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Supplementary Figure 1 | Genetic ancestry assignment using principal components analysis
(PCA). A-C) First 6 PCA biplots for UKB individuals in black with reference populations from the
1000 Genomes Project and HGDP on top colored by continental ancestry. D-F) Density of UKB
participant global PCs. G-I) Genetic ancestry assignments for UKB participants based on
reference panel meta-data labels. No reference data are included in these plots. A, D, and G)
PCA biplots for PCs 1-2; B, E, and H) PCs 3-4; C, F, and I) PCs 5-6. 3-letter continental
ancestry codes are as in Supplementary Table 1. 10
Supplementary Table 1 | Genetic reference panel data from the 1000 Genomes Project (1KG)
and Human Genome Diversity Project (HGDP). Continental ancestries are EUR=European,
CSA=Central/South Asian, AFR=African, AMR=Admixed American, EAS=East Asian,
MID=Middle Eastern, and OCE=Oceanian. Population abbreviations with three-letter codes are
the same as in the 1000 Genomes Project. 11
Supplementary Table 2 | Comparison of ancestry assignments based on random forests with 6
principal components and a range of probability thresholds. 12
Supplementary Table 3 | Comparison between ancestry assignments using a random forest
trained on 6 principal components (PCs) versus 20 PCs. Assignments based on 6 PCs are
shown in rows, while assignments based on 20 PCs are shown in columns. More individuals are
assigned to “Other” using the random forest based on 20 PCs. 12
Supplementary Table 4 | Counts of individuals by continental ancestry as inferred from the 1000
Genomes and Human Genome Diversity Panel genetic data. Oceanians were removed from
further analyses given the very small sample sizes. Those individuals whose ancestry groups
could not be assigned (i.e., “Other”) were also removed. The number of outliers removed
indicates the count remaining after pruning ancestry outliers according to PC coordinates.
3-letter continental ancestry codes are as in Supplementary Table 1. 12

Visualizing subcontinental ancestries 13
Supplementary Table 5 | Additional genetic reference panel data from the African Genome
Variation Project (AGVP) used for visualization of subcontinental PCA within African ancestry
assignments (AFR). 14
Supplementary Figure 2 | Subcontinental ancestry PCs in the AFR reference panel and UKB
participants assigned to AFR. UKB participants assigned to AFR are shown in grey, while
reference populations are on top and colored as in the map. A) Map of reference populations, B)
PCs 1-2, C) PCs 3-4, D) PCs 5-6. Left panels show PC values, right panels show UKB PC
densities. 15
Supplementary Figure 3 | Subcontinental ancestry PCs in the AMR reference panel and UKB
participants assigned to AMR. UKB participants assigned to AMR are shown in grey, while
reference populations are on top and colored as in the map. A) Map of reference populations, B)
PCs 1-2, C) PCs 3-4, D) PCs 5-6. Left panels show PC values, right panels show UKB PC
densities. 16
Supplementary Figure 4 | Subcontinental ancestry PCs in the CSA reference panel and UKB
participants assigned to CSA. UKB participants assigned to CSA are shown in grey, while
reference populations are on top and colored as in the map. A) Map of reference populations, B)
PCs 1-2, C) PCs 3-4, D) PCs 5-6. Left panels show PC values, right panels show UKB PC
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densities. 17
Supplementary Figure 5 | Subcontinental ancestry PCs in the EAS reference panel and UKB
participants assigned to EAS. UKB participants assigned to EAS are shown in grey, while
reference populations are on top and colored as in the map. A) Map of reference populations, B)
PCs 1-2, C) PCs 3-4, D) PCs 5-6. Left panels show PC values, right panels show UKB PC
densities. 18
Supplementary Figure 6 | Subcontinental ancestry PCs in the EUR reference panel and UKB
participants assigned to EUR. UKB participants assigned to EUR are shown in grey, while
reference populations are on top and colored as in the map. A) Map of reference populations, B)
PCs 1-2, C) PCs 3-4, D) PCs 5-6. Left panels show PC values, right panels show UKB PC
densities. 19
Supplementary Figure 7 | Subcontinental ancestry PCs in the MID reference panel and UKB
participants assigned to MID. UKB participants assigned to MID are shown in grey, while
reference populations are on top and colored as in the map. A) Map of reference populations, B)
PCs 1-2, C) PCs 3-4, D) PCs 5-6. Left panels show PC values, right panels show UKB PC
densities. 20

Pruning ancestry outliers 21
Supplementary Figure 8 | PCA in UKB participants assigned to AFR and corresponding centroid
distance across 3 PCs. Centroid distance distributions and PC biplots for the first 6 PCs are
shown before (top) and after (bottom) pruning outliers. Vertical line in the top left centroid
distance histogram shows the threshold chosen to remove outliers. 22
Supplementary Figure 9 | PCA in UKB participants assigned to AMR and corresponding
centroid distance across 3 PCs. Centroid distance distributions and PC biplots for the first 6 PCs
are shown before (top) and after (bottom) pruning outliers. Vertical line in the top left centroid
distance histogram shows the threshold chosen to remove outliers. 23
Supplementary Figure 10 | PCA in UKB participants assigned to CSA and corresponding
centroid distance across 3 PCs. Centroid distance distributions and PC biplots for the first 6 PCs
are shown before (top) and after (bottom) pruning outliers. Vertical line in the top left centroid
distance histogram shows the threshold chosen to remove outliers. 24
Supplementary Figure 11 | PCA in UKB participants assigned to EAS and corresponding
centroid distance across 3 PCs. Centroid distance distributions and PC biplots for the first 6 PCs
are shown before (top) and after (bottom) pruning outliers. Vertical line in the top left centroid
distance histogram shows the threshold chosen to remove outliers. 25
Supplementary Figure 12 | PCA in UKB participants assigned to EUR and corresponding
centroid distance across 5 PCs. Centroid distance distributions and PC biplots for the first 6 PCs
are shown before (top) and after (bottom) pruning outliers. Vertical line in the top left centroid
distance histogram shows the threshold chosen to remove outliers. 26
Supplementary Figure 13 | PCA in UKB participants assigned to MID and corresponding
centroid distance across 5 PCs. Centroid distance distributions and PC biplots for the first 6 PCs
are shown before (top) and after (bottom) pruning outliers. Vertical line in the top left centroid
distance histogram shows the threshold chosen to remove outliers. 27

Relationship between ancestry and self-reported metrics 27
Supplementary Table 6 | Comparison between inferred genetic ancestry (columns) and
self-reported ethnicity (rows). UKB code 21000 provided self-reported ethnic background.
Codings and meanings are defined by the UKB. 28
Supplementary Figure 14 | Principal components roughly correlate with self-reported ethnicity.
Principal components are as shown in Supplementary Fig. 1. 29
Supplementary Table 7 | Assigned population labels correlate with continental birthplaces.
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Columns show assigned population labels. Rows indicate continental birthplaces. 3-letter
continental ancestry codes are as in Supplementary Table 1. Cells shaded in green indicate the
maximum fraction per row and column, which was used to calculate marginal percentages. Most
shaded cells indicate the maximum for both rows and columns, but blue cells indicate which
values were used to calculate only row marginals and yellow cells indicate which value was
used to calculate only a column marginal when multiple cells in the row or column were shaded,
respectively. 29

Pre-GWAS quality control 30
Sample QC 30
Variant QC 30

Supplementary Table 8 | Number of variants per population. 30
Phenotype QC 30

Continuous and categorical traits 30
Supplementary Figure 15 | Phenotype curation using a custom version of PHESANT. The
flowchart summarizes filtering and transformation steps to parse the unprocessed phenotype
data. Figure adapted from Millard et al15. 31

ICD-10 codes 32
Phecodes 32
Prescriptions 32
Other phenotypes 33

Association analysis 34
Computational framework 34
Covariates 34
Comparison of meta-analysis to mega-analysis 35
Tractor GWAS analysis 35

QC of summary statistics 36
Low frequency variants in cases 36

Supplementary Figure 16 | Lambda by case allele count. The median lambda across all binary
traits by minimum allele count in cases is shown by population. 36

Variants with discrepant frequency compared to gnomAD 36
Supplementary Figure 17 | UKB and gnomAD frequencies. The frequencies in the AFR
population in UKB and gnomAD are highly correlated (a), but many variants are discordant,
especially at higher frequencies in UKB (b). These variants tend to fail quality filters in gnomAD.
A similar pattern is observed for all populations overlapping between UKB and gnomAD (AFR,
AMR, EAS, and EUR). 37
Supplementary Figure 18 | Ti/Tv ratio of discrepant variants. Variants that are discordant
between UKB and gnomAD have lower Ti/Tv ratios. Points are colored by population (a: AFR, b:
AMR, c: EAS, d: EUR) and sized proportional to the number of variants in the bin. Shaded
region corresponds to variants that are “well-calibrated” (frequency within 2-fold of gnomAD)
and thus retained for downstream analysis. 38

Variants missing from gnomAD 38
Supplementary Figure 19 | Variants removed by gnomAD filters. The number of variants that are
well-calibrated (within 2X frequency) are compared to those missing from gnomAD, found in
gnomAD but in a different population, or having a significantly different frequency from gnomAD.
These metrics are broken down by UKB frequency within EUR (a) and by population (b). 39
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LD matrices and scores 40
Supplementary Figure 20 | Pairwise comparisons of LD scores in UKB vs. gnomAD within each
genetic ancestry group. Hapmap 3 SNPs are shown for (a) AFR, (b) AMR, (c) EAS, (d) EUR
(compared to gnomAD NFE). Dashed line represents y=x. 40

Heritability analysis 41
Supplementary Figure 21 | (a-b) Correlation between UKB round 2 and Pan-UKB EUR LDSC
(a) and S-LDSC (b). (c) The number of phenotypes by genetic ancestry group, shaded by
significant heritability z scores (S-LDSC h2 z ≥ 4). 41
Supplementary Figure 22 | Characterization of RHEmc run-to-run variability. The first five
phenotypes in the manifest are shown. Bars indicate empirical standard deviations (standard
deviation of heritability estimates from 50 identical runs of heritability computation) normalized
by the standard error of the heritability estimator for each phenotype. Missing points indicate
failed convergence. Colors correspond to number of random vectors, indicating that variability
goes down as the number of random vectors increases. We chose 50 random vectors for
downstream analysis. 43
Supplementary Table 9 | 66 pilot phenotypes chosen for heritability analysis using multiple
methods. In the phenotype manifest, phenocode 20002’s description is “Non-cancer illness
code, self-reported” and here, the coding description is shown instead. The “note” column refers
to the phenotype coding from UK Biobank, except in the cases of “irnt” which denotes that the
phenotype was inverse rank normal transformed (typically noted in the “modifier” column of the
manifest and release files). 44
Supplementary Figure 23 | Correlation between RHE-mc heritability point estimates (liability
scale) and point estimates made in a previous round of heritability analysis restricted to the
White British subset of UKB (Round 2) for the same pilot phenotypes. Color represents trait
type, dotted line is y=x, error bars are +/- 1se. 45
Supplementary Figure 24 | Cross-method comparison of selected continuous phenotypes. Error
bars represent +/- 1se. Only ancestry-trait pairs passing QC were included in this figure. RHEmc
25 bin (and 25 bin, 50 random vectors [RV]) was not run for EUR due to computational
limitations. 46
Supplementary Figure 25 | Overview of heritability z scores across trait types and populations.
(a) The number of traits passing in each ancestry as a function of h2 z score cutoff (S-LDSC for
EUR, RHEmc [25 bins] for all other ancestries). (b) The number of traits passing in 1, 2, 3, 4, 5,
or all 6 ancestries (colors) as a function of the z score cutoff. The ancestry-trait pairs used in this
plot are pre sumstats QC. S-LDSC -derived z scores reported for EUR, RHEmc (25 bins)
reported for all other phenotype-ancestry pairs. 47
Supplementary Figure 26 | Example of a QC-fail GWAS of categorical phenotype 3446 in the
AMR genetic ancestry group, “type of tobacco currently smoked”, for category “Manufactured
cigarettes” shown as a Manhattan plot (left) and a QQ plot (right). 47
Supplementary Figure 27 | Empirical summary statistics quality control approach. (a) Flowchart
of QC approach with each filter used (left) as well as the number of phenotype-ancestry pairs
passing each filter. Note that filters are applied sequentially in the listed order. The “heritability
within bounds for all ancestries” and “lambda GC > 0.9 for all ancestries” fail for all ancestries if
a single ancestry fails the respective filter. “S-LDSC ratio < 0.3 or ratio z score < 4 in all of EUR,
CSA, or AFR” fail for all ancestry if any of EUR, CSA, AFR fail, but fail for the individual
ancestry-trait pair only if the filter fails for a different ancestry group. (b-c) The distribution of
lambda GC (b) and S-LDSC ratio (c) values by genetic ancestry group. Phenotypes that fail the
S-LDSC ratio (referred to as “Controlled S-LDSC ratio” in Figure 2c) are highlighted in red. 49
Supplementary Figure 28 | Number of ancestry-trait pairs per trait type passing the z score >= 4
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filter as a function of (1) EUR S-LDSC z >= 4, and (2) the total number of ancestry groups
passing this filter, shown cumulatively. A greater proportion of the bar colored dark indicates a
greater proportion of ancestry-trait pairs passing z >= 4 in a given number of ancestries also
passed z >= 4 in EUR. 50
Supplementary Figure 29 | Number of phenotypes passing final quality control steps by
combination of genetic ancestry groups in which the phenotype passes. 51

Maximal independent set 52
Supplementary Figure 30 | Distribution of pairwise phenotype correlations across all individuals
for filtered high-quality phenotypes, for all correlations (a), and zoomed to a correlation
threshold of r2 = 0.1 (b), which was selected to prune for independent phenotypes. 52

Locus definition within and across populations 53
Meta-analysis 54
Polygenicity 55

Supplementary Figure 31 | Polygenicity estimates across trait types. A histogram of polygenicity
estimates (the proportion of SNPs with nonzero effects) using SBayesS for 392 phenotypes in
EUR. 55

Summary statistics analysis 56
Consistency in summary statistics 56

Supplementary Figure 32 | Consistency of effects across ancestry groups. (a) As in Figure 3c,
P-values from meta-analysis versus EUR GWAS alone, colored by p-value of heterogeneity
among genetic ancestry groups. (b) For associations that are significant in more than one
ancestry group, the majority of betas are positively correlated. 56

Known versus novel association comparisons 57
Supplementary Table 10 | EFO annotation summary. The number of traits mapping to EFO
terms and categories is shown by trait type. The final column indicates traits that map to multiple
categories. 58

Gene list analysis 59
Supplementary Figure 33 | Percentage of gene lists with at least one significant association. As
in Fig. 4b, but all discovered associations rather than restricted to novel associations. 59

Ancestry-enriched associations 60
Supplementary Figure 34 | Forest plot showing association beta for each phenotype for
rs1050828 across all available population groups. Error bars correspond to 95% confidence
intervals. Abbreviations are defined in Supplementary Table 11. 60
Supplementary Table 11 | Top 5 phenotypes associated with SNP rs1050828 at gene G6PD. *
indicates associations passing GWAS significance threshold 5 x 10-8. This variant is low
frequency in CSA and EAS and thus, GWAS was not run in these groups. 61

Fine-mapping 62
Comparison between Tractor and SAIGE results 62
Supplementary Datasets 64

