
VAREANT: Users Guide

Page 1

Supplementary Material

VAREANT: Users Guide

Manuscript Title

VAREANT: Bioinformatics application for gene - variant reduction and annotation

Authors

Rishabh Narayanan1, William DeGroat1, Elizabeth Peker1, and Zeeshan Ahmed1, 2, *

Affiliations

1. Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers, The State

University of New Jersey, 112 Paterson St, New Brunswick, 08901, NJ, USA.

2. Department of Medicine, Robert Wood Johnson Medical School, Rutgers Health, 125

Paterson St, New Brunswick, NJ, 08901, USA.

*Corresponding author: Zeeshan Ahmed, Rutgers Institute for Health, Health Care Policy and Aging

Research, Rutgers University, 112 Paterson Street, New Brunswick, 08901, NJ, USA.

(zahmed@ifh.rutgers.edu).

mailto:zahmed@ifh.rutgers.edu

VAREANT: Users Guide

Page 2

Contents
1. Overview .. 3

1.1 Key Features of VAREANT: ... 3
2. VAREANT ... 4

2.1 Pre-processing .. 4
2.1.1 Variant Call Format.. 4
2.1.2 Configuration ... 4

2.2 Variant Annotation .. 6
2.3 AI/ML Ready Data Preparation ... 7

3. Installation and Configuration ... 8
3.1 Preexisting modules .. 8
3.2 Installing VAREANT ... 8

3.2.1 Download from GitHub ... 8
3.2.2 Install Python Environment ... 8
3.2.3 Download Annotation Databases ... 9

3.3 Using VAREANT .. 9
3.3.1 Pre-processing ... 9
3.3.2 Annotation ... 10
3.3.3 AI/ML-Ready Data Preparation .. 10

4. Requirements .. 12
4.1 Hardware Requirements ... 12

References .. 13
Acknowledgments ... 13

VAREANT: Users Guide

Page 3

1. Overview

Analyzing variants in the human genome via Genome-Wide Association Studies (GWAS) holds
promise in improving our understanding of disease causes and treatments [1]. A primary challenge
with genomic analysis lies in its inherently large volume, requiring excessive computation.
Identifying relevant information from these genomic datasets is necessary to design high-quality yet
efficient data analyses. VAriant REduction and ANnoTation (VAREANT) is a powerful bioinformatic
tool to filter, annotate, and extract relevant genomic data from variant datasets. VAREANT has been
validated in two case-studies involving patients with heart failure (HF) and atrial fibrillation (AF). The
following sections provide a detailed description of VAREANT and its usage.

1.1 Key Features of VAREANT:

▪ Customizable Filtering: VAREANT supports a diverse set of user-driven filtering criteria to

create a highly tailored dataset. Variants can be filtered by Ensembl IDs, RS numbers, or

other relevant criteria.

▪ Public Database Variant Annotation: VAREANT leverages SnpEff [2] to annotate datasets

with dbSNP [3], dbNSFP [4], and ClinVar [5] to provide comprehensive metadata about each

filtered variant.

▪ AI/ML Ready Preparation: VAREANT efficiently extracts the variant dataset into a tabular

AI/ML-ready data format, making results more immediately usable for AI/ML analysis.

VAREANT is also capable of extracting variant datasets into a relational SQL schema to

support custom data management workflows.

VAREANT: Users Guide

Page 4

2. VAREANT

2.1 Pre-processing

VAREANT is comprised of three standalone modules: Pre-Processing, Variant Annotation, and AI/ML
Ready Data Preparation. Each module may be used independently or chained together to extract the
most relevant information from a variant dataset.

The Pre-processing module is focused primarily on narrowing down a large variant dataset into a
relevant subset using a series of configurable filtering criteria. For example, the user may use
VAREANT to identify targeted variants pertaining to specific genes, as well as extract annotation-
specific data from the variant file. This module is useful in reducing file sizes to minimize resources
required for downstream processing. Users can identify targeted variants by genes and variant
identifiers, as well as specify which annotations and sample information to retain.

