreme prenatal and postnatal stress17. 212 

As such, it is possible that these clocks are less accurate at estimating biological age in this 213 

population, potentially due to confounding by cell type34-36. For example, the Hannum clock was 214 

validated using a sample of 426 “Caucasian” and 230 “Hispanic” individuals, and the authors 215 

found a correlation of 96% between chronological and epigenetic age15. In our sample, this 216 

correlation was 3.9%. This finding highlights the limitations of creating epigenetic (or genetic, i.e. 217 

polygenic risk scores) algorithms based on non-fully representative datasets, reflecting broader 218 

anthropological critiques of biological normativity37.  219 
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First generation clocks, trained only on chronological age, may be particularly vulnerable to 220 

unmeasured confounding (e.g.  population structure). The second generation clocks tested were 221 

also trained on data not representative of our sample (see Supplementary Table 1), but each 222 

include longitudinal measures of age-related decline, with the Ying clocks additionally 223 

constraining CpGs in its algorithm to those most causally related to age-related traits. Our 224 

findings suggest that these clocks are potentially more generalizable to other populations17.  225 

Limitations 226 

We note several limitations to our study. The relatively small sample size may limit the 227 

generalizability of our findings. The majority of our participants had some college education 228 

which may not be representative of the socioeconomic status of our target population, but which 229 

we hypothesize would bias our results towards the null. Further, we utilized a cross-sectional 230 

study design with self-report on ACEs in adulthood, which introduces some degree of 231 

measurement error into our measure of ELA and limits causal inferences about the effect of 232 

ELA on biological aging. Finally, while we adjusted for ACEs, other unmeasured confounders, 233 

such as nutritional status, other environmental exposures, and genetic factors may have 234 

influenced the results. Despite these limitations, the shared directionality of effect between the 235 

multiple second-generation clocks tested, the highly impacted study population, and the use of 236 

an unexposed comparison group lend strength to our study findings. 237 

Conclusions 238 

In sum, we found a relationship between maternal exposure to genocide-related trauma during 239 

pregnancy and epigenetic age acceleration in young adult offspring using second-generation 240 

but not first-generation epigenetic age estimators. Adjusting for adverse childhood experiences 241 

does not attenuate most of these results, and in the case of YingAdaptAge increased the 242 
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coefficient. Future longitudinal research on larger samples should evaluate the potential 243 

interactive or moderating effects of both positive and negative environmental experiences later 244 

in the life course on epigenetic age acceleration. 245 

METHODS 246 

This analysis is part of a comparative and associational cross-sectional study that explored the 247 

health impacts of prenatal exposure to genocide among Rwandan young adults conceived 248 

during the 100 days of genocide against the Tutsi in Rwanda in 1994 2, 10. Study approvals were 249 

obtained from the Institutional Review Boards of the University of Illinois at Chicago (UIC: 2018-250 

1497), the University of Rwanda (UR No 063/CMHS IRB/2019), and Dartmouth College 251 

(STUDY0003231). All participants were given an information letter about the study and signed a 252 

2, 10consent form before data collection. Rwandans aged 24 years old during the time of data 253 

collection were enrolled in the study and categorized into three groups accordion to their level of 254 

exposure: group 1: single-exposed - maternal stress-related genocide group 2: double-exposed 255 

- maternal stress-related genocide and rape; and group 3: control - not directly exposed to 256 

genocide or rape. The first participants in both exposed groups were recruited from the 257 

Solidarity for the Development of Widows and Orphans to Promote Self-Sufficiency and 258 

Livelihoods “SEVOTA” and Association of Genocide Widows Agahozo “AVEGA Agahozo”, non-259 

profit organizations that support genocide survivors2. Participants in the group were 260 

descendants of Rwandans who were living outside the country during the time of the genocide 261 

and had no direct experience of the 1994 genocide. Each participant was invited to recommend 262 

age- and sex-matched Rwandans who belonged to any of the three groups.   263 

Data were collected by the first author, who is a Rwandan mental health nurse, in a private 264 

room. Interviews were conducted in Kinyarwanda. A total of 91 participants completed 265 

demographic and health-related surveys in Research Electronic Data Capture (REDCap).  266 
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Prenatal exposure to genocide 267 