Supplementary Dataset 1 | Assigned genetic ancestry labels correlate with the country of birth
or known migration events. The number of individuals by genetic ancestry and country of birth
(non-UK) are shown. 64
Supplementary Dataset 2 | Summary of all phenotypes in Pan-UKB. Phenotypes are keyed by
five keys: trait type, phenocode, pheno_sex, coding, and modifier. Where available, description
and coding_description are provided from the UK Biobank showcase. For each ancestry group,
we include the number of cases, heritability estimates (observed, liability, standard errors, and z
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scores), whether the phenotype passes QC, and lambda GC. We provide QC flags, whether the
phenotype is in the maximal independent set, and filename information, including a download
link for the phenotype-specific file and tabix index on Amazon S3 and md5 checksums for each.
64
Supplementary Dataset 3 | Summary of all heritability metrics. Phenotypes are keyed as in
Supplementary Dataset 2. For each ancestry group, we provide heritability estimates (observed,
liability, standard errors, and z scores) for LDSC and S-LDSC, and for ancestry groups other
than EUR, also RHE-mc, as well as details of QC flags. 64
Supplementary Dataset 4 | Pairwise genetic correlations. Genetic correlations (rg) from S-LDSC
are computed for pairs of 528 phenotypes (phenotype_code_1 and phenotype_code_2), using
summary statistics from EUR. 64
Supplementary Dataset 5 | Pairwise phenotypic correlations. Covariates were regressed out
from each of the 452 high-quality phenotypes, and pairwise correlations (entry) were computed
for each pair of phenotypes (residuals), i (with phenotype identifier in i_data) and j (identifier in
j_data). The correlation for all phenotypes is available at
gs://ukb-diverse-pops-public/misc/pairwise/pairwise_correlations_regressed.txt.bgz 64
Supplementary Dataset 6 | Polygenicity estimates. Polygenicity estimates (mean and standard
deviation) from SBayesS for 451 phenotypes, along with convergence criteria
(R_GelmanRubin). 64
Supplementary Dataset 7 | Summary statistics for key loci across GWAS methods. SAIGE AFR
and SAIGE EUR refer to the SAIGE analyses performed on the African (AFR) and European
(EUR) genetically inferred ancestry groups of UKB. Tractor AFR and Tractor EUR indicate the
Tractor GWAS conducted on the African or European haplotype tracts, respectively, within the
AFR group. Variants are filtered as described above in Tractor GWAS analysis. 64
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Ancestry analysis and relatedness inference

Controlling for population structure is a critical step for robustness in GWAS, specifically to avoid

identifying spurious false associations with traits and diseases1. When associating genetic variants with a trait

of interest, population structure is typically included as a covariate using principal components (PCs) that

quantify genetic ancestry. “Genetic ancestry” is a statistical construct based on the genetic variants that an

individual inherited from their ancestors. An individual’s self-identified race or ethnicity may at times differ from

the corresponding genetic ancestry assigned by statistical algorithms. Treating ancestry, ethnicity, and race as

equivalent concepts is incorrect. In all our analyses, we exclusively refer to genetic ancestry. Please refer to

the FAQ at the end of this document for an in-depth discussion of these concepts as they pertain to our work.

To minimize false positive rates in GWAS analyses that arise due to confounding with population

structure (see Association Analysis below), we used a three-stage approach to analyze genetic ancestry.

Specifically, we: 1) assigned ancestry labels for within-group analysis using reference panel meta-data, 2)

visualized population structure within subcontinental ancestries alongside reference panel data, and 3) pruned

ancestry outliers within assigned population labels. This approach was intended to ensure that across a

breadth of phenotypes, GWAS were as inclusive as possible across ancestry groups while balancing the

removal of ancestry outliers so that GWAS summary statistics results were not inflated by population

stratification introduced by these outliers.

Initial ancestry assignment

For the initial step of assigning ancestry labels to UKB participants, we first combined and harmonized

reference panel data from phase 3 of the 1000 Genomes Project2 with Human Genome Diversity Project

(HGDP) samples genotyped on the Illumina 650k array and lifted over to hg193. Briefly, we combined these

reference datasets into continental ancestries according to their corresponding meta-data as shown in

Supplementary Table 1. We filtered to keep SNPs with MAF > 0.5% and missingness < 5% using PLINK 4,

resulting in 639,590 variants. Within continental ancestries, we then removed reference panel individuals

determined to be 2nd degree relatives or closer using KING 2.05, resulting in 3,295 individuals.
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We then intersected these reference panel data with UKB genotyped sites on both UK Biobank Axiom

and UK BiLEVE Axiom arrays6, resulting in a set of 64,233 SNPs. We ran PCA on unrelated individuals from

the 1000 Genomes Project and HGDP reference data as defined above. To partition individuals in the UKB into

more ancestrally homogeneous groups roughly corresponding to continental ancestry, we used the PC

loadings from the reference dataset to project UKB individuals into the same PC space. We trained a random

forest classifier using the sklearn package implemented in a custom python script using harmonized

continental ancestry meta-data labels from the reference HGDP and 1000 Genomes Project training data.

Because we have a multi-stage ancestry assignment approach, our initial assignments were intended to be

permissive, specifically with: a) how strict of a random forest probability cutoff to use, and b) the number of PCs

to use in the random forest training model. We first used a random forest with 6 PCs to distinguish the 7 project

labels harmonized in Supplementary Table 1. We compared ancestry assignments with p > 0.5, p > 0.6, p >

0.7, p > 0.8, and p > 0.9, which showed the broadly expected trends of increasing numbers of individuals

assigned to “Other” (Supplementary Table 2). Given our subsequent filtering steps based on ancestry outliers,

we chose to be permissive with this initial filter and ultimately used the random forest p > 0.5 model. We next

compared ancestry assignments using random forests based on 6 versus 20 PCs (Supplementary Table 3).

Results were overall highly concordant with the primary difference being that more individuals assigned the

EUR label with the 6 PC model were assigned “Other” with the 20 PCs model. We therefore used the model

based on the first 6 PCs. If individuals were not assigned with p > 0.5 using the 6 PC random forest model,

they were dropped from subsequent analysis. PCs and classifications are shown in Supplementary Fig. 1.

Using these assignments, we next determined relatedness within each population. Specifically, we ran

PC-Relate implemented in Hail with k=10 and min_individual_maf=0.05. To get the maximal set of unrelated

individuals, we then ran hl.maximal_independent_set(). Counts of individuals through stages of quality control

by population including stages that are described in Pruning ancestry outliers are shown in

Supplementary Table 4.
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Supplementary Figure 1 | Genetic ancestry assignment using principal components analysis (PCA).
A-C) First 6 PCA biplots for UKB individuals in black with reference populations from the 1000 Genomes
Project and HGDP on top colored by continental ancestry. D-F) Density of UKB participant global PCs. G-I)
Genetic ancestry assignments for UKB participants based on reference panel meta-data labels. No reference
data are included in these plots. A, D, and G) PCA biplots for PCs 1-2; B, E, and H) PCs 3-4; C, F, and I) PCs
5-6. 3-letter continental ancestry codes are as in Supplementary Table 1.
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Supplementary Table 1 | Genetic reference panel data from the 1000 Genomes Project (1KG) and
Human Genome Diversity Project (HGDP). Continental ancestries are EUR=European, CSA=Central/South
Asian, AFR=African, AMR=Admixed American, EAS=East Asian, MID=Middle Eastern, and OCE=Oceanian.
Population abbreviations with three-letter codes are the same as in the 1000 Genomes Project.

Project
Cont.
ancestry Population N Project

Cont.
ancestry Population N Project

Cont.
ancestry Population N

1KG AFR ACB 96 HGDP CSA Hazara 24 1KG EUR IBS 107

1KG AFR ASW 61 HGDP CSA Kalash 25 1KG EUR TSI 107

1KG AFR ESN 99 HGDP CSA Makrani 25 HGDP EUR Adygei 17

1KG AFR GWD 113 HGDP CSA Pathan 23 HGDP EUR Basque 24

1KG AFR LWK 99 HGDP CSA Sindhi 25 HGDP EUR French 29

1KG AFR MSL 85 1KG EAS CDX 93 HGDP EUR Italian 13

1KG AFR YRI 108 1KG EAS CHB 103 HGDP EUR Orcadian 16

HGDP AFR BantuKenya 12 1KG EAS CHS 105 HGDP EUR Russian 25

HGDP AFR BantuSAfrica 8 1KG EAS JPT 104 HGDP EUR Sardanian 28

HGDP AFR BiakaPygmy 32 1KG EAS KHV 99 HGDP EUR Tuscan 8

HGDP AFR Mandenka 24 HGDP EAS Cambodian 11 HGDP MID Bedouin 48

HGDP AFR MbutiPygmy 15 HGDP EAS Dai 10 HGDP MID Druze 47

HGDP AFR San 6 HGDP EAS Daur 9 HGDP MID Mozabite 30

HGDP AFR Yoruba 24 HGDP EAS Han 44 HGDP MID Palestinian 51

1KG AMR CLM 94 HGDP EAS Hezhen 9 HGDP OCE Melanesian 19

1KG AMR MXL 64 HGDP EAS Japanese 29 HGDP OCE Papuan 17

1KG AMR PEL 85 HGDP EAS Lahu 10

1KG AMR PUR 104 HGDP EAS Miaozu 10

HGDP AMR Colombian 13 HGDP EAS Mongola 10

HGDP AMR Karitiana 24 HGDP EAS Naxi 9

HGDP AMR Maya 25 HGDP EAS Oroqen 10

HGDP AMR Pima 25 HGDP EAS She 10

HGDP AMR Surui 21 HGDP EAS Tu 10

1KG CSA BEB 86 HGDP EAS Tujia 10

1KG CSA GIH 103 HGDP EAS Uygur 10

1KG CSA ITU 102 HGDP EAS Xibo 9

1KG CSA PJL 96 HGDP EAS Yakut 25

1KG CSA STU 102 HGDP EAS Yizu 10

HGDP CSA Balochi 25 1KG EUR CEU 99

HGDP CSA Brahui 25 1KG EUR FIN 99

HGDP CSA Burusho 25 1KG EUR GBR 91
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Supplementary Table 2 | Comparison of ancestry assignments based on random forests with 6
principal components and a range of probability thresholds.

Count

Super
population RF p>0.9 RF p>0.8 RF p>0.7 RF p>0.6 RF p>0.5

EUR 443498 452647 455444 458004 459874

CSA 10759 10950 11013 11081 11124

AFR 8892 9072 9129 9191 9226

AMR 1096 1123 1133 1141 1152

EAS 2799 2849 2879 2905 2918

MID 1608 1639 1651 1658 1667

OCE 2 2 2 2 2

Other (< prob) 19723 10095 7126 4395 2414

TOTAL 488377 488377 488377 488377 488377

Supplementary Table 3 | Comparison between ancestry assignments using a random forest trained on
6 principal components (PCs) versus 20 PCs. Assignments based on 6 PCs are shown in rows, while
assignments based on 20 PCs are shown in columns. More individuals are assigned to “Other” using the
random forest based on 20 PCs.

AFR AMR CSA EAS EUR MID OCE Other

AFR 9045 101 0 0 24 0 0 56

AMR 5 916 0 0 221 0 0 10

CSA 25 24 10794 17 203 6 0 55

EAS 3 31 26 2745 89 1 0 23

EUR 2 29 233 1 457006 189 0 2414

MID 132 136 4 0 139 1250 0 6

OCE 0 0 0 0 0 0 2 0

Other 11 1 7 3 456 4 0 1932

Supplementary Table 4 | Counts of individuals by continental ancestry as inferred from the 1000
Genomes and Human Genome Diversity Panel genetic data. Oceanians were removed from further
analyses given the very small sample sizes. Those individuals whose ancestry groups could not be assigned
(i.e., “Other”) were also removed. The number of outliers removed indicates the count remaining after pruning
ancestry outliers according to PC coordinates. 3-letter continental ancestry codes are as in Supplementary
Table 1.

Continent: AFR AMR CSA EAS EUR MID OCE Other
Count 9,226 1,152 11,124 2,918 459,874 1,667 2 2,414
Outliers removed (total) 6,806 998 9,109 2,783 426,936 1,624 N/A N/A
Outliers removed (unrelated) 6,259 991 8,286 2,701 362,558 1,568 N/A N/A
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Visualizing subcontinental ancestries

In the second step of our ancestry analyses outlined above, our goal was to visualize population

structure at the subcontinental level. We ran PCA on the HGDP and 1000 Genomes Project reference panel

genotypes within each meta-data label group, including AFR, AMR, CSA, EAS, EUR, and MID, then projected

the UKB participants assigned to the corresponding ancestry group onto the same PC space

(Supplementary Fig. 2-8). Because of the high amount of genetic diversity in African ancestry populations and

our additional access to genetic data from the African Genome Variation Project genotyped on the Illumina

Omni2.5 array7, we merged these data with the 1000 Genomes Project and HGDP data for finer-scale analysis

of individuals assigned to AFR specifically. We used this supplemented reference panel for PCA

(Supplementary Table 5), then projected UKB participants assigned to AFR into the same PC space

(Supplementary Fig. 2).

As shown in Supplementary Fig. 2 and described more fully previously8,9, most of the UKB participants

assigned to AFR cluster most closely with West African reference panel populations and/or are along a cline on

PC1 that corresponds with West African and European admixture. Based on ancestry proportions in the

admixed ACB population in the 1000 Genomes Project, a sizable fraction of individuals likely have first

generation admixture between parents from West African and European populations. A much smaller number

of UKB individuals assigned to AFR have ancestry clustering with East and southern African reference

populations, as described in more detail in Majara et al8. The relatively few UKB individuals assigned to AMR

have ancestry spanning the full set of AMR individuals in the reference panel with the exception of the Pima,

consistent with variable recent admixture proportions found in Hispanic/Latino populations

(Supplementary Fig. 3). The UKB individuals assigned to CSA have ancestry spanning a range of individuals

particularly from India, Pakistan, and to a lesser extent Bangladesh in the reference panel

(Supplementary Fig. 4), with few to no individuals clustering with the Kalash, Makrani, Balochi, Pathan, or ITU

reference populations. The UKB individuals assigned to EAS have variable ancestries with most clustering with

Chinese and Japanese reference populations, but a sizable number that do not cluster closely with any
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populations in the reference panel (Supplementary Fig. 5). The UKB individuals assigned to EUR span the

full breadth of diversity in the reference panel, with the majority clustering with the GBR and CEU populations

in the reference panel (Supplementary Fig. 6). The MID reference panel is sparse, but most UKB individuals

assigned to MID cluster most closely with the Palestinian or along a cline towards the Mozabite

(Supplementary Fig. 7). All of these subcontinental ancestry trends are in line with expectations from

self-reported ethnicity and birth record data described more fully below and shown in Supplementary Table 6,

Supplementary Dataset 1, and Supplementary Fig. 14.

Supplementary Table 5 | Additional genetic reference panel data from the African Genome Variation
Project (AGVP) used for visualization of subcontinental PCA within African ancestry assignments
(AFR).