2.1.1 Variant Call Format

VAREANT supports the Variant Call Format (VCF) for representing variant datasets due to its
extensibility and flexibility [6]. VCF files include metadata followed by a list of variants, each
containing information about the chromosome, position, identifiers, reference and alternative
alleles, quality scores, filters, annotations, and sample-specific data. VAREANT is compatible with the
VCF specification and requires that datasets be formatted according to version 4.2.

The specification enumerates three sections present in every VCF file. The first section contains
metadata about the file itself with each line beginning with ‘##’. This metadata might enumerate the
list of filters applied to the variant file, or information about the sampling, etc. The second section is
a single header line which will describe the format of the subsequent rows. This header will start
with a single # and will enumerate the following columns: CHROM, POS, ID, REF, ALT, QUAL, FILTER,
INFO, and optionally a FORMAT column followed by any number of sample identifiers. The first 8
columns are required and present in every dataset. Empty or missing values are indicated with a ‘.’.

VAREANT expects a VCF dataset as input for all three modules, and the Pre-processing and
Annotation modules also output a VCF file.

2.1.2 Configuration

The Pre-processing stage requires a configuration file (ending with a .config.ig extension) that
specifies how VAREANT should filter the dataset. The format of this configuration file is intuitive and
allows for specifying various rulesets for narrowing the input file. Each rule is enumerated on a
separate line and will be in the format “Rule-Name: Value”. The criteria are disjunctively applied to
each variant. All rules are optional and ignored if omitted. The current version of VAREANT supports
8 rules that are enumerated in Table 2.1.1.

Rule Name Description Example

Retain-Info-Entries VCF annotations present in the INFO
column are structured as semicolon-
separated key=value pairs. This rule
allows the user to specify a subset of
annotations as a pipe-separated list

Retain-Info-Entries: AF|DP|CSQ

VAREANT: Users Guide

Page 5

of keys. Only the provided keys are
retained in the filtered dataset.

Retain-Variant-By-
Gene-Symbol

A pipe-separated list of gene
symbols. Only variants belonging to
a specified gene will be retained.
The rest are discarded from the final
dataset. This is useful if the gene set
is known a priori.

Retain-Variant-By-Gene-Symbol:
BRCA2|HBA1|RPL21

Retain-Variant-By-
Ensembl-ID

A pipe-separated list of Ensembl IDs.
All variants found within this list will
be included.

Retain-Variant-By-Ensembl-ID:
ENSG00000129562

Retain-Variant-By-
rsID

A pipe-separated list of RS numbers.
All variants found corresponding to
this list will be included in the
output.

Retain-Variant-By-rsID:
rs2135603633

Retain-If-Passed-
Filters

A VCF file may specify a list of filters
that were applied to each variant, as
well as enumerating which filters
failed. This condition allows the user
to narrow variants only if they pass
all the filters specified in this pipe-
separated list. The keyword “PASS”
can be used to ensure only variants
passing all filters are selected.

Retain-If-Passed-Filters: PASS

Reformat-Genotype Every sample in a VCF file adheres to
a specific format specified in the
FORMAT column. This may include
information like Genotype Quality,
Read Depth, Genotype Phasing, etc.
The VCF specification enforces that
this FORMAT is a colon separated
list of tokens where the first one is
GT (genotype). The user may select
a subset of this information to
retain.

Reformat-Genotype: GT:GQ:DP

Minimum-Quality-
Threshold

This criterion allows the user to filter
for variants that meet a minimum
threshold for quality. This quality
score is represented in the QUAL
column of the VCF file. It must be a
number.

Minimum-Quality-Threshold: 500

Retain-Samples If numerous samples are present
(enumerated as columns following
the FORMAT column), the user may
provide a set of sample IDs to retain.
Any sample not included in this
pipe-separated list will be removed.

Retain-Samples:
SAMPLE1|SAMPLE2|SAMPLE3

Table 2.1.1: Filtering rulesets (criterion) supported by VAREANT.

