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Supplementary Methods 

Identification of clonal haematopoiesis from whole exome sequencing data 

To identify UK Biobank participants with CH driver mutations, we used mutation calls from blood 

WES data that were previously published by Gu et al1. Briefly, Mutect2 was run in tumour-only mode 

against a panel of 38 CH-associated genes. Germline variants were filtered using a panel of normals. 

Putative somatic variants were further filtered using FilterMutectCalls, while variants flagged as 

“germline” were rescued if they were present at least five times in the set of putative somatic variants. 

To derive a final list of driver mutations, variants were firstly filtered based on number of alternate 

reads (³2), presence on forward and reverse strands, minimum read depth (³7/³10 for SNVs/indels 

respectively) and minor allele frequency (<0.001) in gnomAD. The criteria described by Vlasschaert 

et al.2 were then used to further filter germline variants and sequencing artefacts. To overcome 

previously reported issues with mapping at the U2AF1 locus3, U2AF1 mutations were called 

separately using Samtools4 mpileup to identify single nucleotide variants (SNVs) at known hotspots, 

with variants supported by ³3 reads and at VAF >0.1 retained for downstream analyses.   

 

Developing a model of high-risk CH with “normal” CBC indices 

To investigate whether our models could detect individuals with CHIP, who, by definition, have 

relatively normal CBC indices, we further constrained our training and test cohorts to include only 

UKB participants who did not have a cytopenia (haemoglobin <12/13 g/dL for males/females 

respectively, neutrophils <1.8 x 109/L, platelets <150 x109/L), erythrocytosis (haemoglobin >16.5/16 

g/dL or haematocrit percentage >49/48% for males/females respectively) or thrombocytosis (platelets 

> 450 x 109/L). These definitions were derived from the definitions of cytopenias, erythrocytosis and 

thrombocytosis used in the diagnostic criteria for CCUS, MDS and MPN in the 5th edition of the 

World Health Organisation Classification of Haematolymphoid Tumours. We then used this 

constrained population as input to our ML model training & validation pipeline, as outlined in our 

Methods section in the main manuscript.  
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Supplementary Figures 

 
Supplementary Figure 1: Overview of our machine learning pipeline. We draw from our master 

dataset of 431,531 UKB participants with variables age, sex and CBC parameters, each labelled as 

“CH” or “no CH” (or for gene-specific models, gene-specific CH or no-CH). To enhance model 

training and convergence, we randomly downsample from this master dataset ten times, to produce 

ten different datasets each with a 1:1 ratio of cases (CH, red) to controls (no CH, blue). Each dataset 

has the same set of cases, but a random sample of controls. We then partition the ten datasets in an 

80:20 ratio to training:test cohorts, and train ten ML models, each time using ten repeats of ten-fold 

cross-validation to control for overfitting. Grid search was used to tune the relevant hyperparameters 

for each model type. The performance of each model was evaluated on the unseen test set, using area 

under the ROC curve (AUC) as the primary performance measure. By generating the starting dataset 

ten times, and independently partitioning each dataset and training/evaluating each model, we assess 

the robustness and stability of each model to variations in the train/test split and in the random 

sampling of controls.  
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Supplementary Figure 2: ROC curve for model of large clone (VAF ³10%) high-risk CH driven by 

JAK2, CALR, SF3B1, SRSF2 or U2AF1. This model utilises all 18 CBC variables, age and sex as 

input features. The ROC curve has been constructed and AUC calculated based on performance in 

the unseen test set. Red, performance of model approximating the median AUC. Upper and lower 

bounds represent performance of the models with the maximum and minimum AUC from ten repeats 

of model training respectively.  
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Supplementary Figure 3: Distribution of CBC indices in high-risk cases in the test cohort. Red = 

predicted as a case (true positive), blue = predicted as control (false negative), using our proposed 

stringent cutoff for our six-feature model (input features age, RDW, PLT, PDW, PCT, MCH). Most 

true positives have high platelet counts, which may be consistent with an unannotated MPN.  
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Supplementary Figure 4: Optimisation, Variable Importance and Performance of a classifier of 

High-Risk CH with normal CBC indices. Panel A shows the ROC curve for this Random Forest 

model, which has been constructed and AUC calculated based on performance in the unseen test set. 