Population N Population N

Baganda 97 Jola 79

Banyarwanda 95 Kalenjin 100

Barundi 91 Kikuyu 99

Ethiopia 107 Mandinka 87

Fula 74 Sotho 86

Ga-Adangbe 100 Wolof 78

Igbo 99 Zulu 100
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Supplementary Figure 2 | Subcontinental ancestry PCs in the AFR reference panel and UKB
participants assigned to AFR. UKB participants assigned to AFR are shown in grey, while reference
populations are on top and colored as in the map. A) Map of reference populations, B) PCs 1-2, C) PCs 3-4, D)
PCs 5-6. Left panels show PC values, right panels show UKB PC densities.
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Supplementary Figure 3 | Subcontinental ancestry PCs in the AMR reference panel and UKB
participants assigned to AMR. UKB participants assigned to AMR are shown in grey, while reference
populations are on top and colored as in the map. A) Map of reference populations, B) PCs 1-2, C) PCs 3-4, D)
PCs 5-6. Left panels show PC values, right panels show UKB PC densities.

16



Supplementary Figure 4 | Subcontinental ancestry PCs in the CSA reference panel and UKB
participants assigned to CSA. UKB participants assigned to CSA are shown in grey, while reference
populations are on top and colored as in the map. A) Map of reference populations, B) PCs 1-2, C) PCs 3-4, D)
PCs 5-6. Left panels show PC values, right panels show UKB PC densities.
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Supplementary Figure 5 | Subcontinental ancestry PCs in the EAS reference panel and UKB
participants assigned to EAS. UKB participants assigned to EAS are shown in grey, while reference
populations are on top and colored as in the map. A) Map of reference populations, B) PCs 1-2, C) PCs 3-4, D)
PCs 5-6. Left panels show PC values, right panels show UKB PC densities.
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Supplementary Figure 6 | Subcontinental ancestry PCs in the EUR reference panel and UKB
participants assigned to EUR. UKB participants assigned to EUR are shown in grey, while reference
populations are on top and colored as in the map. A) Map of reference populations, B) PCs 1-2, C) PCs 3-4, D)
PCs 5-6. Left panels show PC values, right panels show UKB PC densities.
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Supplementary Figure 7 | Subcontinental ancestry PCs in the MID reference panel and UKB
participants assigned to MID. UKB participants assigned to MID are shown in grey, while reference
populations are on top and colored as in the map. A) Map of reference populations, B) PCs 1-2, C) PCs 3-4, D)
PCs 5-6. Left panels show PC values, right panels show UKB PC densities.

20



Pruning ancestry outliers

To further refine ancestry classifications, in our third stage of ancestry analyses outlined above, our

goal was to prune ancestry outliers within assigned labels based on subcontinental structure. We started by

rerunning PCA among UKB individuals within each assigned population label (i.e., excluding reference panel

data) using individuals determined to be unrelated by PC-Relate (minimum kinship of 0.05). We then projected

related individuals into the same PC space for use as covariates in generalized linear mixed models

implemented in SAIGE and described in Association analysis. We calculated the total distance from population

centroids across 10 PCs. Using the PC scores, we computed centroid distances across 3-5 centroids spanning

these PCs depending on the degree of heterogeneity within each continental ancestry as follows:

𝑑 =  
𝑖=1

𝑛

∑
(𝑋

𝑖
−𝑋

𝑖
)2

σ
𝑋,𝑖
2

Where is the total centroid distance summed over total dimensions of an ellipse (i.e., PCs), is a𝑑 𝑛 𝑋
𝑖

vector of PCs, is the mean PC score, and is the variance of the PC scores for the ith PC. We identified𝑋
𝑖

σ
𝑋,𝑖
2

ancestry outliers by plotting histograms of centroid distances and removing individuals who had outlying

distances at the high end of the distribution (Supplementary Fig. 8-13).
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Supplementary Figure 8 | PCA in UKB participants assigned to AFR and corresponding centroid
distance across 3 PCs. Centroid distance distributions and PC biplots for the first 6 PCs are shown before
(top) and after (bottom) pruning outliers. Vertical line in the top left centroid distance histogram shows the
threshold chosen to remove outliers.
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Supplementary Figure 9 | PCA in UKB participants assigned to AMR and corresponding centroid
distance across 3 PCs. Centroid distance distributions and PC biplots for the first 6 PCs are shown before
(top) and after (bottom) pruning outliers. Vertical line in the top left centroid distance histogram shows the
threshold chosen to remove outliers.
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Supplementary Figure 10 | PCA in UKB participants assigned to CSA and corresponding centroid
distance across 3 PCs. Centroid distance distributions and PC biplots for the first 6 PCs are shown before
(top) and after (bottom) pruning outliers. Vertical line in the top left centroid distance histogram shows the
threshold chosen to remove outliers.
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Supplementary Figure 11 | PCA in UKB participants assigned to EAS and corresponding centroid
distance across 3 PCs. Centroid distance distributions and PC biplots for the first 6 PCs are shown before
(top) and after (bottom) pruning outliers. Vertical line in the top left centroid distance histogram shows the
threshold chosen to remove outliers.
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Supplementary Figure 12 | PCA in UKB participants assigned to EUR and corresponding centroid
distance across 5 PCs. Centroid distance distributions and PC biplots for the first 6 PCs are shown before
(top) and after (bottom) pruning outliers. Vertical line in the top left centroid distance histogram shows the
threshold chosen to remove outliers.
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Supplementary Figure 13 | PCA in UKB participants assigned to MID and corresponding centroid
distance across 5 PCs. Centroid distance distributions and PC biplots for the first 6 PCs are shown before
(top) and after (bottom) pruning outliers. Vertical line in the top left centroid distance histogram shows the
threshold chosen to remove outliers.

Relationship between ancestry and self-reported metrics

To explore the relationships between genetic ancestry labels inferred from population genetic reference

panels, self-reported ethnicity (UKB code 21000 “Ethnic background”), and geographic birthplace data for

those born outside the UK (UKB code 20115 “Country of Birth (non-UK origin)”), we report the overlap between

our ancestry assignments and self-reported ethnicity data (Supplementary Table 6), continent

(Supplementary Table 7) and country of birth (Supplementary Dataset 1). Most patterns are expected. For

example, for ethnicity, EUR primarily report British, Irish, or Any other white background; CSA primarily report

Indian, Pakistani, or Any other Asian background; AFR primarily report African or Caribbean; EAS primarily

report Chinese; and AMR and MID primarily report Other ethnic group. Those who prefer not to self-report their

ethnic group are depleted for EUR and enriched in CSA and AFR groups. While we have compared genetic
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ancestry and ethnicity data which show expected trends, these are notably distinct concepts10,11, with the

genetic ancestry labels we have used for GWAS dividing up the ancestry continuum.

Genetic ancestry labels for those born outside of the UK often align with continental birthplaces

(Supplementary Table 7), especially for EUR or those born in Europe. However, non-EUR groups have

smaller sample sizes and are more dispersed, reflective of diversity in birthplaces for example due to forced

migration. For example, over 90% of UKB participants assigned to AFR that have birthplaces outside of the UK

are from Africa, with most of the remaining participants from North and South America. Genetic ancestry

groups often correspond with the country of birth (Supplementary Dataset 1) or in some cases with known

mass migration events. For example, the high rates of CSA who immigrated from Uganda likely reflects the

expulsion of minorities of Asian descent from Uganda in the 1970’s, many of whom were UK citizens and

emigrated to the UK12.

Supplementary Table 6 | Comparison between inferred genetic ancestry (columns) and self-reported
ethnicity (rows). UKB code 21000 provided self-reported ethnic background. Codings and meanings are
defined by the UKB.

Coding Meaning AFR AMR CSA EAS EUR MID OCE Other

-3 Prefer not to answer 167 17 136 36 1,194 32 0 1

-1 Do not know 13 16 36 9 107 22 0 1

1 White 1 4 1 1 534 2 0 3

1001 British 25 251 201 62 428,254 152 0 2,157

1002 Irish 0 1 4 0 12,694 1 0 59

1003 Any other white background 1 284 69 13 15,057 323 0 75

2 Mixed 11 8 7 3 11 6 0 0

2001 White and Black Caribbean 449 43 18 2 22 59 0 4

2002 White and Black African 277 15 15 2 21 71 0 1

2003 White and Asian 1 4 498 105 182 7 0 5

2004 Any other mixed background 122 124 173 133 361 79 0 4

3 Asian or Asian British 0 0 35 3 4 0 0 0

3001 Indian 0 0 5,684 0 13 0 0 19

3002 Pakistani 0 0 1,736 0 3 0 0 9

3003 Bangladeshi 0 0 221 0 0 0 0 0

3004 Any other Asian background 1 0 1,213 359 106 56 1 11

4 Black or Black British 24 0 0 0 2 0 0 0

4001 Caribbean 4,175 12 87 3 0 4 0 18
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4002 African 2,989 0 12 2 1 187 0 14

4003 Any other Black background 104 2 8 0 1 2 0 1

5 Chinese 0 0 2 1,487 4 1 0 10

6 Other ethnic group 812 357 842 657 1,023 644 1 20

Supplementary Figure 14 | Principal components roughly correlate with self-reported ethnicity. Principal
components are as shown in Supplementary Fig. 1.

Supplementary Table 7 | Assigned population labels correlate with continental birthplaces. Columns
show assigned population labels. Rows indicate continental birthplaces. 3-letter continental ancestry codes are
as in Supplementary Table 1. Cells shaded in green indicate the maximum fraction per row and column,
which was used to calculate marginal percentages. Most shaded cells indicate the maximum for both rows and
columns, but blue cells indicate which values were used to calculate only row marginals and yellow cells
indicate which value was used to calculate only a column marginal when multiple cells in the row or column
were shaded, respectively.

AFR AMR CSA EAS EUR MID OCE oth
Percent aligned
with majority

Africa 5646 39 2626 100 3105 679 0 51 46.10%
Asia 17 3 6414 2339 2246 341 1 60 56.16%
Europe 42 25 37 24 9493 178 0 42 96.46%
North_America 328 118 7 16 2131 7 0 14 81.30%
Oceania 1 3 29 17 1595 5 1 12 95.91%
South_America 186 623 102 17 378 16 0 7 46.88%
Percent aligned
with majority 90.77% 76.82% 69.60% 93.08% 50.10% 55.38% 50.00% 27.42%
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Pre-GWAS quality control
Sample QC

We performed an initial sample QC using a sample exclusion criteria on UKB genotype data similar to

previous approaches, including Bycrof et al6 and a previous multi-phenotype GWAS from the Neale lab

(referred to as “Round 2”). Specifically, we excluded individuals previously identified to have high autosomal

genotype missingness (> 2%), outlier heterozygosity and missingness rates after adjusting for population

structure, discordance between self-reported and genetically-inferred sex, putative sex chromosome

aneuploidies, or excessive genetic relatedness (>200 estimated 3rd degree or closer relatives).

Variant QC

To define a set of variants for association analysis, we used imputed variants from UKB (97,059,328

variants from imputation version 3). We retained only variants with information scores > 0.8, resulting in

29,865,259 variants on the autosomes and X chromosome. For each population, we only considered variants

with an allele count at least 20, as defined by the sum of the dosages; this resulted in a variable number of

variants per population (Supplementary Table 8), spanning a union set of 28,987,534 variants. We performed

further variant QC after associating genotypes to phenotypes (see QC of summary statistics, below).

Supplementary Table 8 | Number of variants per population.

Population Number of variants

AFR 21,964,524
AMR 11,624,137
CSA 15,969,799
EAS 10,238,883
EUR 23,861,814
MID 13,974,659
Total 28,987,534

Phenotype QC

Continuous and categorical traits

Phenotypes were processed using a custom version of PHESANT

(https://github.com/astheeggeggs/PHESANT), a phenotype curation pipeline, as previously described13,14 and
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summarized in Supplementary Fig. 15. We manually curated a collection of phenotypes for analysis, which

were then processed through this pipeline which re-codes phenotypes and applies inherent orderings of ordinal

categorical variables as specified in the data-coding file

https://github.com/astheeggeggs/PHESANT/blob/master/variable-info/data-coding-ordinal-info-nov2019-update

.txt. We ran the modified version of PHESANT using a 200Gb RAM virtual machine on the Google Cloud

Platform. Phenotypes were curated jointly to ensure any recoding in the QC pipeline was applied consistently

across ancestry groups. For continuous phenotypes with repeated measures, we average across measures

applied to each sample. For both-sex and sex-specific analyses, inverse rank normalize transformation (IRNT)

was applied across ancestry groups. Any sex-specific phenotypes present in the both-sex phenotype dataset

were removed. A comparison of heritability estimates for some biomarker phenotypes from raw versus

inverse-rank normal transformed values yielded higher heritability estimates for IRNT, so we opted to perform

IRNT for all quantitative traits.

Supplementary Figure 15 | Phenotype curation using a custom version of PHESANT. The flowchart
summarizes filtering and transformation steps to parse the unprocessed phenotype data. Figure adapted from
Millard et al15.
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ICD-10 codes

ICD-10 codes were parsed using a custom Hail process. Briefly, UKB Fields 41202 (primary), 41204

(secondary), 41201 (external), and 40001 (cause of death) were expanded and combined such that if an

individual had a given code in any of these four fields, the individual was marked as having that phenotype.

Four digit codes (e.g. K509) were truncated to three digits (e.g. K50) and grouped together for analysis. ICD-9

codes were parsed in a similar fashion for use in phecode definitions, but were not used directly for

genome-wide association analysis.

Phecodes

Phecodes16 were processed using custom Hail and R scripts using the interim outputs from the

createUKBphenome script (https://github.com/umich-cphds/createUKBphenome). Briefly, the aforementioned

ICD-10 and ICD-9 codes were mapped to hierarchical disease endpoints as defined in the Phecode v1.2b1

(https://phewascatalog.org/phecodes). Per the Phecode definitions, cases were defined as those who have

ICD-10 or ICD-9 codes (any of primary, secondary, external, or cause of death) listed in inclusion criteria, while

controls were defined as those who were not included as cases for other Phecodes listed in exclusion criteria.

If applicable, male-/female-specific analyses were conducted (e.g., 174.1: Breast cancer [female]).

Prescriptions

We downloaded prescription data from UKB Field 42039 and processed through a custom pipeline to

harmonize data. Specifically, of the ~82,000 unique prescriptions in the GP release, we selected only those

669 with > 10,000 instances to be used as phenotypes, as well as an additional 32 drugs used for Parkinson’s

(combination dopamine precursor/dopamine decarboxylase inhibitors). We built a manual curation pipeline

wherein after splitting on the first white space and lower-casing the first token, converted each prescription

string to 3 fields containing the generic name, dosage, and delivery system. We selected the first token as it

often corresponds to the generic name and manually corrected mistakes. We created a simple ontology using

a fourth field, giving for each prescription name, the corresponding pharmacological mechanism of action, drug

category, and possible indication (for example, “Simvastatin TABS 40MG” would be represented as

“simvastatin, 40mg, Tablet; HMG-CoA reductase inhibitor, statin”). We performed initial data exploration and
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extraction using Hail version 0.2.16-6da0d3571629 and Pandas version 0.24.2. The spreadsheet AirTable was

used to facilitate the curation process, which was performed by an MD (G.S.).

We created the ontology with the aim of providing useful meta-data for grouping drugs/phenotypes, and

it is intentionally redundant and not organized hierarchically. For example, ibuprofen will include both "NSAID"

and "non-steroidal anti-inflammatory drug" and sertraline will include both "SSRI" and "selective serotonin

reuptake inhibitor." Lactulose will include both "osmotic laxative" as well as "laxative."

