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Abstract7

The cost of acquiring participants for genome-wide association studies (GWAS) can8

limit sample sizes and inhibit discovery of genetic variants. We introduce the surrogate9

functional false discovery rate (sfFDR) framework which integrates summary statistics of10

related traits to increase power. The sfFDR framework provides estimates of FDR quan-11

tities such as the functional local FDR and q-value, and uses these estimates to derive12

a functional p-value for type I error rate control and a functional local Bayes’ factor for13

post-GWAS analyses (e.g., fine mapping and colocalization). Compared to a standard14

analysis, sfFDR substantially increased power (equivalent to a 60% increase in sample15

size) in a study of obesity-related traits from the UK Biobank, and discovered eight addi-16

tional lead SNPs near genes linked to immune-related responses in a rare disease GWAS17

of eosinophilic granulomatosis with polyangiitis. Collectively, these results highlight the18

utility of exploiting related traits in both small and large studies.19
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1 Introduction20

Genome-wide association studies (GWAS) provide a wealth of genetic data to understand21

the aetiology of human diseases. In a GWAS, the discovery of genetic variants requires an22

adequate sample size to represent the population and maximize statistical power. While in-23

creasing sample size increases variant discovery, the sample size is often limited by the cost24

or availability of participants, particularly in the case of low frequency or rare diseases.25

Given such sample size constraints, an alternative approach is to leverage the ubiquitous26

genetic correlations (i.e., pleiotropy) between related traits to improve variant discovery [1–4].27

One strategy is to use GWAS summary statistics of related traits within a conditional false dis-28

covery rate (cFDR) framework to increase power [5]. While a typical GWAS analysis aims to29

control the probability of at least one false discovery (defined as a variant that does not tag a30

causal variant), the cFDR approach is more liberal in that it controls the expected proportion31

of false discoveries (i.e., the FDR [6]). Previous work on the cFDR has shown a substantial32

increase in power when incorporating GWAS summary statistics of related traits compared to a33

standard GWAS [5,7,8], and thus has been applied in GWAS to enhance discovery of variants34

(see, e.g., [9–12]). However, the utility of cFDR approaches are limited due to computational35

cost and strict assumptions of independence between related traits. Although there are other36

general FDR procedures that can integrate informative data [13–16], it is unclear how to ap-37

propriately incorporate GWAS summary statistics while accommodating for dependence due38

to linkage disequilibrium (LD). Therefore, current approaches can not fully leverage pleiotropy39

from multiple related traits to increase power. More generally, the familiar guarantees of family-40

wise error rate (FWER) control has been a barrier to widespread adoption of FDR methods41

in GWAS, even though the FDR can substantially increase the number of discoveries in ge-42

nomics [17].43

To address these challenges, we develop a novel method that integrates multiple sets of44

GWAS summary statistics within the functional FDR (fFDR) framework [15]. The fFDR frame-45

work was primarily designed for genomic studies and incorporates a single informative variable46

(e.g., epigenetic or per-gene read depth) when constructing FDR quantities of interest, such47

as the functional q-value (a measure of significance in terms of the positive FDR [17, 18]) and48

local FDR (a posterior error probability [19, 20]). Our proposed method, surrogate functional49

FDR (sfFDR), adapts the fFDR to leverage informative data from multiple sets of GWAS sum-50
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mary statistics while accommodating for LD. Importantly, sfFDR is a computationally efficient51

approach and does not assume independence between the related GWAS traits. We also52

derive a new quantity, the functional p-value, that incorporates the GWAS summary statistics53

and can be interpreted like a standard p-value familiar to GWAS practitioners. Finally, we show54

how functional local Bayes’ factors can be calculated from the functional local FDR, allowing55

a range of post-GWAS analyses to incorporate GWAS summary statistics such as functional56

fine mapping and colocalization.57

We apply sfFDR to both small and large sample size GWAS studies to illustrate the power58

improvements compared to a standard GWAS analysis. We first perform comprehensive simu-59

lations to evaluate and compare sfFDR to three general FDR methods extended to our setting.60

We then demonstrate the power improvements in a study of obesity-related traits from the61

UK Biobank. Finally, we apply sfFDR to a rare disease GWAS of eosinophilic granulomatosis62

with polyangiitis (EGPA) and use GWAS summary statistics from related traits (asthma and63

eosinophil count) to substantially increase power compared to a standard GWAS analysis. We64

also show how estimates of the functional local FDR can be used to perform functional fine65

mapping in the EGPA study and thus help identify the causal locus within a genetic region66

(assuming a single causal locus).67

2 Results68

2.1 Overview69

We briefly review the motivation behind the sfFDR framework (see Methods for additional de-70

tails). Consider a GWAS for some trait of interest, referred to as the “primary” GWAS, where71

a p-value is calculated on a SNP-by-SNP basis to assess statistical significance. In a typical72

analysis, the set of SNPs below a genome-wide significance threshold (e.g., p < 5 × 10−8)73

are classified as statistically significant where each SNP is treated equally likely a priori to be74

truly null. However, there is often an abundance of SNP-level information available that can75

alter our prior belief about whether a SNP is more or less likely to be associated with the trait76

of interest. In particular, a valuable source of SNP-level information is from publicly available77

GWAS summary statistics, where traits with similar genetic architecture can be integrated into78

the significance analysis to improve power.79
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Figure 1: Overview of the surrogate functional false discovery rate (sfFDR) framework. (a) Esti-

mate the functional local FDR of the primary GWAS p-values given a set of informative summary

statistics. The functional local FDR values are used for (b) estimating the functional q-value (qf -

value) and functional p-value (pf -value) to control the FDR and family-wise error rate, respectively,

and (c) functional fine mapping.

Our approach, sfFDR, leverages one or several sets of informative GWAS summary statis-80

tics within an extended version of the functional FDR framework [15] to improve the power81

of the primary GWAS (Figure 1). Given p-values from the primary GWAS and one or more82

informative GWAS, z, we first identify a LD-independent subset of SNPs. Using the LD-83

independent SNPs, we estimate the functional local FDR which requires modeling the func-84

tional proportion of truly null hypotheses, π0(z), and the conditional density, f(p | z). We85

estimate π0(z) using a generalized additive model (GAM) and f(p | z) nonparametrically86

where we use a surrogate variable approximation—the ranked estimated π0(z) values—that87

circumvents difficulties with higher dimensional density estimation. The functional local FDR88

of the left-out dependent SNPs are then predicted from the model fit of π0(z) and f(p | z).89

With the estimated functional local FDRs, the functional q-values (referred to throughout as90

qf -value) are constructed for each SNP and measure significance in terms of the positive FDR91
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(pFDR; closely related to FDR [20]). Intuitively, the qf -value is the minimum probability that a92

SNP is null given that it is classified as statistically significant (i.e., the “Bayesian posterior type93

I error” [20]).94

The FDR quantities estimated by the sfFDR framework support a range of analyses for95