VAREANT: Users Guide

Page 6

2.2 Variant Annotation

The second module of VAREANT is variant annotation. Annotation involves using public databases to
retrieve relevant, variant-specific metadata. With VAREANT, the user is supported in annotation
using three widely used annotation databases: dbSNP, dbNSFP, and ClinVar.

• dbSNP: dbSNP is a centralized repository of genetic variation is comprised primarily of single

nucleotide polymorphisms (SNPs). It provides useful information in identifying variants.

• dbNSFP: dbNSFP is an aggregated database of pathogenicity scores. Pathogenicity scores

provide insight into the deleteriousness of specific variants. In other words, using various

metrics annotated by dbNSFP, the user can determine whether a specific variant is benign or

pathogenic.

• ClinVar: ClinVar is an archive of variants and their significance in human disease. It provides

useful data about the relationships between each variant and known diseases, which is

useful as a basis for investigating gene-disease associations.

VAREANT uses the SnpEff utility to annotate variant datasets with any combination of these three
databases. It simplifies the workflow by unifying the different annotation scripts.

VAREANT: Users Guide

Page 7

2.3 AI/ML Ready Data Preparation

To prepare variant data for subsequent AI/ML analysis, it is necessary to convert the dataset from a
VCF format to a more AI/ML-ready data structure. VAREANT enables the user to extract relevant
sample and variant information from the VCF file into a tabular data structure, as well as into a
relational SQLite database.

• AI/ML-Ready: The extracted AI/ML-ready data structure is a table with variants as columns

and samples as rows. This is ideal for AI/ML analysis since tabular structures are well

supported by many programming libraries, and easily interpretable.

• SQLite: VAREANT also supports extracting relevant data into a relational data model. The

data model is structured to be compatible with the JWES Entity relationship model [7].

Separate tables for variants, info (annotations), and samples are extracted. The extracted

SQLite file can later be integrated into custom SQL data management workflows.

Each module may be run independently on any valid VCF file. However, we recommend filtering an
input dataset using the Pre-processing module before attempting to extract into an AI/ML-Ready
data format. Doing so will improve runtimes and decrease memory consumption.

VAREANT: Users Guide

Page 8

3. Installation and Configuration

The source code necessary for installing VAREANT is accessible via the GitHub repository of Ahmed
Lab. It is advisable to compile tool using a Python interpreter of version 2.7 or higher. The
annotation phase of VAREANT also requires Java to be installed since SnpEff is invoked as a Java JAR
executable. The user should ensure both Python 2.7+ or Java 8+ are installed on system.

3.1 Preexisting modules

VAREANT codebase uses a few external Python modules for efficient data processing. When
installing, the following modules should also be installed:

• numpy

• pandas

• python-dateutil

• pytz

• six

• tzdata

3.2 Installing VAREANT

3.2.1 Download from GitHub

VAREANT can be installed from our GitHub repository. Follow the provided steps to clone the
repository:

Clone VAREANT GitHub Repository

git clone https://github.com/drzeeshanahmed/Gene_VAREANT.git

Navigate to downloaded folder

cd Gene_VAREANT/

Verify python version >= 3.6

python --version

Verify java version >= 8

java --version

3.2.2 Install Python Environment

Install all Python dependencies listed in the requirements.txt file.

VAREANT: Users Guide

Page 9

pip install -r requirements.txt

3.2.3 Download Annotation Databases

First, download the SnpEff executable from the website
(https://snpeff.blob.core.windows.net/versions/snpEff_latest_core.zip). If the user does not intend
to use VAREANT’s annotation feature, such as if they have their own custom annotation workflow,
this step may be skipped. Once SnpEff is downloaded, locate the path of the ‘SnpSift.jar’ executable.
This is used to annotate the VCF files using the public annotation databases.