To determine the level of exposure, we asked each participant if they were conceived by a 268 

genocide survivor and whether they were conceived via genocidal rape. Most of the participants 269 

in the exposed groups were referred to the study by an organization that supports survivors of 270 

genocide and their offspring; these organizations hence knew and shared with us in which 271 

category their referred potential participants belonged to.  We verified these exposures with 272 

participants during their interviews. We conducted screening interviews with participants in the 273 

control group to determine if individuals were born to Tutsi women who were living outside the 274 

country during the time of the genocide. We excluded participants if their parents left the country 275 

due to the genocide or other political unrest in the months leading up to the genocide.  We 276 

backdated participants’ dates of birth to estimate if they were conceived during the time of the 277 

genocide: April 07 - July 4, 1994. An equal number of female and male participants were 278 

enrolled in each group (Table 1). 279 

Early Life Adversity 280 

Adverse childhood experiences before age 18 were assessed using the Adverse Childhood 281 

Experiences International Questionnaire (ACEs IQ)38. This measure includes 13 items - 282 

emotional abuse; physical abuse; sexual abuse; violence against household members; living 283 

with household members who were substance abusers; living with household members who 284 

were mentally ill or suicidal; living with household members who were imprisoned; one or no 285 

parents, parental separation or divorce; emotional neglect; physical neglect; bullying; community 286 

violence; and collective violence, resulting in an ACEs score of 0-13. This measure has been 287 

validated in another African setting39 and had acceptable internal consistency within our sample 288 

(α = 0.70). 289 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 2, 2024. ; https://doi.org/10.1101/2024.10.01.24314372doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.01.24314372


 

 

13 
 

Dried Blood Spot Collection 290 

Dried blood spots (DBS) were collected for later DNA methylation analysis following the 291 

interview. DBS is a minimally invasive and frequently used method that is convenient and cost-292 

effective in research in remote settings that requires long-distance transportation of samples40. 293 

The use of DBS has been validated in studies exploring DNAm 41 (24). Whole blood drops were 294 

collected from a finger stick by sterile lancet on Flinders Technology Associates cards (FTA), 295 

with four sample areas of 125 μL each per card. Samples were collected from March 07 to April 296 

06, 2019.  The drops were air-dried for at least four hours before placing each card in an airtight 297 

envelope with silica-based desiccant and stored at room temperature in Rwanda. Samples were 298 

then shipped to the University of Illinois on April 7, 2019, and later to Dartmouth College on 299 

August 26, 2021, where they were stored at -80 °C prior to sample processing and DNA 300 

methylation analysis in April 2022.  301 

DNA Methylation Sample Processing 302 

DNA was extracted from dried blood spots (DBS) using QIAamp DNA Investigator Kit (Qiagen, 303 

Catalog #56504). The manufacturer's protocol was optimized to improve DNA yield. For each 304 

sample (N = 91), two 6 mm hole punches were processed in individual 1.5 microcentrifuge 305 

tubes (Eppendorf) and QIAamp MinElute columns (Qiagen). The elution buffer ATE (Qiagen) 306 

was heated to 70°C to improve the release of DNA from the silica membrane. 60 µL of ATE 307 

were pipetted onto the silica membrane of the MinElute column and incubated at room 308 

temperature (15–25°C) for 10 min. before centrifugation. The eluate was re-eluted onto the 309 

silica membrane and incubated at room temperature (15–25°C) for 3 min. Following final 310 

centrifugation, the eluates were combined into one 1.5 microcentrifuge tube and carefully 311 

pipetted up and down to ensure sufficient mixture. Purified DNA was quantified using Invitrogen 312 

Qubit 3.0 Fluorometer broad range assay (median = 259.6 ng of DNA). Infinium FFPE QC and 313 
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DNA Restoration kit (Illumina Inc., WG-321-1001, WG-321-1002) was used to evaluate sample 314 

quality and restore degraded DNA, prior to bisulfite treatment (Zymo EZDNA Methylation Kit, 315 

Zymo Research, Irvine, CA, USA). DNA methylation was measured using MethylationEPIC v.1 316 

beadchip, and samples were randomized by the prenatal exposure group across chips.  317 