GWAS data. In particular, we use the FDR quantities to derive a functional p-value (referred to96

throughout as pf -value), allowing practitioners to control the FWER while incorporating SNP-97

level information. We also use the functional local FDR to derive functional local Bayes’ factors,98

enabling post-GWAS analyses such as functional fine mapping to help identify the causal vari-99

ant in a region (assuming a single causal variant).100

2.2 Evaluating the sfFDR framework101

We performed comprehensive simulations to evaluate the sfFDR framework in two settings102

(Methods). The first setting simulates independent SNPs to allow comparison with other FDR103

approaches while the second generates regions of LD to simulate GWAS data. Since one of104

our applications is a rare disease study, we focus on simulating data to reflect the challenging105

scenario expected in studies of low sample sizes, i.e., the genetic signal is sparse.106

We simulated the p-values for 150,000 independent SNPs in a primary study and three107

informative studies. The signal strength of the studies (i.e., statistical power) was varied as108

“High,” “Medium,” and “Low.” The informative studies overlapped (shared non-null SNPs with109

the primary study) with randomly chosen values between 1.25% and 2.50% of the total number110

of SNPs. At the overlapping tests, the informative studies impacted both the prior probability111

of a SNP being null and the alternative density of the p-values with an effect size strength of112

“Large,” “Moderate,” and “None.”113

We find that the estimated qf -values control the FDR at level 0.01 in all settings (Figure S1),114

even when the informative traits provided no information on the primary trait. Furthermore, the115

estimated qf -values have similar power to the oracle values (i.e., the true qf -values) and sub-116

stantially improved power compared to the standard q-values [18] which were calculated from117

the qvalue package [21] and do not use the informative studies (Figure 2a,S2). In general, as118

the primary or informative studies power increases, or the effect size strength of the informative119

studies is larger, the more information sfFDR uses to increase power. For example, when the120

power of the informative studies is “High,” the power of the primary study is “Medium,” and the121
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Figure 2: Simulation results for the sfFDR framework in the independent SNP simulation study

when the primary study power is “Medium.” (a) The average number of discoveries as a function of

the target false discovery rate (FDR) using the standard q-value (dark orange), functional q-value

from sfFDR (green), and oracle functional q-value (black). (b) The number of discoveries using the

standard p-value (grey), functional p-value from sfFDR (blue), and oracle functional p-value (black)

at a genome-wide significance threshold of 5×10−8. We varied the power of the informative studies

(columns) and the effect size strength of the informative studies (top plot: shape; bottom plot: x-

axis). There were a total of 500 replicates at each setting.

effect size strength is “Large,” the average number of discoveries from the qf -value is 241 at a122

target FDR of 0.01 which is much larger than the standard q-value (94.5). In the same example,123

when the power of the informative studies is “Low,” the number of discoveries decreases (131)124

as expected but is still larger than the standard q-value (67.6).125

We compared the sfFDR framework to other FDR procedures that can incorporate multiple126

informative variables, namely, AdaPT [14], CAMT [16], and an estimator by Boca et al. (2018;127

referred to as the “Boca-Leek” method) [13]. Overall, we find that these methods provide128
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control of the FDR (Figure S1), although the FDR is inflated for CAMT when the primary129

study power is “Low” (Figure S3). Furthermore, sfFDR and CAMT have comparable power130

and outperform AdaPT and Boca-Leek across a range of small FDR thresholds (Figure S3).131

We then compared estimates of the proportion of truly null hypotheses and find that CAMT is132

anti-conservative (predicts more non-null SNPs than exist), AdaPT and Boca-Leek are slightly133

anti-conservative, and sfFDR is conservative (Figure S4). Note that a conservative estimator is134

preferred compared to an anti-conservative one because it does not overestimate the amount135

of signal which can lead to an inflated FDR.136

The estimated qf -value and proportion of truly null tests are then used to construct the pf -137

value in the sfFDR framework. We find that the estimated pf -value controls the type I error rate138

at a significance threshold of 1×10−4 in the independent SNP simulations (Figure S5). We also139

evaluated the number of discoveries at a genome-wide significance threshold of 5× 10−8 and140

compared it to the standard p-values (i.e., the original p-values) and the oracle pf -values (i.e.,141

the true pf -values; Figure 2b,S6). We find that the number of discoveries from the estimated142

pf -values is close to the oracle pf -values in all settings. As expected, the power improvements143

from the pf -value compared to the standard p-value depend on the primary and informative144

studies power along with effect size strength. For example, the higher the power of the primary145

and/or informative studies coupled with a larger effect size strength, the larger the increase in146

the number of detections from the pf -value.147

Finally, we assessed control of the type I error rate and FDR in the dependent SNP setting.148

We first randomly assigned each independent SNP an LD block size based on the empirical149

distribution from the UK Biobank (Methods). Given the block size, we then duplicated the p-150

values for the primary and informative studies so that the LD block was perfectly correlated.151

While this represents an unrealistic scenario, it is a deliberately challenging setting to evaluate152

estimates in the sfFDR framework. Even under such an extreme case, we find that the esti-153

mated pf -value and qf -value from sfFDR controls the type I error rate (Figure S7) and FDR154

(Figure S8, S9), respectively. As expected, due to LD, the observed type I error rate and FDR155

variability is larger compared to the independent SNPs case. Nevertheless, the estimated156

pf -value has a similar variability to the standard p-value.157
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Figure 3: Comparing the functional p-value from sfFDR to the standard p-value from a GWAS

analysis of BMI in the UK Biobank. (a) The number of discoveries as a function of the proportion

of the study sample size (i.e., downsampling proportion) at a significance threshold of 5 × 10−8

and (b) the additional samples required for the GWAS to detect the same number of discoveries as

sfFDR. We split the UK Biobank data into primary and informative studies, each with a sample size

of 190,300. The standard p-values are calculated from the primary study (BMI) while the functional

p-values also leverage summary statistics of additional obesity-related traits (BFP, cholesterol, and

triglycerides) from the informative study.

2.3 sfFDR increases power in GWAS of BMI from UK Biobank158

In order to investigate the behavior of sfFDR in real data, we split 390,600 unrelated individuals159

from the UK Biobank into two separate data sets of equal size (Section 4.6): the first (the160

primary study) was used to detect genetic associations for body mass index (BMI) while the161

second (the informative study) was used to provide p-values for body fat percentage (BFP),162

triglycerides, and cholesterol as informative traits. We then conducted a sfFDR analysis of163

BMI informed by the three obesity-related traits and compared it to a standard GWAS analysis164

of BMI.165

We downsampled the primary study to examine the behavior of sfFDR at different sample166

sizes. We find that the number of discoveries from sfFDR is substantially larger than the167

standard GWAS analysis across a range of sample sizes (Figure 3a). Furthermore, we find168

that the discoveries made with the pf -values from sfFDR are nearly all a subset of those169
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made by meta-analysis of both data sets (BMI only; Figure S10), suggesting that the additional170

discoveries are a subset of those that would be found by increasing the sample size. Thus,171

these results demonstrate the potential of sfFDR to substantially increase the power in GWAS172

studies by leveraging related traits.173

The improvements in statistical power from sfFDR can also be translated in terms of sample174

size (Figure 3b). At each downsampling proportion, we predicted the sample size needed for175

the standard p-values to detect the same number of discoveries as the pf -values from sfFDR.176