To anticipate future needs, we investigated the potential to “bootstrap” from this small curated list to

cover larger percentages of the full list of ~82,000 unique prescription strings in the GP release. First, we

created an extensive list of regexes to automate the mapping from raw prescription string to the structured

fields of possible generic, dosage, and delivery system. Next, to correct for mistakes in the possible generic

(given that the first token is not always the correct generic name) as well as to fill out the crucial fourth field of

pharmacological metadata, we performed a simple experiment. We randomly selected 20 prescriptions strings

from a longer list of 3500 with >1000 instances, but which were not included in the original list of 669. By

finding the best match (using the Levenstein distance or a related discrete metric) from our initial hand-curated

list, we were able to correctly identify the generic name and drug category and indication 60% of the time,

which could in principle simply be corrected, rather than manually curated from scratch, thereby significantly

reducing the curation overhead. Our methodology suggests that by iteratively string matching and manually

curating larger and larger regions of the long-tail of prescription strings, high-quality clinical phenotypes can be

extracted without requiring full manual curation.

Other phenotypes

We built custom processes for some phenotypes, including those related to COVID-19 as well as

custom phenotype combinations such as waist-hip ratio (phenotype computed from UKB code 48 / 49, then

IRNT) and blood pressure traits, as well as two randomly generated phenotypes.

The final set of phenotypes can be found in Supplementary Dataset 2.
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Association analysis

All primary association analyses were performed using SAIGE17, implemented in Hail Batch

(https://hail.is), similar to the pipeline previously described13. Briefly, genetic data were extracted from Hail into

BGEN files (one per megabase) and phenotypic data were extracted into TSV files (one per phenotype). For

the creation of the GRM, we LD-pruned (r2 < 0.1 for all genetic ancestry groups except EUR r2 < 0.05) variants

above 1% frequency, and in EUR, we removed a common inversion at 8:8055789-11980649 and the MHC

region at 6:28477797-33448354 and downsampled the dataset by 45%. The null model (step 1) was built once

for each phenotype with a GRM created using SAIGE. Score testing (step 2) was parallelized for each

megabase using each BGEN file. Results were collected for each phenotype into Hail Table format, and across

phenotypes into Hail MatrixTable.

For phenotype selection, we required at least 50 cases in each population except EUR where we

required at least 100 cases given the larger sample size. In total, we assessed 1,105-7,185 phenotypes per

population, each of which ranged from 980-420,531 individuals (Fig. 1a) and 10-23 million variants

(Supplementary Table 8).

Computational framework

In order to rapidly generate the results, which required 3.8 million CPU-hours of computation time, we

developed a scalable computational engine, Hail Batch. Batch is a Python module that allows the specification

of tasks with dependencies in a directed acyclic graph. Importantly, the framework is scalable as it can be used

within the internal Batch Service, a multi-tenant compute cluster in Google Cloud that is managed by the Hail

team. At the time of use, this service enabled the simultaneous use of up to 100,000 CPUs, allowing this

pipeline to be completed in approximately 6 days (wall-clock) at a cost of about $82K.

Covariates

We included the following covariates in each regression model: principal components (PCs) 1-10

(computed per-population, with PCs computed in unrelated individuals, then projecting related individuals, see

Ancestry assignment and relatedness inference for more detail), age, sex, age * sex, age2, and age2 * sex.
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Comparison of meta-analysis to mega-analysis

We compared two approaches to multi-ancestry association testing using mixed models for a pilot set

of five phenotypes: a mega-analysis approach with all individuals in the same model, as well as a per-ancestry

approach followed by meta-analysis. We compared inflation using two genomic control metrics, Lambda GC

and Lambda 1000, and found consistent trends across all phenotypes, where the meta-analysis maintains the

best control of stratification (lambda metrics closest to 1) with additional independent significant hits, indicating

minimal evidence of inflation and better-controlled false-positive rates (Extended Data Table 1). Hence, we

adopted this approach throughout the remainder of the project.

Tractor GWAS analysis

We performed an additional analysis to compare haplotype tract association methods (Tractor9) with the

mixed models (SAIGE17) used throughout this manuscript. Tractor GWAS was conducted under a separate

UKB application (95179). Thus, we mapped the Pan-UKB AFR sample list, consisting of 6,636 individuals, to

the other application, resulting in 6,245 unrelated AFR individuals. For quality control prior to Tractor runs, we

performed variant filtering using PLINK24, applying a 10% threshold for genotype and sample missingness,

restricting to variants with MAF >= 0.5%, imputation score >= 0.8, and only biallelic SNPs. After this filtering,

9.95 million variants remained (compared to ~29 million in SAIGE). Unrelated AFR and EUR individuals were

identified from the HGDP+1kGP joint-call dataset18 for use in reference panels, which was lifted over to the

GRCh37 reference genome using the GATK Picard LiftoverVcf tool19. Joint phasing of this dataset was

performed using SHAPEIT520, followed by local ancestry inference using RFMix221. ADMIXTURE22 was also

applied to assess global ancestry proportions. The global ancestry estimates from both RFMix2 and

ADMIXTURE showed a strong correlation (r > 0.99), implying that local ancestry inference functioned well in

this population. Using the local ancestry estimates from RFMix2, we ran Tractor GWAS for phenotype ID

30060 (Mean corpuscular Hb concentration), which was Inverse Rank-Normal Transformed (IRNT) using the

RNOmni package in R23. The covariates used were identical to those used in the SAIGE analyses, including

PC1-10, age, sex, age*sex, age2, and age2*sex.
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QC of summary statistics

Low frequency variants in cases

For binary traits, variants with very low allele counts in cases (e.g. a variant found only in one case) will

produce unreliable summary statistics. To assess an appropriate cutoff, we computed the genomic control (ƛgc)

for each phenotype across a range of minimum allele counts and frequencies (Supplementary Fig. 16).

Notably, at case allele counts of less than 3, ƛgc becomes unstable, and thus, we flagged as low confidence

any association test where the allele count in cases or allele count in controls was less than 3.

Supplementary Figure 16 | Lambda by case allele count. The median lambda across all binary traits by
minimum allele count in cases is shown by population.

Further, for all traits (including quantitative), we also marked as low confidence those variants where

the reference allele was found at fewer than 20 copies, indicating a rare variant in the reference genome.

Variants with discrepant frequency compared to gnomAD

In the course of assessing the robustness of the association statistics, we observed that a number of

variants were found at significantly different frequencies from those found in gnomAD. For instance,

8:75857876 (rs11786917) is found at 30% frequency in the UKB EUR subset, while it is at 14.4% in the

gnomAD NWE (North-Western European) subset. We thus investigated the discrepancy between UKB and
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gnomAD variation across populations, matching genetic ancestry labels where possible (AFR, AMR, EAS

compared as-is, and EUR compared to NWE). We find the vast majority of variants have a concordant

frequency (within a factor of two) between UKB and gnomAD (Supplementary Fig. 17a). However, a

substantial number of variants are profoundly different in frequency, which is enriched for variants failing quality

filters in gnomAD (Supplementary Fig. 17b). Among common (higher than 1% frequency in UKB) variants,

variants that are discordant (greater than 2x difference in frequency) show a decreased transition/transversion

(Ti/Tv) ratio (Supplementary Fig. 18), suggesting that they are enriched for errors.

Supplementary Figure 17 | UKB and gnomAD frequencies. The frequencies in the AFR population in UKB
and gnomAD are highly correlated (a), but many variants are discordant, especially at higher frequencies in
UKB (b). These variants tend to fail quality filters in gnomAD. A similar pattern is observed for all populations
overlapping between UKB and gnomAD (AFR, AMR, EAS, and EUR).
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Supplementary Figure 18 | Ti/Tv ratio of discrepant variants. Variants that are discordant between UKB
and gnomAD have lower Ti/Tv ratios. Points are colored by population (a: AFR, b: AMR, c: EAS, d: EUR) and
sized proportional to the number of variants in the bin. Shaded region corresponds to variants that are
“well-calibrated” (frequency within 2-fold of gnomAD) and thus retained for downstream analysis.

Variants missing from gnomAD

Additionally, there are 1,391,963 variants that are found in UKB that are not found in the gnomAD

genomes. Similar to the variants that have discrepant frequencies, these variants have a reduced Ti/Tv ratio

(1.69 compared to 2.1 for variants found in both UKB and gnomAD). We thus remove these variants along with

783,521 variants which have a discordant frequency in at least one population (Supplementary Fig. 19).
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Supplementary Figure 19 | Variants removed by gnomAD filters. The number of variants that are
well-calibrated (within 2X frequency) are compared to those missing from gnomAD, found in gnomAD but in a
different population, or having a significantly different frequency from gnomAD. These metrics are broken down
by UKB frequency within EUR (a) and by population (b).
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LD matrices and scores

LD matrices and scores were computed within each ancestry group. The genotype matrix (X) was

standardized and variants were filtered to MAC > 20 (as for GWAS). For covariate correction, the residuals

from the regression of were obtained via where ,𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 ∼ 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 𝑋
𝑎𝑑𝑗

 =  𝑀
𝑐
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the residual-maker matrix, and C is the matrix of covariates (as described above, Covariates). The LD matrix

was produced via with a window size of 1 MB, with a bias adjustment by . LD𝑟
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scores were subsequently computed summing the bias-adjusted values within a radius of 1 MB.

To better understand the similarities and differences between imputation-based and sequence-based

LD scores and provide a more general comparison between LD scores from two separate cohorts, we next

compared these LD scores with those obtained from gnomAD24. gnomAD within-ancestry LD matrices were

previously computed after genotype standardization and variant filtering to MAF > 0.005 via with a 1𝑟
^

=
𝑋𝑇 𝑋

𝑛

MB radius, with a bias adjustment and LD scores computed as above. We observed very strong concordance

of LD scores between gnomAD and UKB (Supplementary Fig. 20). Computed correlation coefficients were

above 0.9, with highest values observed for EUR and EAS, compared to AMR and AFR, potentially due to

divergence between UK Biobank and gnomAD in these groups.

Supplementary Figure 20 | Pairwise comparisons of LD scores in UKB vs. gnomAD within each genetic
ancestry group. Hapmap 3 SNPs are shown for (a) AFR, (b) AMR, (c) EAS, (d) EUR (compared to gnomAD
NFE). Dashed line represents y=x.

For all meta-analysis results, we constructed reference panels of 5,000 individuals matched by genetic

ancestry proportions to the given meta-analysis, and computed LD matrices and scores from these panels.
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Heritability analysis

To better understand genetic architectures across a wide range of phenotypes and ancestries, we next

estimated the SNP-heritability ( ) for each GWAS. We thus first computed heritability using univariate LDℎ
𝑆𝑁𝑃
2

score regression (LDSC) for GWAS summary statistics across 16,518 ancestry-trait pairs (7,228 unique

phenotypes where at least one population had lambda GC between 0.5-2). Previous work has shown that the

distribution of MAF and/or LD for causal variants differs from genome-wide variants, causing biased estimates

of heritability25,26. In this manuscript, we compare our results to those of a previous multi-phenotype GWAS

performed by the Neale lab (hereafter referred to as “Round 2”). Indeed, while LDSC heritability estimates from

Europeans were highly correlated with Round 2 (Supplementary Fig. 21a), they appeared to be biased

downwards as Round 2 estimates were computed using stratified LD score regression (S-LDSC) using the

baselineLD v1.1 model. To improve our LDSC-based heritability estimates, we created 25 in-sample MAF and

LD bins based on quintiles of each ancestry-specific feature, then used the resultant LD-scores to compute

heritability while modeling MAF and LD27,28. We constructed LD bins using LD-scores computed as described

above. Encouragingly, this S-LDSC approach largely resolved biases observed for ordinary LDSC

(Supplementary Fig. 21b).

Supplementary Figure 21 | (a-b) Correlation between UKB round 2 and Pan-UKB EUR LDSC (a) and
S-LDSC (b). (c) The number of phenotypes by genetic ancestry group, shaded by significant heritability z
scores (S-LDSC h2 z ≥ 4).
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Heritability estimates in smaller ancestry groups (n < 10,000) were extremely noisy regardless of

whether LDSC or S-LDSC methodology was used, with only 88 of 8,966 tested ancestry-trait pairs in non-EUR

ancestries showing a heritability z score > 4, compared to 1,063 of 7,165 tested traits in EUR

(Supplementary Fig. 21c). This is likely attributable to the low sample size of non-EUR genetic ancestry

groups. Indeed, previous work has demonstrated that LDSC has lower power than genotype-based heritability

estimation methods in low sample sizes29.

To improve our heritability estimation power among non-EUR ancestry groups, we used

multi-component Haseman-Elston regression implemented in RHE-mc30. This approach offers improved power

by using a genotype-based analysis. We restricted to variants with MAF > 0.01 in Hardy-Weinberg equilibrium

(p > 10-7) in all populations, filtered out the MHC region (chr6:25Mb-35Mb), and removed related individuals

(see Pruning ancestry outliers). This resulted in 4,923,127 SNPs across 376,430 individuals in all 6 genetic

ancestry groups. To account for previously described relationships between heritability, LD-score, and MAF, we

constructed MAF and LD bins: (1) 25 bins based on quintiles of LD score and MAF bins of size 0.1 as defined

for S-LDSC, and (2) 8 bins based on quartiles of LD scores and two MAF bins (0-5%, 5-50%) as a sensitivity

analysis. We included the same covariates as were used for GWAS, except for expanding to 20 PCs to match

the original RHE-mc implementation30. Any phenotypes coded specifically for males or females were analyzed

without inclusion of sex as a covariate. Because RHE-mc uses random vectors to improve computational

efficiency at the expense of added run-to-run variability, we quantified the degree of run-to-run variability

observed at various numbers of random vectors (Supplementary Fig. 22) and chose 50 random vectors to

balance computational cost and variance.
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Supplementary Figure 22 | Characterization of RHEmc run-to-run variability. The first five phenotypes in the
manifest are shown. Bars indicate empirical standard deviations (standard deviation of heritability estimates
from 50 identical runs of heritability computation) normalized by the standard error of the heritability estimator
for each phenotype. Missing points indicate failed convergence. Colors correspond to number of random
vectors, indicating that variability goes down as the number of random vectors increases. We chose 50 random
vectors for downstream analysis.

We took several approaches to benchmark this approach with respect to previously computed

heritabilities and alternative methods. We computed heritability among the EUR group using RHE-mc for a

selection of well-behaved, well-powered phenotypes including hypertension, type 2 diabetes, cholesterol, and

others (Supplementary Table 9). These results showed high concordance with S-LDSC results computed

using summary statistics from GWAS of the same phenotypes (Fig. 2a) as well as with heritability estimates

from previous EUR-only genetic analyses in UKB (Supplementary Fig. 23). Given this close agreement and to

avoid the untenable computational cost of using RHE-mc for EUR across UKB, we report only LDSC/S-LDSC

heritabilities for all phenotypes in EUR. As we observed little difference between point estimates computed
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using 25 bins and 8 LD and MAF bins, we decided to proceed with estimates based on 25 bins for non-EUR

ancestry groups to better model causal variant heterogeneity across the LD and MAF distribution, while using 8

bins for the pilot set of phenotypes tested in EUR to decrease computational complexity.

Supplementary Table 9 | 66 pilot phenotypes chosen for heritability analysis using multiple methods. In the
phenotype manifest, phenocode 20002’s description is “Non-cancer illness code, self-reported” and here, the
coding description is shown instead. The “note” column refers to the phenotype coding from UK Biobank,
except in the cases of “irnt” which denotes that the phenotype was inverse rank normal transformed (typically
noted in the “modifier” column of the manifest and release files).