Data Preprocessing and Normalization 318 

DNA methylation microarray idat files were imported into R (version 4.2.1) and processed using 319 

the minfi package (version 1.41.0)42. Quality control included estimating sex and calculating 320 

mean detection p-value for CpGs across all samples to evaluate signal reliability. Beta and M 321 

values were calculated using the normal-exponential out-of-band (Noob) method, recommended 322 

for the 12-immune-cell-type extended deconvolution, which includes normalization and 323 

background correction36. Further preprocessing took place before any epigenomic analysis, 324 

including filtering CpGs with low detection p-value across samples (20,170), filtering probes on 325 

X and Y chromosomes (Y= 135, X = 18,588), and filtering SNPs/cross-hybridizing probes 326 

(77,510). DNAm β-values and M-values were extracted and used in subsequent analysis.  327 

 Epigenetic age acceleration  328 

All participants were 24 years of age during data collection. Epigenetic age was calculated from 329 

the preprocessed methylation beta values across all samples using the methyAge function in 330 

package ENmix (version 1.32.0), which includes Horvath, Hannum, and PhenoAge clocks. 331 

DunedinPACE, GrimAgeAccel, YingAdaptage, and YingDamAge were similarly calculated using 332 

the Biolearn library developed and maintained by the Biomarkers of Aging Consortium43. While 333 

several of these clocks were developed using the Illumina 450K array, each has been validated 334 

for use with the EPIC microarray used in the present analysis44. After calculating the predicted 335 

epigenetic age, we regressed chronological age on the predicted age (except for GrimAgeAccel, 336 
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which produces its own residualized score), and the age-corrected residual difference was used 337 

in all analyses as our epigenetic age acceleration measure. 338 

Immune cell type deconvolution 339 

Immune cell type proportions were estimated across all samples using a DNA methylation-340 

derived cell type deconvolution method. The package FlowSorted.BloodExtended.EPIC (version 341 

2.0.0) infers proportions of 12 immune cell types;  neutrophils (Neu), monocytes (Mono), 342 

basophils (Bas), eosinophils (Eos), CD4T naïve cells (CD4nv), CD4T memory cells (CD4mem), 343 

B naïve cells (Bnv), B memory cells (Bmem), CD8T naïve cells (CD8nv), CD8T memory cells 344 

(CD8mem), T regulatory cells (Treg), and natural killer cells (NK)36. The monocyte-to-345 

lymphocyte and neutrophil-to-lymphocyte ratios were calculated based on the deconvoluted cell 346 

proportions and were used as primary outcomes. To summarize immunophenotype, a principal 347 

component analysis was conducted on all cell types; the first principal component explained 348 

68.2% of the variance and was used to control for cell-type composition. The first immune cell 349 

type principal component (PC) was included as a covariate in the epigenetic age analysis. 350 

Data Analysis 351 

All statistical analyses were conducted in R version 4.3.1. Descriptive statistics were run across 352 

the exposure groups before analysis, and epigenetic aging measures were plotted by the 353 

exposure group and visually inspected (see Supp Fig 1a & 1b).  All participants had complete 354 

data. For each epigenetic clock, we conducted a two-step multiple linear regression to 355 

determine the relationship between the exposure group and epigenetic age acceleration, with 356 

the control group serving as the reference category. In the first step, we adjusted for sex and the 357 

first immune cell-type PC; in the second, we added the ACE total score as an additional 358 

predictor alongside the exposure group. We also produced overlapping density plots and within-359 
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individual Pearson correlations between the clocks to assess the consistency of the predictions 360 

(Supplemental Figure 2 & 3). To compare effects across different epigenetic clocks, we 361 

calculated the standard mean difference of the regression coefficients for single or double-362 

exposed group status vs. control contrast for models and plotted them together in a forest plot 363 

(see Figure 1). 364 
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Figure legends  

Figure 1. Forest plot comparing the effect of prenatal genocide exposure (vs. control) and 

epigenetic age acceleration across first and second generation epigenetic clocks 

 

Caption: Comparison of effect sizes (standardized mean difference in age acceleration) across 

epigenetic age estimators and exposure groups. Model 1 is adjusted for sex and cell type; 