The difference in sample sizes between these values is the number of additional samples re-177

quired for the standard p-value to match the discoveries found by the pf -value. We find that the178

number of additional samples required is quite substantial at each downsampling proportion.179

For example, at a downsampling proportion of 0.4 (sample size of 76,120), the number of addi-180

tional samples required is approximately 57,000 (a ∼75% increase in sample size). Averaged181

across all downsampling proportions, we find that the power improvements from sfFDR equate182

to a ∼60% increase in sample size.183

To assess sfFDR under a scenario where the conditioning traits are uninformative, we184

permuted trait values in the informative study 10 times to generate traits that were uncorre-185

lated with the primary study trait (BMI) while conserving the between trait correlations. We186

find that the pf -value from sfFDR does not find more discoveries compared to the standard187

p-value (Figure S11) and tends to underestimate the true value at small p-values (i.e., con-188

servative). We note that a conservative estimator is desired in the null setting compared to189

an anti-conservative one which would inflate the type I error rate. Furthermore, this behav-190

ior is expected due to the conservative estimate of the functional proportion of truly null hy-191

potheses from sfFDR (see Methods). In general, since the pf -value is incorporating additional192

non-informative data, it is a less accurate (or “noisy”) estimator of the standard p-value. Impor-193

tantly, we find that using uninformative traits does not systematically inflate the significance of194

the pf -values in real data, agreeing with our simulation results.195

2.4 sfFDR reveals new genetic variants in the EGPA study196

The sfFDR framework offers potential benefits in the rare disease setting because it is difficult197

and costly to acquire additional samples to improve power. As such, we applied the sfFDR198

framework to a GWAS of EGPA (676 cases and 6,809 controls) [12], which is a rare inflam-199
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matory disease with a prevalence of around 45.6 per 1,000,000 individuals in the UK [22].200

The aetiology of EGPA unknown but is often characterized with other clinical features such as201

asthma and low eosinophil count [12]. Therefore, these traits are strong candidates to increase202

power in the EGPA study. We used a publicly available GWAS of childhood-onset asthma203

(13,962 cases and 300,671 controls) [23], adult-onset asthma (26,582 cases and 300,671 con-204

trols) [23], and eosinophil count (172,275 individuals) [24] as our informative studies. After205

removing non-overlapping SNPs between EGPA and the informative traits, there were a total206

of 8,195,277 SNPs used within the sfFDR framework (Section 4.7).207

We first evaluated the behavior of the sfFDR framework on EGPA with a set of unrelated208

traits. Using the permuted null obesity-related traits (unassociated with EGPA) from the UK209

Biobank analysis, we find that the estimated pf -value from sfFDR tends to be slightly larger210

than the standard p-value (Figure S12). Thus, similar to the above the BMI study, the pf -value211

from sfFDR conservatively estimates the standard p-value for non-informative traits. Since212

the permuted traits do not have any association signal, we also used the original traits (i.e.,213

unpermuted) as a set of non-null unrelated traits. On this single realization, the estimated214

pf -value may be smaller than the standard p-value, but on average tends to be slightly larger215

(Figure S13). Importantly, the estimated pf -values do not find any newly significant SNPs at216

the genome-wide significance threshold. Thus, non-informative data does not inflate the type I217

error rate in the rare disease setting.218

We then applied the sfFDR framework to the EGPA study using the EGPA-informative traits219

(computational time was ∼5.40 minutes on a single core of a Apple M3 processor) and find a220

substantial increase in the number of discoveries compared to the standard p-values (Figure 4,221

5). We first note that the prior probability of a SNP being null for EGPA varies as a function222

of the informative traits p-values, suggesting a shared genetic architecture between traits (Fig-223

ure 4a). Furthermore, as a function of significance threshold, the pf -values from sfFDR find224

substantially more discoveries than the standard p-values (Figure 4b-c). For example, at the225

genome-wide significance threshold, there 226 discoveries using the pf -values and 15 dis-226

coveries using the standard p-values. Of those discoveries, sfFDR identified ten lead SNPs227

(i.e., independent associations) instead of two by a standard GWAS analysis (Table 1). One228

feature of the sfFDR framework is that the pf -value can be mapped to the qf -value to control229

the FDR (Figure 4d). At the genome-wide significance threshold, we find that the estimated230
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Figure 4: Significance results for the EGPA study. (a) The prior probability of a test being null as

a function of the surrogate variable; (b) The functional p-value from sfFDR versus the standard p-

value of the study; (c) The number of significant tests at various p-value thresholds for the functional

and standard p-values. (d) The functional q-value versus functional p-value relationship. The above

plot shows SNPs with standard p-values below 1 × 10−4 in (a)-(b) and functional p-values below

5× 10−8 in (c)-(d).

qf -value is 1.75 × 10−3, which implies that there are 0.39 expected false discoveries (defined231

as a significant SNP that does not tag a causal SNP) in our discovery set of 226 SNPs. Thus,232

the mapping to a FDR analysis allows the practitioner to choose a data-adaptive significance233

threshold to control the expected number of false discoveries that they are willing to incur in234

their analysis.235

We focus our analysis on ten lead SNPs with a pf -value below the genome-wide signifi-236

cance threshold (Table 1). After assigning SNPs to the nearest gene, we find that the original237

analysis with the standard p-values only identified two lead SNPs near BCL2L1 and TSLP238

while the pf -values from sfFDR identified eight additional genes. At these genes, the lead239

SNPs are either intergenic (GATA3), intronic (BACH2, BCL2L11, IRF1, RUNX1, TPRG1, and240

ZNF652), or upstream (IKZF4, LRRC32, and TSLP). Furthermore, the direction of the effect241
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Figure 5: Manhattan plot of the (a) standard p-values and the (b) functional p-values (pf -values)

from sfFDR in the EGPA study. The red line represents the genome-wide significance threshold of

5 × 10−8. The lead SNPs were assigned to the nearest genes. Note that p-values below 0.05 are

removed from the plot.

size is consistent across EGPA and the informative traits at these lead SNPs, even though the242

direction of the effect size is not used by the sfFDR framework.243

Many of the new discoveries found by sfFDR are implicated in immune-related processes.244