Trait type
Pheno
code Note Description Trait type

Pheno
code Note Description

biomarkers 30600 irnt Albumin categorical 20002 1113 emphysema/chronic bronchitis
biomarkers 30610 irnt Alkaline phosphatase categorical 20002 1202 urinary frequency / incontinence
biomarkers 30620 irnt Alanine aminotransferase categorical 20002 1464 rheumatoid arthritis
biomarkers 30630 irnt Apolipoprotein A categorical 20002 1465 osteoarthritis
biomarkers 30640 irnt Apolipoprotein B categorical 20002 1473 high cholesterol
biomarkers 30650 irnt Aspartate aminotransferase categorical 20002 1478 cervical spondylosis
biomarkers 30660 irnt Direct bilirubin categorical 20002 1657 septicaemia / sepsis
biomarkers 30670 irnt Urea categorical 3393 3393 Hearing aid user

biomarkers 30680 irnt Calcium categorical 6148 5
Eye problems/disorders (Macular
degeneration)

biomarkers 30690 irnt Cholesterol categorical 6150 3
Vascular/heart problems diagnosed
by doctor (Stroke)

biomarkers 30700 irnt Creatinine continuous 21001 irnt Body mass index (BMI)
biomarkers 30710 irnt C-reactive protein continuous 3148 irnt Heel bone mineral density (BMD)

biomarkers 30720 irnt Cystatin C continuous 4079 irnt
Diastolic blood pressure, automated
reading

biomarkers 30730 irnt Gamma glutamyltransferase continuous 4080 irnt
Systolic blood pressure, automated
reading

biomarkers 30740 irnt Glucose continuous 50 irnt Standing height

biomarkers 30750 irnt
Glycated haemoglobin
(HbA1c) continuous 51 irnt Seated height

biomarkers 30760 irnt HDL cholesterol continuous eGFR irnt
Estimated glomerular filtration rate,
serum creatinine

biomarkers 30770 irnt IGF-1 icd10 H26 H26 Other cataract
biomarkers 30780 irnt LDL direct icd10 I48 I48 Atrial fibrillation and flutter

biomarkers 30790 irnt Lipoprotein A icd10 K21
K21 Gastro-oesophageal reflux
disease

biomarkers 30800 irnt Oestradiol icd10 K29 K29 Gastritis and duodenitis
biomarkers 30810 irnt Phosphate icd10 K44 K44 Diaphragmatic hernia
biomarkers 30820 irnt Rheumatoid factor icd10 K57 K57 Diverticular disease of intestine
biomarkers 30830 irnt SHBG icd10 N18 N18 Chronic renal failure
biomarkers 30840 irnt Total bilirubin phecode 153 Colorectal cancer
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biomarkers 30850 irnt Testosterone phecode 172 Skin cancer
biomarkers 30860 irnt Total protein phecode 250.1 Type 1 diabetes
biomarkers 30870 irnt Triglycerides phecode 250.2 Type 2 diabetes
biomarkers 30880 irnt Urate phecode 290.1 Dementias
biomarkers 30890 irnt Vitamin D phecode 332 Parkinson's disease
categorical 20002 1065 hypertension phecode 411 Ischemic Heart Disease
categorical 20002 1074 angina phecode 411.2 Myocardial infarction

categorical 20002 1076
heart failure/pulmonary
odema phecode 530.12 Ulcer of esophagus

Supplementary Figure 23 | Correlation between RHE-mc heritability point estimates (liability scale) and point
estimates made in a previous round of heritability analysis restricted to the White British subset of UKB (Round
2) for the same pilot phenotypes. Color represents trait type, dotted line is y=x, error bars are +/- 1se.

For the smaller subsamples, HE regression produced substantially less noisy estimates than S-LDSC

(Figure 2b), suggesting improved power. A cross-method comparison of heritability point estimates for

selected continuous phenotypes revealed typically similar or higher point estimates observed using HE

regression over LDSC and S-LDSC in non-EUR ancestries (Supplementary Fig. 24), as expected given the

previously documented downward bias with LDSC in lower-powered settings29. We thus created a “final”

heritability ( , hereafter referred to as h2) estimate using S-LDSC for EUR, and RHE-mc for the remainingℎ
𝑆𝑁𝑃
2
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genetic ancestry groups. As expected given the relative sample sizes for each ancestry group, we observed

the most traits with heritability z score ≥ 4 among EUR and CSA, with the fewest observed in AMR

(Supplementary Fig. 25a). Of phenotypes meeting a cutoff of h2 z ≥ 4 in at least one ancestry group, we

observed that 1013 (62%) of phenotypes were significant in only one genetic ancestry group, 439 (27%) were

significant in two genetic ancestry groups, and 184 (11%) were significant in three or more

(Supplementary Fig. 25b).

Supplementary Figure 24 | Cross-method comparison of selected continuous phenotypes. Error bars
represent +/- 1se. Only ancestry-trait pairs passing QC were included in this figure. RHEmc 25 bin (and 25 bin,
50 random vectors [RV]) was not run for EUR due to computational limitations.
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Supplementary Figure 25 | Overview of heritability z scores across trait types and populations. (a) The
number of traits passing in each ancestry as a function of h2 z score cutoff (S-LDSC for EUR, RHEmc [25 bins]
for all other ancestries). (b) The number of traits passing in 1, 2, 3, 4, 5, or all 6 ancestries (colors) as a
function of the z score cutoff. The ancestry-trait pairs used in this plot are pre sumstats QC. S-LDSC -derived z
scores reported for EUR, RHEmc (25 bins) reported for all other phenotype-ancestry pairs.

Analogous to the canonical example of an HLA allele more frequent in individuals with EAS ancestry

naively showing association with chopstick usage1, several traits in the UKB have high potential to produce

spurious genetic associations due to confounding – e.g., food intake traits, geographic coordinates, country of

birth. Indeed, we have observed that some of these traits display highly abnormal GWAS signals

(Supplementary Fig. 26).

Supplementary Figure 26 | Example of a QC-fail GWAS of categorical phenotype 3446 in the AMR genetic
ancestry group, “type of tobacco currently smoked”, for category “Manufactured cigarettes” shown as a
Manhattan plot (left) and a QQ plot (right).
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Further complicating the interpretation of heritability differences across ancestry groups, we observed

large systematic shifts in heritability point estimates across traits. Specifically, we observed higher heritability

estimates overall in the CSA compared to other genetic ancestry groups, potentially reflecting a higher degree

of heterogeneity (Supplementary Fig. 4) and residual stratification in the CSA GWAS results. Deeper

exploratory analysis revealed that some phenotypes prone to cultural stratification (e.g., dietary preferences)

tended to produce significantly out-of-bounds heritability estimates, abnormal λGC estimates, and/or elevated

S-LDSC ratio statistics.

To systematically identify traits with potentially problematic GWAS results, we devised a sequential

filtering strategy leveraging heritability statistics (Supplementary Fig. 27a):

1. We identified phenotypes with sufficient power for downstream heritability-based analyses, by

restricting to ancestry-trait pairs showing heritability significantly greater than 0 (h2 z ≥ 4).

2. As only 8 phenotypes passed QC in the AMR subsample (n = 975), we removed AMR ancestry-trait

pairs from downstream analyses.

3. Interestingly, traits with significant, out of bounds observed-scale heritability point estimates (h2 ≤ 0, or

h2 ≥ 1 with h2 z ≥ 4) appeared to be highly enriched for those especially prone to potential confounding

based on their phenotype definitions (e.g. country of birth, ethnicity, occupation). We thus eliminated

any traits with ≥ 1 genetic ancestry group showing significant out-of-bounds heritability estimates.

4. To avoid inclusion of phenotypes with substantial test statistic deflation, we also remove any traits with

≥ 1 genetic ancestry group with λgc ≤ 0.9 (Supplementary Fig. 27b).

5. We then leveraged the ratio of the LDSC intercept-1 to the mean ꭓ2 statistic-1 as a measure of the

component of trait polygenicity (captured by mean chi-squared) explainable by population stratification

(captured by the LDSC intercept27), and further computed a z score for this ratio by dividing by the

standard error. Based on the observed distribution of the LDSC ratio (Supplementary Fig. 27c), we

eliminated traits with a high ratio (> 0.3) and a high ratio z score (≥4). Although LDSC-based heritability

estimation was not well powered for non-EUR ancestry groups, outliers from LDSC-based ratio
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statistics for these cohorts nonetheless empirically identified several traits that appeared stratified (e.g.,

location-based and food intake traits).

6. To focus on traits that are well-powered in the UKB across diverse ancestries, we created a flag to

indicate phenotypes that passed QC in the EUR ancestry group as well as at least one other ancestry

group.

Supplementary Figure 27 | Empirical summary statistics quality control approach. (a) Flowchart of QC
approach with each filter used (left) as well as the number of phenotype-ancestry pairs passing each filter.
Note that filters are applied sequentially in the listed order. The “heritability within bounds for all ancestries” and
“lambda GC > 0.9 for all ancestries” fail for all ancestries if a single ancestry fails the respective filter. “S-LDSC
ratio < 0.3 or ratio z score < 4 in all of EUR, CSA, or AFR” fail for all ancestry if any of EUR, CSA, AFR fail, but
fail for the individual ancestry-trait pair only if the filter fails for a different ancestry group. (b-c) The distribution
of lambda GC (b) and S-LDSC ratio (c) values by genetic ancestry group. Phenotypes that fail the S-LDSC
ratio (referred to as “Controlled S-LDSC ratio” in Figure 2c) are highlighted in red.

Overall, we pruned 15,643 ancestry-trait pairs with available GWAS to 1,091 ancestry-phenotype pairs

(452 unique phenotypes) that passed all filters and were significantly heritable in at least one non-EUR

ancestry group (Supplementary Fig. 27). Supporting our choice of methods and the Z >= 4 cutoff, we

observed that traits that showed significant heritability across multiple AFR/AMR/CSA/EAS/MID ancestry
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groups were also more likely to show Z >= 4 in the EUR group (Supplementary Fig. 28). We provide all final

phenotype metrics in Supplementary Dataset 2 and all component heritability estimates in

Supplementary Dataset 3.

Supplementary Figure 28 | Number of ancestry-trait pairs per trait type passing the z score >= 4 filter as a
function of (1) EUR S-LDSC z >= 4, and (2) the total number of ancestry groups passing this filter, shown
cumulatively. A greater proportion of the bar colored dark indicates a greater proportion of ancestry-trait pairs
passing z >= 4 in a given number of ancestries also passed z >= 4 in EUR.

Of the phenotype-ancestry GWAS pairs that passed, 207 were shared between the two largest

ancestry groups (EUR and CSA), with 110 phenotypes shared between three groups and 37 shared between

four or more (Supplementary Fig. 29).

Finally, for convenience, we computed pairwise genetic correlations using LD score regression for 528

phenotypes for the EUR genetic ancestry group, which we make available as Supplementary Dataset 4.
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Supplementary Figure 29 | Number of phenotypes passing final quality control steps by combination of
genetic ancestry groups in which the phenotype passes.
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Maximal independent set

To ensure that closely related phenotypes were not double-counted (e.g. left and right arm fat

percentage), we generated a maximal independent set of phenotypes for aggregate phenotypic comparisons

to reduce bias among trait representation for broad analyses. To do so, we first generated a pairwise

phenotypic correlation matrix in Hail, after regressing out covariates (see Covariates, above) from each

phenotype. Based on the distribution of pairwise correlations for 452 phenotypes that pass QC as described

above (Supplementary Fig. 30a), we filtered to pairs of traits with correlation r2 ≥ 0.1 (Supplementary Fig.

30b). We then generated the maximal independent set of phenotypes with hl.maximal_independent_set() two

ways using a tiebreaker of higher case count (higher sample size for continuous phenotypes), retaining 151

phenotypes. We provide the full set of pairwise correlations at

gs://ukb-diverse-pops-public/misc/pairwise/pairwise_correlations_regressed.txt.bgz and the filtered set in

Supplementary Dataset 5.

Supplementary Figure 30 | Distribution of pairwise phenotype correlations across all individuals for filtered
high-quality phenotypes, for all correlations (a), and zoomed to a correlation threshold of r2 = 0.1 (b), which was
selected to prune for independent phenotypes.
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Locus definition within and across populations

Single ancestry and multi-ancestry LD reference panels for Plink clumping were created by randomly

sampling 5,000 individuals from all samples available for a given set of ancestry groups. This probabilistic

approach does not guarantee that the proportion of ancestry groups represented within an LD reference panel

exactly matches the proportion of ancestry groups among all possible individuals available to be sampled for

that reference panel. However, in expectation, these proportions should match. In the case of ancestry groups

having fewer than 5,000 total individuals (AMR, EAS, and MID ancestry groups), the corresponding

single-ancestry LD reference panels for those ancestry groups were exactly the same as the full sample for

each ancestry group, i.e. no subsampling was performed.

Clumping was run using Plink in Hail Batch. P-value thresholds for index variants and variants within a

clump were both 1. The lenient thresholds were chosen to allow for p-value thresholding at a later step.

Clumping radius was chosen to be 500 kb and the clump r2 was 0.1. The output summary files of Plink

clumping were converted to Hail Tables. The Tables were joined into separate MatrixTables, depending on the

LD reference panel used for the clumping, using Hail’s multi_way_zip_join method (wrapped by

mwzj_hts_by_tree in https://github.com/atgu/ukbb_pan_ancestry/blob/master/plink_clump_hail.py). These

MatrixTables were then merged together by column (hl.union_cols()).
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Meta-analysis

Fixed-effect inverse-variance weighted meta-analyses were conducted for all ancestry-phenotype pairs

using a custom Hail script (https://github.com/atgu/ukbb_pan_ancestry/blob/master/run_meta_analysis.py).

Briefly, meta-analyzed βmeta and SEmeta were computed as follows:

and ,β
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where βi and SEi were obtained from each ancestry-specific GWAS31.

In addition to the meta-analyses across all the available ancestries for each phenotype, we also

conducted all combinations of leave-one-ancestry-out meta-analyses. We repeated this process for only 1,091

high-quality ancestry-trait pairs spanning 452 phenotypes (see Heritability analysis). Finally, we computed

Cochran’s Q, a measure of heterogeneity, and the associated p-value for each meta-analysis statistic.

While previous studies have adopted a random effect meta-analysis to account for effect size

heterogeneity across ancestries, we adopted a fixed effect meta-analysis here given that 1) current random

effect meta-analysis approaches do not scale well for thousands of traits, and 2) recent studies have shown

high cross-ancestry genetic correlations of causal effects for common variants32,33.
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Polygenicity

We used the SBayesS 34 method implemented in the GCTB software (available at

https://cnsgenomics.com/software/gctb) to calculate polygenicity. As with summary statistic based heritability

estimates, polygenicity estimates from relatively small sample sizes are unstable. Thus, our analysis was

focused on GWAS summary statistics derived from EUR for 451 phenotypes (all high quality phenotypes,

except height which failed to converge; Supplementary Dataset 6). We used the LD reference panel provided

by the software, which was built upon 50,000 unrelated European samples from the UK Biobank. For the

Markov Chain Monte Carlo process, we employed 4 chains to compute the Gelman-Rubin convergence

diagnostic, also known as potential scale reduction factor, for estimation of polygenicity (the proportion of SNPs

with nonzero effects), and the default parameters otherwise. Considering potential convergence challenges in

Bayesian models, we set a threshold value of less than 1.2 for the Gelman-Rubin convergence diagnostic to

signify satisfactory convergence of the estimated polygenicity, which resulted in 392 phenotypes

(Supplementary Fig. 31).