Model two is adjusted for sex, cell type, and ACEs. 
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Tables 

Table 1. Descriptive Statistics 

  Double 

Exposed 

(N=30) 

Single 

Exposed 

(N=31) 

Control 

(N=30) 

Overall 

(N=91) 

Sex         

  Female 15 (50.0%) 16 (51.6%) 15 (50.0%) 46 (50.5%) 

  Male 15 (50.0%) 15 (48.4%) 15 (50.0%) 45 (49.5%) 

Education Level         

  primary level 0 (0%) 3 (9.7%) 0 (0%) 3 (3.3%) 

  secondary level 29 (96.7%) 20 (64.5%) 25 (83.3%) 74 (81.3%) 

  university level 1 (3.3%) 8 (25.8%) 5 (16.7%) 14 (15.4%) 

Socioeconomic Status         

 Poorest 6 (20.0%) 2 (6.5%) 0 (0%) 8 (8.8%) 

 Poor 17 (56.7%) 14 (45.2%) 4 (13.3%) 35 (38.5%) 

 Middle Class 7 (23.3%) 15 (48.4%) 26 (86.7%) 48 (52.7%) 

ACEs Total         

  Mean (SD) 7.20 (2.12) 5.74 (2.45) 3.87 (2.29) 5.60 (2.65) 
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  Median [Min, Max] 8.00 [4.00, 

11.0] 

6.00 [1.00, 

10.0] 

3.00 [1.00, 

10.0] 

5.00 [1.00, 

11.0] 

  

  

*Single exposed - maternal stress related to genocide; **Double-exposed - maternal stress 

related to genocide and rape; ***control - not directly exposed to genocide or rape; 

Socioeconomic categories Income**** - Rwandans are classified into four socio-economic 

categories (Ibyiciro by’Ubudehe) by the Rwandan government based on income/consumption 

and household assets: Category 1: poorest, Category 2: poor, Category 3: middle class and 

Category 4: wealthy. 

 

Table 2. Second Generation Age Acceleration Models by Group 

2.1. YingDamAge  Model 1 

  Estimate Standard Error t value Pr(>|t|)   

(Intercept) -4.685 1.475 -3.176 0.0021  ** 

Single Exposed 3.601 1.796 2.005 0.0481   * 

Double Exposed 6.375 1.811 3.519 0.0007 *** 

Male 2.743 1.471 1.865 0.0656   . 

PC1 0.289 0.072 4.037 0.0001 *** 

Signif. codes: 0 <= '***' < 0.001 < '**' < 0.01 < '*' < 0.05 

  

Residual standard error: 7.004 on 86 degrees of freedom 

Multiple R-squared: 0.2706, Adjusted R-squared: 0.2367 

F-statistic: 7.975 on 86 and 4 DF, p-value: 0.0000 
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2.2. YingDamAge Model 2 

  Estimate Standard Error t value Pr(>|t|)   

(Intercept) -4.716 1.966 -2.399 0.0186   * 

ACES Total 0.008 0.328 0.024 0.9807    

Single Exposed 3.586 1.909 1.879 0.0637   . 

Double Exposed 6.349 2.123 2.990 0.0036  ** 

Male 2.744 1.480 1.854 0.0672   . 

PC1 0.289 0.072 4.013 0.0001 *** 

Signif. codes: 0 <= '***' < 0.001 < '**' < 0.01 < '*' < 0.05 

  

Residual standard error: 7.045 on 85 degrees of freedom 

Multiple R-squared: 0.2706, Adjusted R-squared: 0.2277 

F-statistic: 6.306 on 85 and 5 DF, p-value: 0.0001 

2.3. YingAdaptAge Model 1 

  Estimate Standard Error t value Pr(>|t|)   

(Intercept) 6.042 1.512 3.995 0.0001 *** 

Single Exposed -6.482 1.841 -3.521 0.0007 *** 

Double Exposed -7.725 1.857 -4.159 0.0001 *** 

Male -2.602 1.508 -1.725 0.0881   . 