For example, ABI3 (161 kb from rs12952581) and GATA3 have been linked to eosinophil245

counts and asthma [25], respectively, as well as LRRC32 which encodes the eosinophilic246

esophagitis-associated TGF-β membrane binding protein GARP. Additionally, IRF1 encodes a247

protein that activates genes involved in pro-inflammatory regulation and has been associated248

with childhood allergic asthma [26] where it may also have sex-specific effects [27]. Interest-249

ingly, RUNX1 may be a prognostic marker for some cancers [28,29], and there is evidence that250

the RUNX1 transcription factor is involved with Th2 cell differentiation (key for the activation of251

eosinophils) by decreasing GATA3 expression [30].252

One standard post-GWAS analysis is fine mapping. We fine mapped each associated253
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region using a standard single causal variant approach with either the functional local Bayes’254

factor estimated by sfFDR or the approximate Bayes’ factor (Section 4.4) [31]. Of the two255

genome-wide significant regions identified by the standard p-values (i.e., TSLP and BCL2L11),256

we find 1 and 14 SNPs in the 95% credible set without incorporating informative data compared257

to 1 and 13 SNPs using sfFDR, respectively. When extended to all the regions found by sfFDR,258

we find that credible sets are smaller in 7 cases (substantially in 5 cases), unchanged in 1 and259

larger in 2, and so a smaller credible set size is not guaranteed (Table S1). We also calculated260

the proportion of SNPs in the sfFDR credible sets that overlap with the credible sets of the261

informative traits (Table S2). Overall, we find that the sfFDR credible sets strongly overlap262

with the informative traits (most with eosinophil count) except at the locus in RUNX1 where263

only 7.70% and 8.10% of the SNPs overlap with the credible set for adult-onset asthma and264

childhood-onset asthma, respectively.265
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Informative traits

EGPA ASTAO ASTCO EOSC

Chr rsid Gene MAF β P β P β P β P Pf Qf

5 rs1837253:C>T TSLP 0.258 −0.41 7.96× 10−10 −0.08 1.50× 10−17 −0.17 5.50× 10−37 −0.04 1.89× 10−22 5.35× 10−14 4.27× 10−7

2 rs144569746:T>C BCL2L11 0.107 −0.57 1.54× 10−9 −0.06 1.70× 10−5 −0.06 2.80× 10−3 −0.06 2.57× 10−26 1.51× 10−12 6.01× 10−6

5 rs10066308:A>G IRF1 0.305 −0.35 6.95× 10−8 −0.07 2.30× 10−13 −0.09 5.10× 10−13 −0.04 8.18× 10−32 1.33× 10−11 1.18× 10−5

10 rs7898135:A>C GATA3 0.283 0.31 2.72× 10−6 0.10 1.20× 10−26 0.10 1.50× 10−14 0.04 6.97× 10−23 2.01× 10−10 5.74× 10−5

6 rs11754356:T>C BACH2 0.394 0.27 7.14× 10−6 0.05 2.70× 10−10 0.09 1.10× 10−13 0.03 4.80× 10−19 4.90× 10−10 1.12× 10−4

21 rs8133843:A>G RUNX1 0.373 −0.30 9.69× 10−7 −0.04 4.40× 10−5 −0.02 3.90× 10−2 −0.03 7.90× 10−12 2.95× 10−9 3.51× 10−4

3 rs9825301:T>G TPRG1 0.314 −0.29 4.05× 10−6 −0.03 1.60× 10−4 −0.05 1.30× 10−5 −0.03 1.51× 10−14 6.82× 10−9 5.73× 10−4

17 rs12952581:A>G ZNF652 0.143 −0.24 7.96× 10−5 −0.05 1.90× 10−7 −0.09 8.40× 10−14 −0.03 2.67× 10−13 3.29× 10−8 1.39× 10−3

12 rs10876864:A>G IKZF4 0.416 0.23 1.19× 10−4 0.06 1.40× 10−12 0.10 1.10× 10−17 0.03 6.24× 10−13 3.61× 10−8 1.47× 10−3

11 rs7927997:T>C LRRC32 0.395 −0.22 2.37× 10−4 −0.08 5.20× 10−19 −0.17 6.20× 10−46 −0.04 7.32× 10−27 3.86× 10−8 1.53× 10−3

Table 1: Functional p-values (Pf ) and q-values (Qf ) of the lead SNPs from the EGPA analysis.

The SNP identifiers are given as rsid:reference_allele>effect_allele. The informative traits were

adult-onset asthma (ASTAO), childhood-onset asthma (ASTCO), and eosinophil count (EOSC).
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3 Discussion266

We proposed a new approach, surrogate functional FDR (sfFDR), to improve power in a GWAS267

by leveraging summary statistics of related traits. sfFDR extends the fFDR framework [15] to268

integrate multiple sets of GWAS summary statistics while accommodating for LD. Although we269

find that sfFDR can exploit pleiotropy to substantially enhance discovery of genetic variants,270

FDR approaches have not been widely adopted by the GWAS community despite being com-271

monly used in eQTL mapping. Instead, perhaps due to the abundance of non-reproducible272

results in earlier candidate gene studies, the preference is to control the FWER in a standard273

GWAS analysis. Therefore, to help GWAS practitioners leverage the power improvements from274

functional FDR quantities, we derived the functional p-value which has a standard p-value in-275

terpretation and can be used in a FWER-controlling procedure while incorporating informative276

data.277

The sfFDR framework allows for a range of significance analyses in a GWAS. More specif-278

ically, sfFDR provides estimates of the functional q-value (a significance measure in terms279

of the pFDR) and the functional p-value (a significance measure in terms of the type I error280

rate). These quantities can be used to map between an FDR threshold and FWER threshold281

to provide an interpretation for the set of SNPs deemed statistically significant. This is useful282

for interpreting genetic findings in a GWAS and, more generally, as a data-adaptive way to ex-283

plore the impact of false discoveries instead of an automatic application of a fixed genome-wide284

significance threshold. Another FDR quantity estimated by sfFDR, the functional local FDR,285

provides a simple way to calculate functional local Bayes’ factors which are key quantities in286

many post-GWAS analyses. We used it here to perform functional fine mapping under a single287

causal variant assumption, but it could also be used to enhance colocalization analysis using288

the coloc approach [32,33].289

Our simulation results have implications for the design of pleiotropy-informed significance290

analyses. As expected, the power improvements with sfFDR increased whenever the study291

power increased, for both the primary and informative study. As such, practitioners should292

identify informative traits that are high-powered from large GWAS studies. Fortunately, there is293

a large collection of GWAS summary statistics in publicly available repositories for thousands294

of complex traits (see, e.g., [3,34]), although selecting the informative traits a priori will require295

careful consideration to avoid model selection (and fitting) problems. While our method can296
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incorporate many informative studies, handling a very large number may require dimensionality297

reduction (e.g., principal component analysis [35] or sliced inverse regression [36]), variable298

selection, or regularization for stable model fitting in sfFDR. Finally, it is worth noting that our299

approach is not immune to sources that may bias summary statistics such as ancestry [37] or300

non-random sampling with respect to the reference population (e.g., participation bias [38]). In301

particular, if ancestry is unaccounted for in both the primary and informative studies, then there302

is a risk that ancestry-informative SNPs could be elevated by sfFDR. Therefore, it is important303

to only consider studies that adopt robust analytical strategies.304

There are a few important observations when applying the sfFDR framework to GWAS305

data. First, estimating the prior probability of the null hypothesis (or functional proportion of306

truly null hypotheses) using a GAM requires specifying the relationship between the probability307

of a SNP being null and the informative traits. In this work, we used a natural cubic spline to308

flexibly model this relationship but knots have to be carefully chosen at locations where SNPs309

from the alternative hypothesis are likely to be located (i.e., small p-values). Our software310

includes a user-friendly function to help practitioners construct such design matrices when311

fitting a GAM or general linear model. Second, while we found the surrogate variable based on312

the functional proportion of truly null hypotheses performed well in this study, it is possible that313

there may be better surrogate variable choices or the nonparametric density estimation could314

be extended to incorporate multiple variables [15]. Third, since it is not possible to distinguish315

whether a (tagged) SNP is a true discovery or is capturing a nearby causal SNP due to LD,316

we defined a true discovery as a SNP that either tags or is the causal SNP. Our simulation317

study showed that, if the LD regions are independent of the status of a SNP being truly null,318

then the functional q-value controls the FDR and the functional p-value controls the type I error319

rate. Finally, we have assumed that subjects in the primary study are not also included in the320

informative studies, so that the sets of p-values are independent under the null hypothesis.321