Supplementary Figure 31 | Polygenicity estimates across trait types. A histogram of polygenicity estimates
(the proportion of SNPs with nonzero effects) using SBayesS for 392 phenotypes in EUR.
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Summary statistics analysis

All analyses of summary statistics were performed using custom scripts written in Hail (version 0.2.59),

available at https://github.com/atgu/ukbb_pan_ancestry. Briefly, custom aggregators were developed to

compute a number of statistics, including top p-value by variant, the number of significant variants per trait per

population, a comparison between EUR and meta-analysis summary statistics, and the correlation of effect

sizes across populations, and a windowed analysis to assess the degree of overlap with previous associations.

Consistency in summary statistics

We investigated the extent to which data from multiple ancestries is consistent using two approaches.

First, we compared the computed heterogeneity measures (Cochran’s Q) for variants significant by

meta-analysis to those significant in EUR-only GWAS. As expected, we find that variants significant in the

meta-analysis only are less likely (1.5%) to be heterogeneous (Cochran’s Q p < 0.01), compared to those

variants discovered in both EUR and meta-analysis (6.8%), with those discovered only in the EUR subset most

heterogeneous (17.1%; Extended Data Fig. 4). Accordingly, the most heterogeneous variants are skewed

towards highly significant variants in EUR (Supplementary Fig. 32a). Further, for each trait, for each pair of

ancestry groups with at least 20 associations at p < 0.05, we computed the correlation of beta vectors: for

those vectors of betas that are significantly correlated, we find that the vast majority have a positive correlation,

indicating the consistency of direction of effect sizes across ancestry groups (Supplementary Fig. 32b).

Supplementary Figure 32
| Consistency of effects
across ancestry groups.
(a) As in Figure 3c,
P-values from
meta-analysis versus EUR
GWAS alone, colored by
p-value of heterogeneity
among genetic ancestry
groups. (b) For associations
that are significant in more
than one ancestry group,
the majority of betas are
positively correlated.
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Known versus novel association comparisons

We curated thousands of traits using a unified ontology, the Experimental Factor Ontology (EFO), which

provides a systematic description of experimental variables with a hierarchical structure that spans a breadth of

phenotypic domains including diseases, anthropometric traits, etc for projects such as the GWAS catalog35,36.

To map as many traits in this project to EFO terms and categories as possible, we extended previous work

from the OpenTargets OnToma package, which allows exact or fuzzy matching from a phenotype string. In

total, we were able to map 3,047 (42%) of the traits with a GWAS to EFO terms. Of these traits, 2,566 (84%)

were mapped to EFO categories defined by GWAS catalog. Our ability to map traits to EFO terms varied by

trait type, with most disease, biomarker, and continuous traits mapping to EFO terms, whereas most and all of

the categorical and prescription traits, respectively, did not map, including considerable questionnaire data

(Supplementary Table 10). When defining novelty, we performed this analysis twice, first excluding two large

similar previous efforts that also performed GWAS of all phenotypes in the UK Biobank, including the

NEALE237 and UMich_SAIGE projects17, to compare to GWAS prior to large-scale UK Biobank studies, and

again with no exclusion.

Given differences in LD structure between genetic ancestry groups, we defined novelty of associations

using distance-based windows, i.e. a variant is only considered to be novel if no known associations (for the

same EFO term, or category, below) are present within 1 Mb, implemented in a custom Hail aggregator. Given

the pervasive level of pleiotropy genome-wide as well as diagnostic and phenotypic imprecision, however,

matching on exact EFO terms may overcount biological and pathway novelty. We therefore also evaluated

novelty using EFO parent terms (denoted as trait categories here), which are more generic than EFO terms.

For instance, body height (EFO_0004339) is an EFO term that maps to the body measurement EFO category

(EFO_0004324) by GWAS catalog. We used the OpenTargets release 22.09 to retrieve known associations

(gs://open-targets-genetics-releases/22.09/v2d), except for the NEALE2 which we instead used the original

release37 due to the lack of X chromosome associations and biomarker traits in the OpenTargets. To annotate

EFO terms for UKB traits, we used a combination of previous mappings from the OpenTargets

(gs://open-targets-genetics-releases/22.09/lut/study-index) and
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https://github.com/EBISPOT/EFO-UKB-mappings (a fixed non-corrupted tsv file is provided at

https://github.com/atgu/ukbb_pan_ancestry/blob/master/opentargets/UK_Biobank_master_file.fixed.tsv),

updated obsolete EFO terms to EFO release 3.49.0, and annotated biomarker EFO terms manually. Lastly, we

added trait categories based on GWAS catalog mapping

(https://www.ebi.ac.uk/gwas/api/search/downloads/trait_mappings). For the sake of consistency, we manually

changed category annotations of 1) systolic blood pressure (EFO_0006335), diastolic blood pressure

(EFO_0006336), and mean arterial pressure (EFO_0006340) from “Other measurement” to “Cardiovascular

measurement” to be consistent with pulse pressure measurement (EFO_0005763), and 2) sitting height

measurement (EFO_0011011) from “Other measurement” to "Body measurement" to be consistent with body

height (EFO_0004339). The summary of EFO annotations is shown in Supplementary Table 10.

Supplementary Table 10 | EFO annotation summary. The number of traits mapping to EFO terms and
categories is shown by trait type. The final column indicates traits that map to multiple categories.

Trait type
Num. EFO

defined
Num. EFO

missing
Num. EFO category

defined
Num. EFO category

(map to multiple)

biomarkers 30 0 30 0

categorical 1,089 2,597 970 10

continuous 440 380 377 0

icd10 662 259 565 6

phecode 826 500 624 3

prescriptions 0 445 0 0

Total 3,047 4,181 2,566 19

We identified 85,960 regionally-independent associations, of which 71,372 mapped to an EFO

term/category. Of these, 36,708 significant associations (51%) have been reported previously for the exact

same EFO term, while 34,664 (49%) did not. However, given the pervasive level of genome-wide pleiotropy as

well as variability in diagnostic and phenotypic definitions, it is likely that matching on exact EFO terms may

overestimate novelty. We therefore also computed an even more conservative measure of novelty using broad

EFO categories and found that 66,123 (93%) were previously reported for the same EFO category and 5,249

(7%) are novel. Repeating this analysis without excluding previous UK Biobank efforts, we find 50,433 (70%)
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associations previously reported for the same term, and 66,457 (93%) for the same category, resulting in 4,915

(7%) not mapping to the same category. Additionally, on the X chromosome, 2,226 of 2,448 (91%) associations

were not found significant in Open Targets Genetics for the same EFO category; however, we note that the

NEALE237 and UMich_SAIGE projects17 did not have X chromosome results loaded into the OpenTargets

release file, and thus, many of these associations are found in these resources as well.

Gene list analysis

We computed the top association for each variant using a custom Hail aggregator. Of 22,776,573

variants for which GWAS results were available (near 19,842 genes), 1,589,664 had at least one significant (p

< 5 x 10-8) association, near 17,285 genes. Disease annotations for genes were obtained from

https://github.com/macarthur-lab/gene_lists as previously described24,38. We filtered the 19,842 genes to 17,428

that are in the gene list “universe”, of which 15,314 (87.8%) have a significant association. We repeated this

analysis for each gene list, showing the fraction of genes in

each gene list with at least one significant association, which

is highest for haploinsufficient genes (180/187 = 96.3%;

Supplementary Fig. 33), with a similar process for novel

genes identified by EFO analysis (above; Fig. 4b).

Supplementary Figure 33 | Percentage of gene lists with at
least one significant association. As in Fig. 4b, but all
discovered associations rather than restricted to novel
associations.

We generated LocusZoom plots for selected

associations, including PITX2 and DMD, using a modified

version of https://github.com/krcurtis/locuszoom-plot.git. In these plots, linkage disequilibrium (LD) r2 is

computed as the sample-size weighted sum of LD from all the ancestry groups that are included in the

meta-analysis: .
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Ancestry-enriched associations

We manually investigated variants enriched for associations in the multi-ancestry meta-analysis

compared to the EUR GWAS alone (top right of Fig. 3c). We identified a missense variant rs1050828 in G6PD

associated with multiple phenotypes, which have low phenotypic and genetic correlations (Fig. 4a), indicating

potential pleiotropy at this locus. We show the high-confidence effect sizes in a forest plot (Fig 5c), and all

available summary statistics in Supplementary Fig. 34 and Supplementary Table 11. Some of these

phenotypes failed QC for some ancestry groups (e.g. HbA1c for AFR); however, we note that broad estimates

of quality based on heritability may not be applicable to individual loci, such as the G6PD locus here.

Supplementary Figure 34 | Forest plot showing association beta for each phenotype for rs1050828 across all
available population groups. Error bars correspond to 95% confidence intervals. Abbreviations are defined in
Supplementary Table 11.
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Supplementary Table 11 | Top 5 phenotypes associated with SNP rs1050828 at gene G6PD. * indicates
associations passing GWAS significance threshold 5 x 10-8. This variant is low frequency in CSA and EAS and
thus, GWAS was not run in these groups.

Phenocode Phenotype Population AF Pvalue QC flag failed

30270
Mean sphered
cell volume
(MSCV)

AFR 1.74e-01 1.82e-59*

Metaraw 2.82e-03 1.04e-58*

Metahq 2.75e-03 1.25e-57*

MID 1.19e-02 2.70e-02 significant_z

AMR 1.81e-02 2.70e-01 significant_z
ancestry_resonable_n

EUR 1.33e-04 5.34e-01

30300

High light
scatter

reticulocyte
count (RET)

AFR 1.74e-01 3.05e-55*

Metahq 2.75e-03 1.30e-54*

Metaraw 2.78e-03 1.67e-52*

MID 1.19e-02 2.64e-01 significant _z

EUR 1.33e-04 3.20e-01

30750
Glycated

haemoglobin
(HbA1c)

Metaraw 2.45e-03 1.09e-299*

AFR 1.73e-01 1.17e-281 significant_z

Metahq 1.76e-04 3.13e-14*

AMR 1.90e-02 7.22e-10 significant_z
ancestry_resonable_n

MID 1.22e-02 4.76e-09*

EUR 1.31e-04 1.84e-07

30070

Red blood cell
(erythrocyte)
distribution
width (RDW)

Metaraw 2.84e-03 1.41e-173*

AFR 1.74e-01 3.18e-161 significant_z

AMR 1.82e-02 1.06e-07 significant_z
ancestry_resonable_n

MID 1.17e-02 1.95e-06 significant_z

Metahq/EUR 1.31e-04 1.84e-04

30010
Red blood cell
(erythrocyte)
count (RBC)

Metaraw 2.84e-03 2.20e-59*

AFR 1.74e-01 6.54e-56 significant_z
ancestry_resonable_n

Metahq 1.75e-04 4.19e-04

EUR 1.31e-04 1.70e-03

AMR 1.82e-02 3.00e-02 significant_z
ancestry_resonable_n

MID 1.17e-02 9.98e-02
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Fine-mapping

To identify putative causal variants, we conducted statistical fine-mapping using FINEMAP-inf and

SuSiE-inf, which model infinitesimal effects39. We used ancestry-specific GWAS or cross-ancestry

meta-analysis summary statistics, and a covariate-adjusted (see LD matrices and scores) in-sample dosage

LD matrix, which we recomputed here using the exact samples included in each summary statistics. We

defined fine-mapping regions based on a 3 Mb window around each lead variant and merged regions if they

overlapped, as described previously40. For each method, we allowed up to ten causal variants per region and

derived the posterior inclusion probability (PIP) of each variant using a uniform prior probability of causality. To

achieve better calibration, we computed the minimum PIP across the methods and derived up to 10

independent 95% CSs from SuSiE-inf.

Comparison between Tractor and SAIGE results

We compared the Tractor analysis described above to our SAIGE association analysis. In this section,

SAIGE AFR denotes the SAIGE analysis performed on the AFR ancestry groups. Tractor AFR and Tractor

EUR indicate the Tractor GWAS conducted on the African or European haplotype tracts, respectively, within

individuals from the AFR group. Tractor effectively controlled type 1 error within admixed AFR-like samples

(Extended Data Figure 8); λGC was better controlled in the Tractor AFR (1.0011) compared to SAIGE AFR

(1.0031). As expected, the EUR tracts within admixed AFR-like samples were underpowered given that our

study population included individuals with a mean AFR global proportion of 92.69%, which reduces the

effective sample size of EUR ancestry to the relative proportion of the census size. Consequently, Tractor EUR

(EUR tracts among AFR-like individuals) had a λGC of 0.9609 and no genome-wide significant hits.

We observed a significant block of hits on chromosome 16 identified by both SAIGE AFR and Tractor

AFR, with similar p-values (Supplementary Dataset 7; ‘block 1’). Chromosome 11 harbored two separate loci

passing genome-wide significance; one passing the threshold in SAIGE AFR and one in Tractor AFR (blocks 2

and 3, respectively). The Tractor-identified chr11 locus has divergent ancestry-specific allele frequencies at top

loci, with an AFR-specific MAF of 1.6-1.8%, while the EUR-tracts were monomorphic. This MAF difference
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likely drove the improved ability of Tractor to identify this locus, as it is best-powered to identify ancestry

enriched loci. For the four identified hits, we found largely similar effect sizes estimated from Tractor AFR and

SAIGE AFR, while both AFR estimates varied considerably from EUR effect size estimates, which were not

significant (Supplementary Dataset 7). Comparing the allele frequencies of variants from SAIGE AFR to

those in Tractor AFR for shared variants, we observed a Pearson correlation of 0.8. Previous work shows that

Tractor accurately estimates group-level effects, while traditional GWAS without local ancestry deconvolution

produces effect sizes that reflect a weighted average of the group-level effects.
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Supplementary Datasets

Supplementary Dataset 1 | Assigned genetic ancestry labels correlate with the country of birth or
known migration events. The number of individuals by genetic ancestry and country of birth (non-UK) are
shown.

Supplementary Dataset 2 | Summary of all phenotypes in Pan-UKB. Phenotypes are keyed by five keys:
trait type, phenocode, pheno_sex, coding, and modifier. Where available, description and coding_description
are provided from the UK Biobank showcase. For each ancestry group, we include the number of cases,
heritability estimates (observed, liability, standard errors, and z scores), whether the phenotype passes QC,
and lambda GC. We provide QC flags, whether the phenotype is in the maximal independent set, and filename
information, including a download link for the phenotype-specific file and tabix index on Amazon S3 and md5
checksums for each.

Supplementary Dataset 3 | Summary of all heritability metrics. Phenotypes are keyed as in Supplementary
Dataset 2. For each ancestry group, we provide heritability estimates (observed, liability, standard errors, and z
scores) for LDSC and S-LDSC, and for ancestry groups other than EUR, also RHE-mc, as well as details of
QC flags.

Supplementary Dataset 4 | Pairwise genetic correlations. Genetic correlations (rg) from S-LDSC are
computed for pairs of 528 phenotypes (phenotype_code_1 and phenotype_code_2), using summary statistics
from EUR.