The second step involves downloading all relevant annotation databases. VAREANT currently
supports dbSNP, dbNSFP, and ClinVar. The user must download both the compressed VCF file
(.vcf.gz) as well as a corresponding index file (.vcf.gz.tbi). The index file allows for more efficient
processing of large VCF files. As these databases can be very large (tens of GB per database), only
download the databases that are necessary for subsequent analyses. The links to download
database can be found on the GitHub page.

3.3 Using VAREANT

3.3.1 Pre-processing

All modules are executed using the `main.py` script. This script exposes three subcommands that

can be used to execute each of the three stages supported by VAREANT.

To filter a VCF dataset using VAREANT, enter the following command in your terminal window:

python main.py truncate \

 --input $INPUT_VCF \

 --output $OUTPUT_DIR \

 --config $CONFIG_PATH

• $INPUT_VCF: The path to your input dataset. For example, if the dataset is named

‘dataset.vcf’ and is stored in the ‘datasets’ folder, then the user can provide the following

command line argument: `--input datasets/dataset.vcf`

• $OUTPUT_DIR: The path to the folder to save the corresponding output file to. VAREANT

will generate a ‘truncated.vcf’ file within that folder. For example, if the user wants to save

results to the ‘results’ folder, they may provide the option: `--output results/`. If the

folder already exists, the script will first create a timestamped subfolder to avoid overwriting

any files within the folder.

• $CONFIG_PATH: The path to the VAREANT configuration file that controls how VAREANT

processes the input file (refer to section 2.1.2). For example, if the `.config.ig` file is stored in

https://snpeff.blob.core.windows.net/versions/snpEff_latest_core.zip

VAREANT: Users Guide

Page 10

the configuration folder, then the user may provide the option: `--config

configuration/params.config.ig`

3.3.2 Annotation

To annotate a VCF dataset using VAREANT, the user may enter the following command:

python main.py annotate \

 --input $INPUT_VCF \

 --output $OUTPUT_DIR \

 --snpsift $SNPSIFT_JAR \

 --dbsnp $DBSNP_PATH \

 --dbnsfp $DBNSFP_PATH \

 --clinvar $CLINVAR_PATH

• $INPUT_VCF: Refer to section 3.3.1

• $OUTPUT_DIR: Refer to section 3.3.1. Annotation will generate resulting output files based

on which databases are provided. For example, if the user annotates their ‘dataset.vcf’ file

with dbSNP, dbNSFP, and ClinVar, three files will be generated based on the order of

annotation: dbsnp_annotated.vcf, dbnsfp_dbsnp_annotated.vcf and

clinvar_dbnsfp_dbsnp_annotated.vcf.

• $SNPSIFT_JAR: The path to the SnpSift.jar executable that is used for annotation. To use

the executable pre-packaged with VAREANT, the user may use the following command line

argument: `--snpsift snpEff/SnpSift.jar`

• $DBSNP_PATH: This flag is optional and must be provided only if the user wants to

annotate with dbSNP. The provided path must lead to the ‘.vcf.gz’ file for dbSNP (not

distributed with VAREANT). Additionally, a ‘.vcf.gz.tbi’ file with the same name must exist on

the same level. For example, if a ‘dbsnp.vcf.gz’ and a corresponding ‘dbsnp.vcf.gz.tbi’ file

exists in the ‘databases’ folder, the user may provide the following flag: ‘--dbsnp

databases/dbsnp.vcf.gz’

• $DBNSFP_PATH: This flag is also required only if the user wishes to annotate with dbNSFP

(must be downloaded separately). The dbNSFP database is packaged as a `.txt.gz` database

and a corresponding `.txt.gz.tbi` index. The usage is identical to $DBSNP_PATH

• $CLINVAR_PATH: This argument is required only if the user wishes to annotate with

ClinVar (must be downloaded separately). The usage is identical to $DBSNP_PATH

3.3.3 AI/ML-Ready Data Preparation

The following command may be used to extract a VCF file into an AI/ML ready data format.