A limiting factor for discovering genetic variants in a GWAS is the cost of acquiring samples.322

In this work, we demonstrate the utility of exploiting pleiotropy in a significance analysis for both323

small and large studies as a cost-effective strategy to increase power. While our emphasis is on324

leveraging pleiotropy from GWAS summary statistics, there is a large body of existing datasets325

to further increase statistical power, such as functional annotations in various cell types or326

states, expression-level data, or minor allele frequency. As such, we anticipate that sfFDR327
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will have broader applications in genome-wide studies as a general framework that integrates328

informative data and provides a cost-effective way to improve power.329

Availability of data and materials330

sfFDR is publicly available in the R package sffdr and can be downloaded at https://331

github.com/ajbass/sffdr. The code to reproduce the results in this work can be found at332

https://github.com/ajbass/sffdr_manuscript and the GWAS summary statistics used in333

the EGPA analysis are publicly available to download at https://www.ebi.ac.uk/gwas. Ac-334

cess to the UK Biobank data can be requested at https://www.ukbiobank.ac.uk/enable-your-research/335

apply-for-access.336
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4 Methods344

4.1 Overview345

We first review the theory behind the functional false discovery rate (FDR) framework [15]346

and then introduce the functional p-value. Consider a GWAS study with p-values Pi for i =347

1, 2, . . . ,m SNPs. We initially assume that the p-values are approximately independent (via348

pruning or clumping) and identically distributed random variables (linkage disequilibrium con-349

sidered in Section 4.3). The p-values follow a two group mixture model composed of SNPs that350

are not associated (i.e., null) with probability π0 or are associated (i.e., non-null or alternative)351

with probability 1− π0. Let the status of SNP that is null be denoted by Hi = 0 and one that is352

non-null be denoted by Hi = 1. Suppose that there are d sets of informative GWAS summary353

statistics, Zi = (Zi1, Zi2, . . . , Zid), that can influence (i) the prior probability of a SNP being354

null, i.e., (H | Z = z) ∼ Bernoulli(1− π0(z)) and/or (ii) the distribution of the p-values under355

the alternative hypothesis, i.e., (P | H = 1,Z = z) ∼ F1(· | z) where F1 is some distribution356

stochastically smaller than the Uniform distribution. Since we assume that individuals from357

the primary study are not in the informative studies, the summary statistics do not impact the358

p-values under the null hypothesis, i.e., (P | H = 0,Z = z) = (P | H = 0) ∼ Uniform(0, 1).359

It is worth noting that the informative studies can share individuals between themselves.360

Given the above assumptions, we can define a decision rule that incorporates the p-values361

and summary statistics to identify statistically significant SNPs. In particular, without loss of362

generality, we assume that the informative statistics are transformed to be uniformly distributed363

on the unit interval by using ranks. The significance region, Γ ∈ [0, 1]1+d, for the statistic364

T = (P,Z) is defined as365

Γτ =
{
(p, z) ∈ [0, 1]1+d : Λ(p, z) ≤ τ

}
, (1)366

where τ ∈ [0, 1] is a significance threshold and367

Λ(p,z) = Pr(H = 0 | T = (p, z))

=
f(p | H = 0, z) Pr(H = 0 | z)

f(p | z)
=

Pr(H = 0 | z)
f(p | z)

=
π0(z)

f(p | z)
(2)368

is the probability that a SNP is a false discovery given the observed data (i.e., the posterior369

error probability). Intuitively, the significance region classifies a set of SNPs with posterior error370
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probabilities less than or equal to some threshold τ as “statistically significant.” The posterior371

error probability in this context is referred to as the functional local FDR and it is the optimal372

statistic for the Bayes rule with Bayes error [15]. As such, our strategy to optimally incorporate373

the summary statistic data is based on the functional local FDR.374

Using the significance region in equation 1, we can construct the functional q-value (qf -375

value) and p-value (pf -value) which are different measures of significance for a SNP. Formally,376

the qf -value is the minimum positive FDR (pFDR; closely related quantity to FDR) incurred377

when calling a SNP statistically significant [15, 18] while the pf -value is the minimum type I378

error rate incurred when calling a SNP statistically significant. We note that these quantities379

have a Bayesian interpretation: the pFDR is the probability of a SNP being null given that it380

is classified as statistically significant [20], pFDR(Γτ ) = Pr(H = 0 | T ∈ Γτ ), and the type381

I error rate is the probability of a SNP being classified as statistically significant given that it382

is null, Pr(T ∈ Γτ | H = 0). Thus, for an observed statistic t = (p, z), we can express the383

qf -value as384

qf (p, z) = inf
{Γτ : t∈Γτ}

pFDR(Γτ ) = pFDR(ΓΛ(p,z)), (3)385

and the pf -value as386

pf (p, z) = inf
{Γτ : t∈Γτ}

Pr(T ∈ Γτ | H = 0) = Pr(T ∈ ΓΛ(p,z))×
qf (p, z)

π0
, (4)387

where Pr(T ∈ ΓΛ(p,z)) is the cumulative distribution function. While the definition of the pf -388

value is the same as a standard p-value, we call it “functional” to emphasize that it is a function389

of the informative data.390

The qf -value and pf -value are complementary quantities in a significance analysis: the391

former allows a researcher to decide the expected number of false discoveries they are willing392

to incur in the study while the latter allows for a standard p-value interpretation. We can use393

such measures of significance to identify statistically significant SNPs by either rejecting SNPs394

with a pf -value below a significance threshold (e.g., 5 × 10−8) or a qf -value below a desired395

FDR level. The mapping between the qf -value and pf -value provides different interpretations396

for the set of statistically significant SNPs, and thus connects a standard GWAS analysis to a397

FDR analysis while incorporating the informative data. In the next section, we discuss how to398

construct estimates of the functional local FDR, qf -value, and pf -value.399
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4.2 Estimating the functional local FDR, qf -value, and pf -value in the surrogate400

functional FDR framework401

We first review construction of the qf -value and pf -value and then estimation in the surrogate402

functional FDR (sfFDR) framework. Given the significance region defined by equation 1, the403

qf -value for the ith SNP is404

qf (pi, zi) =
1

|Si|
∑
j∈Si

Λ(pj , zj), (5)405

where Si = {j : Λ(pj , zj) ≤ Λ(pi, zi)} is the set of SNPs with functional local FDRs below the406

value of the ith SNP [15]. The corresponding pf -value is then407

pf (pi, zi) = Pr
(
T ∈ ΓΛ(pi,zi)

