
Supplementary Materials - Estimating the trend
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surveillance indicators

Supplementary methods
Estimating prevalence from for the “Fraction Positive - Survey” in-
dicator

For the “Fraction Positive - Survey” indicator we want to estimate the symp-
tomatic prevalence of those surveyed, but not everyone with symptoms chose
to get tested. We therefore assume that the test positivity rate is equal among
all participants who report having cold symptoms and use a Bayesian model to
estimate the overall prevalence as follows:

pcovid = psympt ∗ ppos

Nsympt ∼ binomial(N, psympt)
Npos ∼ binomial(Ntest, ppos),

where N is the total number of participants, Nsympt the number with symp-
toms, Npos the number of symptomatic participants who took a test and Ntest

the number who tested positive. Using this setup we can estimate the overall
symptomatic prevalence pcovid with uncertainty.

Estimating incidence from Prevalence

Incidence, I(t) and prevalence, P (t) are related by:

P (t) =
∑

s

p(s)I(t − s)

where p(s) is the probability of testing positive for someone who was infected
at s = 0. We use a PCR-test profile as estimated from [1], which is an approxi-
mation for the symptometer data which includes both PCR and antigen tests.
To estimate the incidence, we then use an approximate Gaussian process model
with a Matern Kernel.

logit(I(t)) = i0 + i(t), i(t) ∼ GP (t)
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Similarly following [2], we estimate incidence from wastewater data. Here, the
observed amount of SARS-CoV-2 in the wastewater is a convolution of the inci-
dence and the time-profile of gastrointestinal viral load. We assume a standard
deviation of 20% of the mean value for the normalised SARS-CoV-2 concentra-
tion. We used a similar Gaussian process model as above. For both approaches
we use the implementation presented in [3].

Disaggregation of weekly to daily data

To disaggregate weekly data, we implement a similar model to the models above
where daily infections again are given by

logit(I(t)) = i0 + i(t), i(t) ∼ GP (t)

.

We then calculate weekly aggregated data Wi =
∑

t Ind(week = i)I(i) where
Ind(week = i) is an indicator function for the week. These weekly aggregated
incidences are then compared to the aggregated data, A

A ∼ poisson(W ).

Using the Stan language we can then get samples for I(t) which we then feed
into the regression model to ensure we incorporate the uncertainty from the
disaggregation.

Combining estimated growth rates

We combine the estimated growth rates from the different surveillance systems
using methods from the field of meta-analysis where we consider the mean, ri(t)
and the standard deviations σi(t) calculated from the estimated growth rates
from each indicator. We implement a random effects meta-analysis model with
a random walk for smoothing over time.

ri(t) ∼ normal(µi(t), σi)

µi(t) ∼ normal(r(t), 0.1)

r(t = 1) ∼ normal(0, 0.1)

r(t) ∼ normal(α + βr(t − 1), τ)

τ ∼ normal(0, 0.5)

α ∼ normal(0, 5)

β ∼ normal(0, 5)
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The usefulness of the combined estimate from all the indicators will depend on
the heterogeneity of the individual indicators. We estimate the I2 indicator for
the heterogeneity [4] using the following estimate:

I2(t) = τ2(t)
τ2(t) + s2(t)

where s2(t) is the geometric mean of the variances from the growth rates of the
individual indicators. All the models are implemented in the Stan probabilistic
programming language.

Estimating the Effective Reproduction Number from the Growth
Rate

From the growth rates one can estimate reproduction numbers [5] if we assume
a gamma distributed generation with shape, α and rate β.

R =
(

1 + r

β

)α

.

Following the results in [6] we update the parameters in the gamma distribution
by the dominating variant in Norway. For each variant (Wuhan, Alpha, Delta
and Omicron) we use a mean given by [6]. To be able to estimate the Reproduc-
tion Number we then also need the spread of the distribution, here characterised
by the coefficient of varition, cv = σ/µ . For the ancestral Wuhan variant, we
use a coefficient of variation of 1.2 [7], and then 0.73 for Alpha, 0.7 for Delta [8]
and 0.75 for Omicron [9]. We model the transition between different variants
with a logistic function matched to the data on Variants from ECDC [10]. The
transition is then given by:

f(t) = 1
1 + exp

(
t−d
w

) ,

where f is the fraction of infections with the new variant, d is the date when
the variant reached 50% and w is the width of the transition. d and w were
manually extracted from the data. The value of the mean or the coefficient of
variation Xi is then given by:

Xi(t) = fXn
i + (1 − f)Xp,

where Xn
i is the value for the new variant and Xp

i is the value for the old variant.

Relative incidence

From an estimated growth rate, r(t), we can also estimate an associated relative
incidence by

I(t) =
t∏

i=1
exp(r(i)).
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We sample from the estimates of r(t) to quantify the uncertainty in I(t)

Supplementary Results
To investigate the effect of changing the amount of smoothing when estimating
growth rates, we have estimated growth rates with different window lengths,
2l + 1, in the negative binomial regression model, In Figure 1 we show the
estimated growth rate for the number of reported cases with changing length of
the time-window. This clearly illustrates how a longer time window has lower
uncertainty and fewer temporal features. Increased smoothing also shrinks the
growth rates towards 0.

Figure 1: Estimated growth rates for the number of positive cases with varying
amount of smoothing controlled by the length of the time-window used, Norway
2020-2023.

Following the same procedures as in the main paper we show in Figure 2, with
a window length of 21 days, and Figure 3, with a window length of 31 days,
the correlation matrix between the growth rates of the different indicators when
we vary the amount of smoothing. Higher smoothing leads to a higher correla-
tion, likely due to two main effects. Since some of our indicators are smoothed
by default, for example due to being weekly indicators, it is possible that more
smoothing of daily indicators allows us to have more similar amounts of smooth-
ing. Secondly, since smoothing has a tendency to shrink estimates towards 0,
one can likely also get some spurious correlations by smoothing too much.
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Figure 2: Estimated correlation with 95% confidence intervals between the es-
timated growth rates of the different surveillance indicators for a smoothing
time-window of 21 days, Norway 2020-2023.

Figure 3: Estimated correlation with 95% confidence intervals between the esti-
mated growth rates of the different surveillance indicators for a soothing time-
window of 31 days, Norway 2020-2023.
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