Supplementary Dataset 5 | Pairwise phenotypic correlations. Covariates were regressed out from each of
the 452 high-quality phenotypes, and pairwise correlations (entry) were computed for each pair of phenotypes
(residuals), i (with phenotype identifier in i_data) and j (identifier in j_data). The correlation for all phenotypes is
available at gs://ukb-diverse-pops-public/misc/pairwise/pairwise_correlations_regressed.txt.bgz

Supplementary Dataset 6 | Polygenicity estimates. Polygenicity estimates (mean and standard deviation)
from SBayesS for 451 phenotypes, along with convergence criteria (R_GelmanRubin).

Supplementary Dataset 7 | Summary statistics for key loci across GWAS methods. SAIGE AFR and
SAIGE EUR refer to the SAIGE analyses performed on the African (AFR) and European (EUR) genetically
inferred ancestry groups of UKB. Tractor AFR and Tractor EUR indicate the Tractor GWAS conducted on the
African or European haplotype tracts, respectively, within the AFR group. Variants are filtered as described
above in Tractor GWAS analysis.
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FAQ for diverse ancestry GWAS

Executive Summary:
The goal of this project is to provide a resource to researchers that promotes more inclusive
research practices, accelerates scientific discoveries, and improves the health of all people
equitably. In genetics research, it is statistically necessary to study groups of individuals
together with similar ancestries. In practice, this has meant that most previous research has
excluded individuals with non-European ancestries. Here, we describe an effort to build a
resource using one of the most widely accessed sources of genetic data, the UK Biobank, in a
manner that is more inclusive than most previous efforts -- namely studying groups of
individuals with diverse ancestries. The results of this research have a number of important
limitations which should be carefully considered when researchers use this resource in their
work and when they and others interpret subsequent findings.

This FAQ is intended to provide context around and describe some of the limitations of our analyses to

a lay audience. It does not go into comprehensive detail around every phenotype, but instead highlights the

overarching goals of the project, including how analyses were conducted, and describes some potential

confounders that could affect our results. The practice of producing these public-facing FAQ documents was

first adopted by the Social Science Genetics Association Consortium (https://www.thessgac.org/faqs) and has

become a common practice among several genomics researchers. In this FAQ, we have followed a similar

structure to that of others that have been previously released.

Table of Contents
FAQ for diverse ancestry GWAS

Background
Who conducted this study?
What are the group’s overarching goals?
Why was this study done?
What is ancestry? Is it the same as race or ethnicity?
In this study, you perform many GWAS for many phenotypes. What is a GWAS? What is a phenotype?
What does it mean for a variant to be associated with a phenotype? Are the genetic variants discovered
by GWAS “causal”?
Do these results imply that genetics are responsible for the phenotypic differences between ancestry
groups?
Since biology is mostly shared, why is diversity in genetics so important?
What did you learn as part of this study?

Study design
What was done?
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What data were used?
Have you used data from countries other than the UK?
How were participants recruited?
How did you decide which phenotypes to study?
How did you decide what ancestry groups to include? How did you assign individuals to each ancestry
group?
What about people with mixed ancestries?
Why do you analyze ancestry groups separately?
Why have certain individuals been excluded in previous research?
Why are you including them now?

Social and Ethical Implications
What can be done with the results of this research? What are the potential benefits of this research?
Do you study the genetics of behavior?
Do genes determine the choices we make?
Are there policy or clinical implications for this research?
How has genetics research been used in the past to harm different groups?
Could this research be used to harm certain groups (e.g., through discrimination or stigmatization)?
What has been done to reduce the potential harms of this research?

References

Background

Who conducted this study?

A team of researchers from the Analytic & Translational Genetics Unit (ATGU) at Massachusetts

General Hospital and the Broad Institute of MIT and Harvard performed the analysis in this study.

The data used in these analyses are from the UK Biobank, a large-scale open database with hundreds

of thousands of individuals’ genotype data paired to electronic health records and survey measures. The UK

Biobank recruited 500,000 people aged between 40-69 years in 2006-2010 from across the country to take

part in this project. They have undergone measures, provided blood, urine and saliva samples for future

analysis, detailed information about themselves, and agreed to have their health followed. The researchers at

ATGU and the Broad Institute were not involved in the design of the UK Biobank resource or recruitment of

participants, but have analyzed the breadth of this powerful resource.
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Throughout this work, we regularly sought engagement and feedback from researchers and

communities to help direct and contextualize this research and to discuss actions that will allow the substantial

benefits of our analyses to outweigh the risks. Please see the section “What has been done to reduce the

potential harms of this research?” to learn more about the specific individuals and groups who have been a

part of this effort and for information on what we have done to reduce risks to disadvantaged groups.

What are the group’s overarching goals?

Our fundamental goal was to build a resource that facilitates access to genetic association results (also

known as summary statistics) for as many phenotypes in as many diverse populations as possible, particularly

those that have traditionally been underrepresented in prior genetics work and excluded in most analyses of

the widely-used UK Biobank resource.

We believe that easy access to high-quality data on diverse populations will accelerate research that

can improve the health of the global population and can contribute to closing disparities that exist in the world.

These association results can be used to better understand the biology underlying a broad range of traits. The

additional specific benefits of including underrepresented populations in this study are described in detail in the

section “What can be done with the results of this research? What are the potential benefits of this research?”

and throughout this document. Substantial health and social disparities exist between the groups studied in this

research. While these disparities are largely a direct result of environmental factors, we hope that our research

will lead to further work that mitigates disparities, even though we do not directly study those disparities as part

of this project.

Why was this study done?

This project is an effort to increase diversity in genetics research and to make use of data that is

traditionally left out of analysis.

Historically in genetics research, for technical and social reasons described below, most prior work has

been done only in populations with European ancestries. Data from participants with predominantly

non-European ancestries were usually excluded from previous studies including many studies of the UK
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Biobank. (See “Why have certain individuals been excluded in previous research?”) Because of this, results

from these genetic studies may not apply as well to other groups. This further implies that applying these

findings to a clinical setting has the potential to increase, rather than decrease, health disparities.

Additionally, genetic studies require a large amount of expertise and computing power. By making these

results publicly available, we remove this barrier to researchers and provide results for many phenotypes while

using a consistent analysis pipeline. We hope this will accelerate the pace and reliability of genetic discoveries

and encourage future studies to include data from more diverse participants.

What is ancestry? Is it the same as race or ethnicity?

The “ancestry” of a group of people is related to the set of ancestors from whom they inherited their

genetic variants. It does not have natural boundaries and it is not the same as race or ethnicity.

The distinctions between a person’s race and ancestry are important. “Ancestry” is a statistical

construct based on the genetic variants that an individual inherited from their ancestors. “Race” and “ethnicity”

are social constructs and group people based on perceived shared physical, geographical, cultural, language,

religion, or other social characteristics, often in an inherently unequal manner. As a result, a person’s race and

ethnicity can depend on the time and place that an individual lives. Similarly, an individual’s self-identified race

or ethnicity may at times differ from the corresponding genetic ancestry assigned by statistical algorithms.

Treating ancestry, ethnicity, and race as equivalent concepts is incorrect. In all our analyses, we exclusively

refer to genetic ancestry.

When measuring ancestry across individuals, geneticists use statistical tools and very large data to

identify groups of people who are more genetically similar. Based on the region where people in a group live

and what is known about human migration, populations with similar ancestries are often given geographic

labels. For example, the vast majority of the individuals in the UK Biobank appear to have similar ancestries to

other individuals who have grandparents native to countries in Northern Europe. For this reason, geneticists

often refer to such individuals as having “European” ancestry. That said, ancestry is a continuum that does not

have obvious boundaries. It is possible to divide a group of individuals into any number of “ancestry groups.” In
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this research, we use rough continental categories, as described in more detail in “How did you decide what

populations to include? How did you assign individuals to each ancestry group?”

In this study, you perform many GWAS for many phenotypes. What is a GWAS? What

is a phenotype?

A Genome-Wide Association Study (GWAS) is a scan of millions of genetic variants in the human

genome, looking for variants that are associated with a particular “phenotype”.

A phenotype is a disease, outcome, or trait that can be measured and studied in a quantitative manner.

Examples of phenotypes include height, self-reported smoking behavior, or whether a person has been

diagnosed with type 2 diabetes.

To test whether a genetic variant is associated with the phenotype, we compare individuals that have a

copy or copies of the variant to those who have none. If the difference is large enough that it is very unlikely to

have occurred by chance, we say that the variant is “associated” with the phenotype.

What does it mean for a variant to be associated with a phenotype? Are the genetic

variants discovered by GWAS “causal”?

Associations can occur for many reasons. Many of these reasons are not causal effects of the genetic

variant on the phenotype.

For example, consider a case when the phenotype is a disease. It could be that the variant triggers a

biological mechanism that directly leads to disease. This variant would be associated with the phenotype and

would also be considered causal. On the other hand, it could be that the variant is by chance more common in

certain groups or communities, and that they have a higher prevalence of disease due to environmental factors

like pollution or social programs. This variant would also be associated with the phenotype but it would not be

considered causal. As a third example, many variants that have significant associations in a GWAS are not

expected to themselves be causal, but instead might be associated because they are nearby on the

chromosome to a variant that is causal. Finally, in some cases, genetic variants may only be associated with

the phenotype in certain settings. Generally, GWAS can only tell us if a genetic variant is associated with a
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phenotype; it cannot tell us why the variant is associated and does not demonstrate that the

relationship is causal.

Do these results imply that genetics are responsible for the phenotypic differences

between ancestry groups?

They do not. It is important to keep in mind that human populations are more genetically alike than we

are different.

We don’t know whether there is a genetic basis for differences between groups because GWAS

variants aren’t necessarily causal. Because of this, interpreting differences in genetic associations between

groups is incredibly complicated, as associations can appear for a variety of reasons that don’t imply causality.

Please see our explanation “What does it mean for a variant to be associated with a phenotype? Are the

genetic variants discovered by GWAS “causal”?”.

Additionally, for all of the phenotypes considered by this study, there is not a single genetic variant

that determines whether you will have a certain condition. Instead, in most cases, there are many, many

genetic variants that each have a small association with the phenotype, yielding on average very similar

outcomes in different populations. Because these associations are so small, it takes substantial follow-up work

and an enormous amount of data to determine whether a genetic variant has a population-specific effect --

often more data than are currently available to researchers.

This is further complicated by the fact that there are many other factors (unrelated to biological

differences) that can lead to differences in associations between populations. Perhaps the most important of

these reasons is that different populations often face different environmental factors (e.g., discrimination, rates

of poverty, geography), and these factors may affect genetic associations. Together, this means that GWAS

alone are insufficient to explain biological differences among populations.

71



Since biology is mostly shared, why is diversity in genetics so important?

Diversity in genetic studies is important to ensure that findings are generalizable and that everyone can

benefit from these findings.

While previous genetic studies have provided deep insights into the molecular basis of many

phenotypes, participants in those studies have mostly consisted of groups of people who trace their ancestry

back to regions within Europe. While all people have more genetic similarities than differences, certain genetic

variants or combinations of variants are more common in groups that have ancestries that trace back to

close-by regions. As a result, most previous studies have been best-suited for understanding the role of

genetic variants that are more common in people from those European regions. Expanding genetics research

to include individuals with diverse ancestries will improve our understanding of these phenotypes for everyone.

For example, more diversity will help researchers establish which genetic variants are actually causal and

which are just simply associated. It will also help researchers discover new biological mechanisms since some

genetic variants are only common enough to study in certain populations. Discovering these biological

mechanisms will help us better understand the underlying biology of important phenotypes shared by

everyone. Additionally, studying underrepresented groups may make precision medicine possible for these

currently underserved populations themselves.

What did you learn as part of this study?

Our results from this study provide a starting point for understanding the genetic underpinnings of

thousands of traits and diseases across global populations.

In this work, we identified thousands of links between genetics and human diseases in traits, many of

which had not been seen before due to the Euro-centric nature of previous studies. For example, we find a

genetic variant that influences triglyceride levels and is commonly found in individuals with African ancestry but

very rare in individuals with European ancestry. Other variants in this gene have previously been implicated in

heart failure. Furthermore, we developed computational resources and an approach for future studies

performing similar analyses to maximize future disease gene discovery.
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We released these results well in advance of scientific publication or submission timelines because of

the disproportionate value of these results to the field. For example, as part of our study, we released GWAS

results for a set of phenotypes related to COVID-19. While it is well-understood that differential rates of

transmission of COVID-19 are primarily social and environmental, GWAS results may improve our

understanding of the biological mechanisms that influence disease severity and accelerate the discovery of an

urgently-needed treatment. By facilitating access to analyses conducted in underrepresented populations, we

hope that the broader scientific community makes use of these data such that data from diverse ancestry

participants in other cohorts are not discarded. As this study moves forward, we and others in the research

community will continue to produce important scientific insights.

Study design

What was done?

We used genetic and phenotypic data from ~500,000 participants in the UK Biobank to conduct

genome-wide association studies (GWAS) among individuals with diverse ancestral backgrounds for several

thousand phenotypes. This included more than 20,000 individuals with primarily non-European ancestries.

The UK Biobank is an open access database with hundreds of thousands of individuals’ genetic data

paired to electronic health records and survey measures. We conducted GWAS for all phenotypes deemed to

have sufficient statistical power. These phenotypes include a total of more than 16,000 GWAS conducted

across a very broad range of phenotypes. A few examples of phenotypes we studied include anthropometric

measures and physical attributes (e.g. height, BMI, bone density), blood panel traits (e.g. white blood cell

count, cholesterol, blood glucose), common diseases (e.g. diabetes, cardiovascular disease, psychiatric

disorders), electronic health record data (e.g. diagnosis codes entered by clinicians), prescription data (e.g.

prescribed to take statins), health surveys (e.g. dietary intake, activity levels, general health satisfaction), social

surveys (e.g. educational attainment, occupation), and many other measures. To summarize, phenotypes

included both data pulled from electronic medical records as well as participants' survey responses to

questionnaires given online or at the clinic.
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What data were used?

The data used in these analyses comes from the UK Biobank, a large-scale open database with

hundreds of thousands of individuals’ genotype data paired to electronic health records and survey data.

Researchers can gain access to the UK Biobank by writing a proposal for a research project, which

then is reviewed for approval. The UK biobank is more thoroughly described on their website and in a scientific

publication.

Have you used data from countries other than the UK?

No, all participants lived in the UK at the time that the data were collected.

Because all of our data come from the UK Biobank and we did not collect additional data as part of this

project, all individuals must have lived in the UK during the UK Biobank recruitment phase. (See “How were

participants recruited?”) However, the data do include individuals who were born outside of the UK but were

recruited to be part of the UK Biobank sample after having moved to the UK. Since there are important

differences in genetic diversity between the UK, the US, and other countries, we hope that resources

comparable to this one will be produced as large new datasets become available in the future.

How were participants recruited?

Our team did not recruit participants for this study. Instead, we analyzed existing data from the UK

Biobank, a collection of ~500,000 individuals collected in the United Kingdom about ten years ago.

Here, we describe how participants in the UK Biobank cohort were recruited. Following the success of

an initial pilot study in 2005-2006, the main stage of recruitment for the UK Biobank resource began in 2007,

with the goal of recruiting 500,000 individuals between the ages of 40 and 69. The age restriction was due to

the primary aim of the study: to improve the prevention, diagnosis and treatment of serious illnesses that

typically onset later in life, including diabetes, cancer, arthritis, heart disease, stroke, and dementia. To that

end, individuals from across the UK were contacted by post to participate in the study, with names, addresses,

and dates of birth provided by the UK National Health Service (NHS). The 500,000 recruitment goal was

reached in July of 2010, and recruitment ended shortly after. Focusing on voluntary recruitment of an older
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subset of the UK population sent by mail resulted in a sample of individuals that is more healthy and wealthy

than the average Brit and that had a greater fraction of European ancestries than the UK population

overall. This means that this cohort is not a perfect representation of the UK population, which further means

that the results of our study may not reflect the UK population as a whole. This limitation is important to keep in

mind when considering our results.