)
×

qf (pi, zi)

π0
. (6)408

Since the qf -value and pf -value can be constructed from the functional local FDR (i.e., Λ(p,z) =409

π0(z)
f(p|z) ), the primary quantities to estimate are π0(z) and f(p | z).410

The sfFDR framework provides estimates of the above quantities by extending the func-411

tional FDR framework to incorporate multiple GWAS summary statistics. In particular, we esti-412

mate π0(z) by minimizing the mean integral squared error using a generalized additive model413

(GAM) and f(p | z) nonparametrically using a local likelihood kernel density estimator (KDE).414

We describe further details below and extend our discussion to include linkage disequilibrium415

in Section 4.3.416

Estimation of π0(z) We extend the generalized additive model (GAM) method from ref. [15]417

to multiple informative variables. Let ηλ(z) = 1{P>λ|Z=z} denote a binary response variable418

where it follows that E[ηλ(z)] = Pr(P > λ | Z = z) ≥ Pr(P > λ | H = 0,Z = z) Pr(H = 0 |419

Z = z) = (1 − λ)π0(z) for some λ ∈ [0, 1). Given a set of informative variables, the general420

model is421

logit(E[ηλ(z)]) = β0 +

d∑
k=1

fk(zk), (7)422

where logit(x) = log
(

x
1−x

)
, β0 is a constant, and fk(zk) is some function of the kth informa-423

tive variable. In this work, we use a natural cubic spline with knots chosen at specified quantiles424

(described below). Note that the above model allows for non-linear relationships and conser-425

vatively estimates the prior probabilities (or functional proportion of truly null hypotheses) at a426

given λ, i.e., E[ηλ(z)]
1−λ ≥ π0(z).427
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We implement the following algorithm to estimate the functional proportion of truly null hy-428

potheses. We first place the knots at regions that are likely to contain alternative p-values, i.e.,429

the knots should be dispersed around small values (or lower quantiles) of zk. These regions430

will vary based on the signal density and power of the informative studies. We then fit the431

above model at λ = 0.05, 0.1, . . . , 0.9 and choose the fit that minimizes the mean squared432

integral squared error (MISE; see ref. [15]). The estimated functional proportion of truly null433

hypotheses at this minimum λ is π̂0(z;λmin) =
Ê[ηλmin

(z)]

1−λmin
, and, as discussed above, is con-434

servative. We note that if the test statistics are used (instead of p-values) then the knots should435

be placed where the signal is expected (i.e., the lower and/or upper tails of the distribution).436

Estimation of f(p | z) A challenge with nonparametric density estimation is that the joint437

density is difficult to estimate as the number of variables increases. We circumvent this dif-438

ficulty by constructing a surrogate (or compressed) variable to reduce the dimensionality. In439

particular, we construct a surrogate variable based on π0(z): let ri = r∗i /m be the uniform440

quantile transformation of π0(zi) for i = 1, 2, . . . ,m, where r∗i is the rank of the ith hypothesis441

(any ties are randomly assigned). We then estimate the density of f(p | r) = f(p,r)
f(r) = f(p, r)442

instead of f(p | z), which is more tractable when there are many informative variables. To443

estimate f(p, r), we use a local likelihood KDE on the probit-transformed scale [15, 39]. The444

nearest neighbor smoothing parameter is chosen to be the estimated proportion of truly alter-445

native tests of the p-values, i.e., the smoothing neighborhood covers 100 × (1 − π0)% of the446

data. Note that if 1− π0 < 0.02 then we set the smoothing parameter to be 0.02.447

In summary, we approximate the functional local FDR as448

Λ(p,z) ≈ π0(z)
f(r)

f(p, r)
=

π0(z)

f(p, r)
, (8)449

where the surrogate variable r is uniform quantile transformation of π0(z) and f(r) = 1.450

We refer to the above approximation as surrogate functional FDR (sfFDR) to emphasize that451

it is based on the surrogate variable r. Importantly, sfFDR reduces the dimensionality for452

tractable nonparametric density estimation. With the estimated (approximate) functional local453

FDR, we can then estimate the qf -value and pf -value as q̂f (pi, zi) =
1

|Si|
∑

j∈Si
Λ̂(pj , zj) and454

p̂f (pi, zi) = P̂r
(
T ∈ Γ

Λ̂(pi,zi)

)
× q̂(pi,zi)

π̂0
, respectively. We note that P̂r

(
T ∈ Γ

Λ̂(pi,zi)

)
is the455
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empirical CDF of the functional local FDRs and that the prior probability can be estimated as456

π̂0 =
1
m

∑m
i=1 π̂0(zi;λmin) or using the maximum qf -value in the study.457

4.3 Extending the sfFDR framework to include SNPs in linkage disequilibrium458

Thus far, we have assumed that a subset of SNPs have been selected to be approximately459

independent via pruning or clumping (i.e., no LD present). While this may be useful to under-460

stand a regions contribution to phenotypic variation, it is difficult to select the “best” represen-461

tative SNP in an LD region. Therefore, we extend the sfFDR framework to circumvent such462

difficulty by providing a measure of significance for each SNP (including SNPs in LD) while463

incorporating the informative data.464

To extend the sfFDR framework, we first model the proportion of truly null hypotheses,465

π0(z), and the joint density, f(p, r), on a set of LD-independent SNPs and then use the fitted466

curves to predict the corresponding values of the left-out SNPs (i.e., SNPs in LD; Figure 1).467

More specifically, we identify a subset of LD-independent SNPs via pruning, clumping, or by468

using the informative traits (see Section 4.7). Using the LD-independent SNPs, we apply469

the GAM method to estimate π0(z) and use the fitted curve to predict π0(z) of the left-out470

SNPs. After constructing the surrogate variable from the estimated π0(z), the joint density,471

f(p, r), and the marginal density, f(r), are estimated using the LD-independent SNPs. We472

note that the marginal density of the surrogate variable may not follow a uniform distribution473

when including SNPs in LD (i.e., f(r) ̸= 1). As such, we estimate the marginal density using a474

nonparametric KDE. Finally, the density values for the left-out SNPs are predicted from these475

fitted density curves. We can then estimate the functional local FDR (Λ(p,z) ≈ π0(z)
f(r)
f(p,r) )476

along with the corresponding qf -value and pf -value as outlined in Section 4.2.477

4.4 Fine mapping with the functional local FDR478

The FDR quantities estimated from the sfFDR framework can be used to perform fine mapping479

under the assumption that there is a single causal variant in a region [40]. More specifically,480

suppose there are j = 1, 2, . . . , L variants in a region of interest. The functional local Bayes’481

22

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2024. ; https://doi.org/10.1101/2024.09.24.24314276doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.24.24314276
http://creativecommons.org/licenses/by/4.0/


factor (BF) can be expressed in terms of the functional local FDR as482

BF(p, z) =
Pr(H = 0)

Pr(H = 1)
× Pr(H = 1 | p, z)

Pr(H = 0 | p, z)
,

=
π0

1− π0
× 1− Λ(p,z)