VAREANT: Users Guide

Page 11

python main.py extract \

 --input $INPUT_VCF \

 --output $OUTPUT_DIR

• $INPUT_VCF: Refer to section 3.3.1

• $OUTPUT_DIR: Refer to section 3.3.1. This extraction phase will generate two resulting

datasets: a variant_db.sqlite file and a cigt_matrix.cigt.csv file. The cigt_matrix.cigt.csv file

represents a tabular matrix containing the different variants per sample. This matrix is easily

used by AI/ML models for predictive analysis. The variant_db.sqlite file represents a

relational structure (adhering to the JWES schema). This can be integrated with existing SQL

workflows or transferred to a different relational database.

For convenience, VAREANT exposes a single command that can be used to chain all three modules
sequentially. This can be run using `python main.py all` and providing the sample flags as

described in sections 3.3.1, 3.3.2, and 3.3.3. More details may be found in the GitHub repository.

VAREANT: Users Guide

Page 12

4. Requirements

VAREANT was designed to excel in low resource environments. It is also fully compatible with all the
major operating systems including MacOS, Windows, and Linux, as well as in high-performance
computing systems. The Pre-processing phase excels in multi-processor environments but is still
effective on single core hardware. Variant Annotation, which uses SnpEff, excels on environments
with adequate memory. AI/ML-Ready Data Preparation also performs well in environments with
sufficient memory capacity.

4.1 Hardware Requirements

For best performance, we recommend having at least the following hardware resources.

▪ Minimum Processor: Single-Core CPU

▪ Minimum Memory: 8GB RAM

▪ Storage: Adequate disk space to accommodate both input, output, all the required

databases for variant annotation, as well as the VAREANT source code itself.

VAREANT: Users Guide

Page 13

References

1. Pang T. (2002). The impact of genomics on global health. American journal of public health,

92(7), 1077–1079. https://doi.org/10.2105/ajph.92.7.1077

2. Cingolani, P., Platts, A., Wang, leL., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., &

Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide

polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2;

iso-3. Fly, 6(2), 80–92. https://doi.org/10.4161/fly.19695

3. Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., & Sirotkin, K.

(2001). dbSNP: the NCBI database of genetic variation. Nucleic acids research, 29(1), 308–

311. https://doi.org/10.1093/nar/29.1.308

4. Liu, X., Li, C., Mou, C., Dong, Y., & Tu, Y. (2020). dbNSFP v4: a comprehensive database of

transcript-specific functional predictions and annotations for human nonsynonymous and

splice-site SNVs. Genome medicine, 12(1), 103. https://doi.org/10.1186/s13073-020-00803-

9

5. Landrum, M. J., Lee, J. M., Benson, M., Brown, G. R., Chao, C., Chitipiralla, S., Gu, B., Hart, J.,

Hoffman, D., Jang, W., Karapetyan, K., Katz, K., Liu, C., Maddipatla, Z., Malheiro, A., McDaniel,

K., Ovetsky, M., Riley, G., Zhou, G., Holmes, J. B., … Maglott, D. R. (2018). ClinVar: improving

access to variant interpretations and supporting evidence. Nucleic acids research, 46(D1),

D1062–D1067. https://doi.org/10.1093/nar/gkx1153

6. Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E.,

Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., Durbin, R., & 1000 Genomes Project

Analysis Group (2011). The variant call format and VCFtools. Bioinformatics (Oxford,

England), 27(15), 2156–2158. https://doi.org/10.1093/bioinformatics/btr330

7. Ahmed, Z., Renart, E. G., Mishra, D., & Zeeshan, S. (2021). JWES: a new pipeline for whole

genome/exome sequence data processing, management, and gene-variant discovery,

annotation, prediction, and genotyping. FEBS open bio, 11(9), 2441–2452.

https://doi.org/10.1002/2211-5463.13261

Acknowledgments

We appreciate great support by the Department of Medicine, Robert Wood John-son Medical
School; Rutgers Institute for Health, Health Care Policy, and Aging Research; and Rutgers Health, at
Rutgers, The State University of New Jersey.