How did you decide which phenotypes to study?

We included all phenotypes that were available to us for which there was sufficient data to conduct a

GWAS.

Due to the scale of this project, we relied on quality control procedures that worked well in general for

all phenotypes rather than using specific quality controls for each one. Quality controls are the procedures

used to minimize errors in the data we use in our analysis. For example, individuals who report extremely large

or small values of a phenotype are often just incorrectly recorded and can bias analyses. Therefore, we

adjusted the values for such individuals using a standard transformation. For complete details on our quality

control procedures, see our wiki. Certain phenotypes may require different quality control procedures than

those we used in our analyses. As a result, some researchers may prefer to include different sets of individuals

or define phenotypes slightly differently in their future work.

How did you decide what ancestry groups to include? How did you assign individuals

to each ancestry group?

The ancestry groups we used in these analyses are based on those described in two large existing

globally and genetically diverse datasets. To assign each person to each ancestry group, we applied statistical

methods to each individual’s genetic data.

Specifically, we compared the genome of each participant in the UK Biobank to the data in two large

reference datasets containing genetically diverse individuals from across the globe, the 1000 Genomes Project

and Human Genome Diversity Project (HGDP). We statistically assessed how similar each participant’s

ancestry was to individuals from the populations included in these reference panels. These previous studies
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included labels which break down populations broadly into continental groupings that share ancestors and

history over the course of tens to thousands of generations. The ancestry labels include African, American

(which in these studies is the ancestry shared by many Hispanic/Latino groups), Central/South Asian, East

Asian, European, and Middle Eastern. We assigned each individual into the ancestry groups that he/she was

most similar to, adopting the same labels as used previously for consistency. We dropped those individuals

who did not have a confident ancestry assignment. Notably, this approach does not rely on any other

information, including self-reported race, ethnicity, or ancestry. We conducted our studies in all of the

populations that had large enough numbers of individuals to learn about the genetic underpinnings of some

traits, with individuals from each population analyzed together.

These ancestry labels have many limitations. First, as described in response to the question “What is

ancestry?”, there is substantial diversity within each labeled population. Second, the 1000 Genome Project and

HGDP data used to define continental populations have gaps in representation. They include more individuals

from some regions than others, but this is not necessarily reflective of a region’s corresponding genetic

diversity. For example, the individuals in the “African” population in the 1000 Genomes Project data have more

West African ancestors than ancestors from other parts of Africa. For this reason, groups with ancestries from

other parts of Africa may not be identified as accurately. Third, many individuals have ancestors from more

than one of the groups defined by the 1000 Genome Project and HGDP. Such individuals are said to be

“admixed,” which means that different parts of their genomes come from different continental populations. We

discuss how such individuals affect our analysis more in the question below in “What about people with mixed

ancestries?”. We hope that in the future, more diverse reference data sets will become available so that

analyses such as ours will be less susceptible to these limitations.

What about people with mixed ancestries?

Many admixed individuals are included in this study.

Since ancestry is a continuum (see “What is ancestry?”), some ancestry labels consist nearly

exclusively of individuals with varying amounts of admixture. For example, most individuals that are labeled as

having “American” or “African” ancestries by our statistical algorithms share recent common ancestors with
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those labeled as having “European” ancestries. As long as there are enough people with a similar pattern of

admixture -- as there are in the “African” and “American” ancestry groups -- we can study them together in a

GWAS. However, some individuals have less common patterns of admixture, such that there are not enough

similar individuals that we can group them together in a genetic study. Therefore, we currently drop such

individuals from analysis. However, we believe that including these individuals should also be a priority, and

plan to implement tools that allow us to include them in ongoing and future work to allow for increased

inclusion of admixed participants in future studies.

Why do you analyze ancestry groups separately?

Different ancestry groups are analyzed separately for statistical reasons; this does not imply that there

are biological differences between ancestry groups (see “Do these results imply that genetics are responsible

for the phenotypic differences between ancestry groups?”).

To help understand why previous scientific efforts have restricted to only one ancestry group, a classic

GWAS example is of chopstick use. If we conducted such a GWAS in a group with some people with East

Asian ancestries and some people with non-East Asian ancestries, we would almost surely find many

associations. These associations would not likely correspond to biological mechanisms that affect manual

dexterity or a personal preference for wooden cutlery, but they would just identify genetic variants that are by

chance more or less common in East Asian populations relative to the ancestries represented by others in the

data. When GWAS is conducted in groups of individuals with similar ancestries, associations are less likely to

be driven by these types of non-causal factors, which makes the results easier to interpret and makes

follow-up work more productive.
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Why have certain individuals been excluded in previous research?

Due to the statistical reasons described above, there are some scientific advantages to studying large

groups of genetically similar individuals. Unfortunately, due to a number of historical, infrastructural, political,

ideological, monetary and other societal factors, this has resulted in the disproportionate recruitment of

individuals with European ancestries, effectively excluding other groups from participating in most genetic

studies.

Previous work41 described some of the more societal explanations for why data collection has heavily

focused on European populations. For statistical reasons (see Why do you analyze ancestry groups

separately?), standard practice in genetic studies has been to only analyze the largest homogenous subset of

the data, which in practice means only including individuals who are of the largest ancestry group. Due to this

Euro-centric bias in data collection, the largest group usually consists of those with European ancestry. This

snowballing effect has driven the overrepresentation of European-ancestry individuals in published GWAS, and

perpetuates the continued data collection and study of European-ancestry individuals because they have been

more fully characterized.

A description of how ancestry is classified and where ancestry labels come from is in the section on

“How did you decide what populations to include? How did you assign individuals to each ancestry group?”.

Why are you including them now?

The UK Biobank provides a unique opportunity to study people with diverse ancestries. Although

people with recent ancestors from outside the UK make up a small fraction of the data in the biobank, there are

enough to run and learn new biology from GWAS. Many of these genotypic and phenotypic datasets are the

largest available that include individuals with certain ancestries.

Because associations between single genetic variants and phenotypes tend to be very small, a large

number of individuals need to be studied to find reliable associations. That is, we often need at least tens of

thousands of individuals (and often more) to find and validate genetic associations. With this in mind, the

groups of individuals that have been omitted from previous genetic studies were far too small to be able to
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produce reliable results. Analyzing these data and releasing the results to the research community and

the public will hopefully accelerate research that will benefit global populations.

Social and Ethical Implications

What can be done with the results of this research? What are the potential benefits of

this research?

Including more diverse populations in gene discovery efforts benefits all individuals, and may be

especially beneficial for underserved populations.

Perhaps the most notable example of this is in the improvements to ‘fine-mapping.’ Fine-mapping is

using statistics to attempt to identify which variant is responsible for an observed association in a GWAS.

Because we inherit entire segments of chromosomes together, we jointly inherit all the variants contained on

those segments. As a result, associations that are identified by GWAS may correspond to the effect of a

variant on another part of the same chromosome. Due to differences between ancestry groups in the size and

location of these segments, studying different groups allows us to narrow the search for the truly associated

variant to a smaller number of genetic variants. Since there are fewer variants that need to be examined in

laboratory studies, fine-mapping accelerates the process of linking genetic associations to potential biological

pathways and the development of potential therapies. One example of leveraging multi-ethnic populations to

better determine causal gene sets is in a publication on inflammatory bowel disease42. By using a combination

of European and East Asian cohorts, researchers were able to refine their GWAS signals to single variants with

high certainty. This allowed them to link inflammatory bowel disease to specific immune cells and gut mucosa.

Including diverse populations thus allows improved determination of strong genetic determinants and pathways

for disease that can be targeted therapeutically, both for the minority populations themselves, but also for

people of all ancestries.

Another benefit from including diverse populations in GWAS scans is that we have the potential to

identify variants that are unique to different populations. Some genetic variants are only found in groups with

certain ancestries. If a variant has an effect on a phenotype but is not found in samples with European
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ancestries, it would be impossible to discover the association between the variant and phenotype in people

with only European ancestry. In contrast, studying diverse populations will discover these kinds of variants.

Identifying more variants will help map out the biological causes of disease, which will benefit people of all

ancestries.

Last but not least, GWAS have become large enough that polygenic scores are now very widely used in

research settings and are even being considered for applications in clinical settings. However, given very large

Eurocentric study biases in genetic studies, polygenic scores are currently far more accurate in populations

with European ancestries. This means we can predict several traits and diseases in European ancestry

populations rather well--similarly in fact to how accurately LDL cholesterol predicts heart disease. In contrast,

these study biases mean polygenic scores are currently several-fold less accurate for example in East Asian

and African ancestry populations, sometimes not much more predictive than a coin flip. One of our driving

motivations to do genetic studies in more diverse participants and make these results widely accessible is to

ensure that genetics can deliver on a mission to improve healthcare for all.

Do you study the genetics of behavior?

This study includes results for all phenotypes which had sufficient sample size to run a well-powered

GWAS, including many behavioral phenotypes that were collected by the UK Biobank.

Several researchers, including some involved in this project, have also conducted GWAS of behavioral

phenotypes in populations with only European ancestries. Behavioral research on these topics is particularly

sensitive. We recommend that interested readers should also read the FAQs for those papers, which go into

much greater detail on the interpretation as well as social and ethical implications of studying the genetics of

behavior. Those FAQs may be found here: https://www.thessgac.org/faqs.

Do genes determine the choices we make?

Genes do not determine our choices or who we become.

If they did, identical twins would make all of the same decisions, have the same interests, etc. Years of

twin studies have shown that, while identical twins tend to be more similar than fraternal twins, they also tend
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to be different in a lot of ways. This suggests that environmental factors--such as culture, institutions, and

policy--also play a large role in our phenotypes. And even for highly heritable phenotypes where many genetic

variants are strongly associated with the phenotype, the associations that are identified by GWAS may not

represent causal mechanisms. Furthermore, even when associations represent causal relationships, these

causal pathways are complicated and interact with the environment. For example, imagine that there was a

major pandemic that caused countries to shut down the public school systems. In such a scenario, we might

imagine that the genetic influences that are related to academic achievement in the pandemic regime may be

different from the influences that are related to academic achievement for those in formal public schooling.

That said, despite the limitations in interpreting genetic associations with behavior, this research is still

valuable. For example, socioeconomic status (SES) is among the most important risk factors for many

diseases and health outcomes. This means that any genetic variant that is associated with a disease may just

reflect the association between the disease and SES. By analyzing GWAS of SES-related phenotypes

alongside GWAS of disease phenotypes, researchers can focus on genetic variants that are associated with

disease but not SES. These variants are more likely to represent strong biological risk factors of disease that

can be tested rigorously in follow-up research.

Are there policy or clinical implications for this research?

No. Making policy or clinical decisions based on the results of this study would be incredibly premature.

GWAS look for associations between genetic variants and phenotypes in the world as it is today. Policy

and clinical questions ask what the world would look like if we did things differently. GWAS cannot answer

those questions. We are hopeful that the results of this study will facilitate future policy and clinical research for

the global population, but those who use our results to make broad policy claims are overinterpreting the

results.
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How has genetics research been used in the past to harm different groups?

Genetics unfortunately has a legacy of racist research that has harmed minority populations.

Indeed, the term “eugenics” was coined in the late 1800s by one of most prominent early researchers in

heredity, Francis Galton, and perhaps the most influential geneticist and statistician in history, Ronald Fisher,

was an active proponent of the belief that socio-economic disparities in society were primarily driven by genetic

factors in the early 1900s. These racist attitudes among several in the scientific community laid the groundwork

for the “forced sterilizations, anti-miscegenation laws, and immigration restrictions of the 20th century.” These

policies overwhelmingly targeted minorities and people of color.

In addition to racist policies in the name of science, a lack of community involvement in research also

has led to harms to certain minority groups. For example, in the 1990s, members of the Havasupai tribe, a

small Native American group based in the Grand Canyon, approached researchers at Arizona State University

(ASU) asking if there was anything that could be done to treat the high rates of diabetes in their community.

Blood samples taken from several tribe members, who were told that it would be used to “study the causes of

behavioral/medical disorders.” Over the subsequent years, these samples were used in a variety of research

projects beyond diabetes research. Some of these studies were about the tribe’s geographic ancestral origins,

suggesting narratives that were in direct conflict with the tribe’s traditional stories of its origins in the Grand

Canyon. Some worried that this research could be used to threaten their sovereign rights to their land. It was

clear that many of the individuals whose blood samples were used in that research would not have consented

if they had understood the scope of the projects that would be done. Ultimately, the Havasupai tribe sued ASU.

As part of the settlement for the lawsuit, ASU returned the samples, some of the research that had been done

was withdrawn, and the tribe received a large payment and other concessions from ASU. This story highlights

how carefully executed research on topics that may seem benign to researchers can harm disadvantaged

groups and sow distrust between researchers and the community.

Acknowledging the harm done to certain groups in the past in the name of science reminds us of the

importance of careful communication of the implication of scientific research and intense vigilance that

disadvantaged groups are not further harmed by this and other related work.
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Could this research be used to harm certain groups (e.g., through discrimination or

stigmatization)?

Yes, but excluding these groups from genetics research is also harmful. For this reason it is important

to be aware of and mitigate potential harms.

As described above, genetics has a long history of being used to stigmatize certain groups. Although

our results do not imply that phenotypic differences between groups are due to genetic or biological

differences, we do anticipate that some racist individuals may mistakenly or willfully misinterpret our study to

advance their ideological agendas. However, the exclusion of diverse groups from genetics research directly

harms minority populations. When research is based only on one group, subsequent treatments and policies

that are tested and implemented will most greatly benefit that population, exacerbating disparities. Remember

that human populations are more genetically alike than we are different. Including a broader and more inclusive

set of individuals helps support biological understanding for all groups, and does not imply a meaningful

difference between them.

We have carried out a number of activities in an effort to maximize benefits and minimize risks from this

research. See our response in “What has been done to reduce the potential harms of this research?” for more

information.

What has been done to reduce the potential harms of this research?

We have adopted several strategies in an effort to reduce the potential harms of this research.

First, we have written this FAQ so that interested laypeople and the media can understand the value

and the limitations of this work. We will treat this as a living document and welcome feedback from the

community if any aspect of our analyses or their interpretation remain unclear.

Second, we also discussed this project and this FAQ with groups and individuals with diverse expertise

and perspectives. For example, we met on several occasions with members of Shades@Broad, an

identity-based affinity group whose mission is to advocate for and support the recruitment, development, and

success of ethnic minorities at the Broad. We sought their comments, advice, and perspectives throughout the
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analysis, interpretation, and dissemination of results. We also obtained feedback on our research and this FAQ

from researchers and clinicians who work with diverse communities across the US.

Third, Shawneequa Callier, a bioethics professor who specializes in the ethical, legal, and social

implications of genetics research and racial categories reviewed is an author on this manuscript and provided

feedback on this FAQ. Professor Callier advised us on ethical considerations surrounding this research.

Even with these efforts, it is still likely that some will misinterpret this work. As such occasions arise, we

will attempt to correct the public record with firmness where appropriate.
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