Λ(p,z)
,

(9)483

where π0 is the prior probability of the null hypothesis and Λ(p,z) is the functional local FDR.484

Under the assumption of a single causal variant in the region, the posterior probability (PP) for485

the ith SNP is486

PP(pi, zi) =
BF(pi, zi)∑L
j=1BF(pj , zj)

, (10)487

where we have implicitly assumed a uniform prior on any variant being the causal variant488

[40]. Therefore, the sfFDR framework provides estimates of the functional local BF and the489

corresponding PP for each SNP to help identify the causal locus. More generally, since the490

sfFDR framework incorporates SNP-level data, it is a novel framework to perform functional491

fine mapping. Note that the functional local BFs can also be used in any post-GWAS analysis492

in place of approximate BFs [31]. For example, while we do not explore it in this work, the493

functional local BFs estimated by sfFDR can also be used to perform colocalization [32, 33]494

while integrating informative data.495

4.5 Simulation study496

We conducted comprehensive simulations to assess the performance of the sfFDR framework.497

We simulated 150,000 independent hypotheses for the primary study with corresponding sum-498

mary statistics for k = 1, 2, 3 informative studies. The proportion of null hypotheses was499

simulated as π
(k)
0 ∼ Uniform[1− γ, 1− γ/2], where the first 1− π

(k)
0 p-values were generated500

from the alternative distribution and the remaining were generated from the null distribution501

(standard Uniform distribution). We fixed the number of shared tests from the alternative hy-502

pothesis (i.e., overlap) between the informative studies and our primary study to be γ = 0.025503

(a low level of overlap). Under the alternative hypothesis, we assumed the p-values followed504

a Beta(α, 5), where α = 2 for the “High” signal strength (or density), α = 3 for the “Medium”505

signal strength, and α = 4 for the “Low” signal strength cases. We describe below how the506

informative studies p-values (denoted by z = (z1, z2, z3)) influenced the prior probability π0(z)507

and the alternative density f1(p | z) of the primary study p-values.508
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Prior probability π0(z) The relationship between the probability of a hypothesis test being509

truly null and the informative summary statistics was generated as follows. Define the function510

ϕ(k)(zk) =


0.98×

(
zk

π
(k)
0

)a

, if zk < π
(k)
0 and H(k) = 1

0.98, otherwise
511

where a = 0.6 for the “Large” effect size strength case, a = 0.3 for the “Moderate” effect size512

strength case, and H(k) = 1 for a test that is truly alternative in the kth informative study. The513

average of these components are then used to construct the prior probability of a hypothesis514

being null,515

π0(z) =

∑3
k=1 ϕ

(k)(zk)

3
.516

This relationship reflects the expected behavior where the prior probability decreases as the in-517

formative p-value decreases for shared alternatives. Using the prior probabilities, we then draw518

the true status of the i = 1, 2, . . . ,m hypotheses as (Hi | Zi = zi) ∼ Bernoulli(1 − π0(zi)).519

Under the null hypothesis (i.e., H = 0), the p-values follow a standard uniform distribution,520

i.e., (P | H = 0,Z = z) ∼ Uniform(0, 1). We describe the distribution under the alternative521

hypothesis (i.e., H = 1) below.522

Alternative density f1(p | z) Under the alternative hypothesis, the distribution of the p-523

values depends on the informative variables. In particular, define the function524

r(k)(zk) =


zk

π
(k)
0

, if zk < π
(k)
0 and H(k) = 1

1, otherwise
525

and526

r∗(z) =

∑3
k=1 r

(k)(zk)

3
.527

We assumed that the p-values follow a beta distribution under the alternative hypothesis, i.e.,528

(P | H = 1,Z = z) ∼ Beta(α(z), 5), where α(z) = α0 − c × (1 − r∗(z)). The parameter529

α0 controls the signal strength (or density) of the alternative distribution and the parameter c530

controls the effect size strength of the informative summary statistics. We considered α0 = 0.3531

for the “High” signal strength, α0 = 0.4 for the “Medium” signal strength, and α0 = 0.5 for532

the “Low” signal strength cases. The parameter c = α0/2 when the informative studies have533
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a “Large” effect size strength and c = α0/4 when the informative studies have a “Moderate”534

effect size strength.535

In total, there were 500 replicates at each combination of primary study signal strength,536

informative study signal strength, and the effect size strength of the informative studies. We537

also considered the scenario where the informative summary statistics have no impact on the538

primary p-values and so π0(z) = 0.98 and α = α0. For the pf -values, we evaluated the539

type I error rate at a threshold of 1 × 10−4 and the power at 5 × 10−8. For the qf -values,540

we evaluated the FDR at level 0.01 and the accuracy of the estimated proportion of truly null541

tests. We then compared the sfFDR framework to three different FDR procedures that can542

incorporate informative variables, namely, AdaPT [14], CAMT [16], and an estimator by Boca543

et al. (2018; referred to as the “Boca-Leek” method) [13]. The default settings of each software544

were used where the inputs were standardized (i.e., the informative summary statistics and the545

design matrix for the prior probability) across implementations. To assess our method under546

LD, for the i = 1, 2, . . . ,m independent tests, we replicated the p-value and corresponding547

informative summary statistics si times, where si is drawn from the empirical distribution of the548

LD block sizes estimated using the UK Biobank (see Section 4.6). This reflects an extreme549

scenario where the SNPs in LD are perfectly correlated.550

4.6 UK Biobank study551

The UK Biobank is a repository of genetic, lifestyle, and health information for over half a552

million UK participants [41, 42]. Our analysis used four obesity-related traits that were rank-553

based inverse normal transformed, namely, body mass index (BMI), body fat percentage (BFP),554

cholesterol, and triglycerides. We restricted our analysis to 380,600 unrelated individuals with555

British ancestry. We then split the UK Biobank into two equal parts of size 190,300 where one556

part was used as the “primary” study and the other was the “informative” study.557

Our trait of interest in the primary study was BMI and the informative traits were BFP,558

cholesterol, and triglycerides. We downsampled the primary study to 10%, 20%, . . . , 90%, 100%559

of the original sample size to study the impact of lower statistical power in our procedure. We560

applied the following processing to all downsampled datasets. Using the genotyped data (au-561

tosomes only), SNPs were filtered in PLINK with a MAF < 0.001, Hardy-Weinberg equilibrium562
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p-value threshold of < 1 × 10−10, and a genotype missingness rate > 0.05. We then applied563

PLINK [43] for association testing while adjusting for sex, age, and the top 20 principal com-564

ponents provided by the UK Biobank to account for ancestry. Finally, we considered a “null”565

setting where the informative traits were permuted to be uncorrelated with BMI. In total, there566

were 10 permuted null datasets analyzed.567

The set of LD-independent SNPs were determined by using pre-defined haplotype blocks568

constructed using the LDAK method [44]. More specifically, within each haplotype block, we569

performed hierarchical clustering using a random subset of 5,000 individuals from the UK570