PC1 0.032 0.073 0.435 0.6650    

Signif. codes: 0 <= '***' < 0.001 < '**' < 0.01 < '*' < 0.05 

  

Residual standard error: 7.181 on 86 degrees of freedom 

Multiple R-squared: 0.2123, Adjusted R-squared: 0.1756 

F-statistic: 5.793 on 86 and 4 DF, p-value: 0.0004 
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2.4. YingAdaptAge Model 2 

  Estimate Standard Error t value Pr(>|t|)   

(Intercept) 4.018 1.988 2.021 0.0464   * 

ACES Total 0.515 0.332 1.552 0.1243    

Single Exposed -7.450 1.930 -3.861 0.0002 *** 

Double Exposed -9.436 2.147 -4.395 0.0000 *** 

Male -2.536 1.497 -1.694 0.0939   . 

PC1 0.035 0.073 0.482 0.6308    

Signif. codes: 0 <= '***' < 0.001 < '**' < 0.01 < '*' < 0.05 

  

Residual standard error: 7.123 on 85 degrees of freedom 

Multiple R-squared: 0.234, Adjusted R-squared: 0.1889 

F-statistic: 5.192 on 85 and 5 DF, p-value: 0.0003 

2.5. GrimAgeAccel Model 1 

  Estimate Standard Error t value Pr(>|t|)   

(Intercept) -0.933 0.558 -1.673 0.0979   . 

Single Exposed 0.313 0.679 0.461 0.6461    

Double Exposed 1.448 0.685 2.114 0.0374   * 

Male 0.706 0.556 1.269 0.2077    

PC1 0.150 0.027 5.561 0.0000 *** 

Signif. codes: 0 <= '***' < 0.001 < '**' < 0.01 < '*' < 0.05 

  

Residual standard error: 2.648 on 86 degrees of freedom 

Multiple R-squared: 0.2995, Adjusted R-squared: 0.2669 

F-statistic: 9.191 on 86 and 4 DF, p-value: 0.0000 
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2.6. GrimAgeAccel Model 2 

  Estimate Standard Error t value Pr(>|t|)   

(Intercept) -0.933 0.558 -1.673 0.0979   . 

Single Exposed 0.313 0.679 0.461 0.6461    

Double Exposed 1.448 0.685 2.114 0.0374   * 

Male 0.706 0.556 1.269 0.2077    

PC1 0.150 0.027 5.561 0.0000 *** 

Signif. codes: 0 <= '***' < 0.001 < '**' < 0.01 < '*' < 0.05 

  

Residual standard error: 2.648 on 86 degrees of freedom 

Multiple R-squared: 0.2995, Adjusted R-squared: 0.2669 

F-statistic: 9.191 on 86 and 4 DF, p-value: 0.0000 

2.7. DunedinPACE Model 1 

  Estimate Standard Error t value Pr(>|t|)   

(Intercept) 0.003 0.016 0.194 0.8463    

Single Exposed -0.020 0.020 -0.985 0.3275    

Double Exposed 0.048 0.020 2.369 0.0201   * 

Male -0.025 0.016 -1.511 0.1345    

PC1 0.003 0.001 4.326 0.0000 *** 

Signif. codes: 0 <= '***' < 0.001 < '**' < 0.01 < '*' < 0.05 

  

Residual standard error: 0.07778 on 86 degrees of freedom 

Multiple R-squared: 0.2545, Adjusted R-squared: 0.2199 

F-statistic: 7.341 on 86 and 4 DF, p-value: 0.0000 

2.8. DunedinPACE Model 2 
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  Estimate Standard Error t value Pr(>|t|)   

(Intercept) 0.001 0.022 0.045 0.9641    

ACES Total 0.001 0.004 0.154 0.8783    

Single Exposed -0.021 0.021 -0.976 0.3317    

Double Exposed 0.046 0.024 1.943 0.0554   . 

Male -0.025 0.016 -1.497 0.1380    

PC1 0.003 0.001 4.304 0.0000 *** 

Signif. codes: 0 <= '***' < 0.001 < '**' < 0.01 < '*' < 0.05 

  

Residual standard error: 0.07823 on 85 degrees of freedom 

Multiple R-squared: 0.2547, Adjusted R-squared: 0.2109 

F-statistic: 5.811 on 85 and 5 DF, p-value: 0.0001 
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