Red, performance of model approximating the median AUC. Upper and lower bounds represent 

performance of the models with the maximum and minimum AUC from ten repeats of model training 

respectively. Panel B shows the impact of iterative feature selection on model performance (by AUC), 

demonstrating that performance is stable with only six input features. Panel C shows variable 

importance (by Gini Index, scaled to the most important variable) of features in our six-feature 

classifier. Panel D shows the trade-off between sensitivity (blue) and positive predictive value (red) 

for this six-feature classifier.  
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Supplementary Figure 5: Correlation between basophil/eosinophil count and GNB1/IDH2 mutation 

variant allele fraction (VAF), respectively. Rs denotes Spearman’s rho value. IDH2 clone size exhibits 

a significant inverse correlation with eosinophil count (p = 2.67 x 10-7), but we observed no 

significant correlation (p = 0.09) between GNB1 clone size and basophil count.  
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Supplementary Tables 

 
Supplementary Table 1: Hyperparameter values tuned using grid search, during model optimisation.  

  

Model type Hyperparameters Tuning values

DT cp 0.001, 0.005, 0.01, 0.15, 0.2, 0.3, 0.4, 0.5

RF mtry 2, 4, 6, 8, 10

RF ntree 1000

XGB nrounds 1000

XGB eta 0.3

XGB max_depth 2, 4, 6, 8, 10

XGB gamma 0

XGB colsample_by_tree 1

XGB min_child_weight 1

XGB subsample 1
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Supplementary Table 2: Performance across model types and driver genes. DT, RF and XGB denote 

Decision Tree, Random Forest and eXtreme Gradient Boosting models respectively. Included here 

are additional gene-specific models that were constructed but not included in the main manuscript, 

which focuses on the most common or highest risk CH drivers.  

Gene DT RF XGB

ASXL1 0.70 0.74 0.70

BCOR 0.50 0.53 0.53

BCORL1 0.50 0.52 0.54

CALR 0.86 0.91 0.89

CBL 0.54 0.52 0.59

DNMT3A R882 0.58 0.60 0.56

DNMT3A non-R882 0.61 0.62 0.60

EZH2 0.53 0.56 0.57

GNAS 0.61 0.66 0.63

GNB1 0.66 0.78 0.74

IDH2 0.73 0.79 0.78

JAK2 0.89 0.94 0.92

KDM6A 0.50 0.54 0.53

PHF6 0.50 0.57 0.57

PPM1D 0.64 0.66 0.62

RAD21 0.50 0.61 0.57

RUNX1 0.55 0.58 0.55

SF3B1 0.71 0.84 0.83

SMC3 0.50 0.57 0.55

SRSF2 0.72 0.82 0.81

STAG2 0.52 0.52 0.54

TET2 0.62 0.64 0.61

TP53 0.56 0.58 0.58

U2AF1 0.66 0.84 0.81

ZRSR2 0.55 0.57 0.58

Any-driver CH 0.62 0.64 0.62
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Supplementary Table 3: Proportions of "other" driver mutations in the UK Biobank final dataset 

(n=431,531). 

  

Driver n Male Large Clone Proportion

MPL 27 44.44% 51.85% 0.01%

BCOR 302 50.33% 7.62% 0.07%

BCORL1 267 58.43% 7.12% 0.06%

KDM6A 211 42.65% 26.07% 0.05%

GNAS 165 45.45% 56.36% 0.04%

CBL 157 42.04% 42.68% 0.04%

SMC3 115 40.87% 19.13% 0.03%

STAG2 115 40% 22.61% 0.03%

RAD21 84 47.62% 21.43% 0.02%

EZH2 81 40.74% 9.88% 0.02%

PHF6 69 40.58% 17.39% 0.02%

RUNX1 54 53.7% 20.37% 0.01%

ZRSR2 50 66% 44% 0.01%

ETV6 46 45.65% 28.26% 0.01%

KRAS 42 38.1% 47.62% 0.01%
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Supplementary Table 4: Detection of specific driver genes by combined classifier of high-risk CH, 

using stringent cutoff, in the unseen test set (n = 86,306). 

  

Gene Number positive Number in test set Percentage positive

CALR 7 19 36.8

JAK2 16 35 45.7

SF3B1 5 51 9.8

SRSF2 4 47 8.5

U2AF1 0 7 0
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