Biobank to identify clusters of uncorrelated SNPs. In total, there were 161,207 “independent”571

clusters at a pruned correlation threshold of 0.99. At each cluster, we randomly selected a572

single representative SNP, and so the set of representative SNPs were approximately inde-573

pendent. We note that the LD-independent SNPs can be chosen other ways such as LD574

pruning or by using the informative traits (see Section 4.7). Finally, in our implementation of575

the GAM model, we fit a natural cubic spline to the informative traits p-values with knots placed576

at the 0.005, 0.025, 0.01, 0.05, 0.1 quantiles.577

4.7 Application to EGPA study578

We applied the sfFDR framework to a GWAS of eosinophilic granulomatosis with polyangiitis579

(EGPA). To illustrate our method on this rare disease, we used the p-values from a publicly580

available GWAS with 676 cases and 6,809 controls (see ref. [12] for analysis details). We581

note that, since the EGPA study only provided discrete p-values (2 significant digits), we re-582

calculated the p-values using the publicly available effect sizes and standard errors and found583

a strong concordance with the published p-values (Figure S15). In total, there were 9,246,221584

typed or imputed autosomal variants with INFO scores greater than 0.8 included in the analy-585

sis. The informative GWAS summary statistics were from clinically relevant features of EGPA,586

namely, childhood-onset asthma (13,962 cases and 300,671 controls) [23], adult-onset asthma587

(26,582 cases and 300,671 controls) [23], and eosinophil count (172,275 individuals) [24]. See588

the referenced publications for additional information on quality control steps. After removing589

SNPs in the MHC region and non-overlapping SNPs between EGPA and the informative traits,590

there were a total of 8,195,277 SNPs used in our analysis.591

In our analysis, we considered 161,207 “independent” regions of the genome that were592
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identified by a hierarchical clustering algorithm described in Section 4.6. To potentially increase593

the coverage of alternatives, we selected LD-independent SNPs as follows. For each region,594

if any of the informative traits p-values were below 0.001, then we selected the SNP that had595

the smallest p-value among the informative traits. Otherwise, we randomly selected a SNP596

in the region. When modeling the proportion of truly null hypotheses, we fit a natural cubic597

spline to the informative traits p-values with knots placed at the 0.005, 0.025, 0.01, 0.05, 0.1598

quantiles. Finally, we used the original and permuted obesity-related traits (BFP, cholesterol,599

and triglycerides) from the UK Biobank (see Section 4.6) to assess whether sfFDR recovers600

the original p-values when the informative traits are unrelated to EGPA.601
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5 Supplementary materials730

5.1 Supplementary tables731

Gene sfFDR Standard

BACH2 66 167

BCL2L11 13 14

GATA3 112 272

IKZF4 45 1,113

IRF1 52 39

LRRC32 136 2,564

RUNX1 141 68

TPRG1 45 64

TSLP 1 1

ZNF652 100 1,093

Table S1: The size of the 95% credible set using sfFDR and the standard (or original) p-values in

the EGPA study. Note that only TSLP and BCL2L11 are below genome-wide significance level for

the standard p-values.
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Gene ASTAO ASTCO EOSC

BACH2 0.196 0.205 0.153

BCL2L11 0.968 0.000 0.850

GATA3 0.254 0.058 0.226

IKZF4 0.194 0.343 0.791

IRF1 0.320 0.000 0.000

LRRC32 0.131 0.161 0.112

RUNX1 0.076 0.081 0.000

TPRG1 0.173 0.000 0.822

TSLP 0.000 0.963 0.963

ZNF652 0.567 0.258 0.439

Table S2: The proportion of SNPs in the 95% credible set from sfFDR that overlap with the credible

sets from the informative studies (ASTAO, ASTCO, and EOSC).
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5.2 Supplementary figures732

Figure S1: Assessing the target FDR at level 0.01 using the oracle functional q-values, standard

q-values, functional q-values from sfFDR, Adapt, CAMT, and Boca-Leek in the independent SNP

setting. The boxplot combines the “None,” “Moderate,” and “Large” effect size strength settings.
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Figure S2: The number of discoveries as a function of the target false discovery rate (FDR) in

the independent SNP simulation study using the standard q-value (dark orange), functional q-value

from sfFDR (green), and the oracle functional q-value (black). We varied the power of the primary

study (rows), the power of the informative studies (columns), and the effect size strength of the

informative studies (shape). Each point is the average from 500 replicates.
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Figure S3: The empirical true discovery rate as a function of the empirical false discovery rate at a

target FDR level of 0.001, 0.002, . . . , 0.01 in the independent SNP simulation study using the oracle

functional q-value (black), functional q-value from sfFDR (green), CAMT (light blue), Boca-Leek

(blue), AdaPT (orange), and standard q-value (dark orange). We varied the power of the primary

study (rows), the power of the informative studies (columns), and the effect size strength of the

informative studies (shape). Each point is the average from 500 replicates.
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Figure S4: Comparing the estimated proportion of truly null tests from the standard q-value, sfFDR,

Adapt, CAMT, and Boca-Leek in the independent SNP setting. There were a total of 500 replicates

at each combination of primary study power (rows), informative study power (columns), and the

effect size strength of the informative studies (color).
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Figure S5: The type I error rate of the standard p-values, functional p-values from sfFDR, and the

oracle functional p-values at a significance threshold of 1 × 10−4 in the independent SNP setting.

We varied the power of the primary study (rows), the power of the informative studies (color), and

the effect size strength of the informative studies (x-axis). There were a total of 500 simulations at

each setting.
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Figure S6: A comparison of the number of discoveries in the independent SNP simulation study

using the standard p-value (grey), functional p-value from sfFDR (blue), and oracle functional p-

value (black) at a significance threshold of 5 × 10−8. We varied the power of the primary study

(rows), the power of the informative studies (columns), and the effect size strength of the informative

studies (x-axis). There were a total of 500 simulations at each setting.
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Figure S7: The type I error rate of p-values, functional p-values, and the oracle functional p-values

at a significance threshold of 1 × 10−4 in the dependent SNP setting. We varied the power of the

primary study (rows), the power of the informative studies (color), and the effect size strength of the

informative studies (x-axis). There were a total of 500 simulations at each setting.
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Figure S8: Assessing the target FDR at level 0.01 using the oracle functional q-value, standard

q-values, and functional q-values from sfFDR in the dependent SNP simulation study. The boxplot

combines the “None,” “Moderate,” and “Large” effect size strength settings.

42

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2024. ; https://doi.org/10.1101/2024.09.24.24314276doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.24.24314276
http://creativecommons.org/licenses/by/4.0/


Figure S9: The empirical true discovery rate as a function of the empirical false discovery rate at

target FDR level of 0.001, 0.002, . . . , 0.01 in the dependent SNP simulation study using the standard

q-value (dark orange), functional q-value from sfFDR (green), and oracle functional q-value (black).

We varied the power of the primary study (rows), the power of the informative studies (columns),

and the effect size strength of the informative study (shape). Each point is the average from 500

replicates.
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Figure S10: In the UK Biobank study, we performed a meta-analysis by combining the downsam-

pled study (x-axis) with the informative study. At each downsampling proportion, we then calcu-

lated the proportion of discoveries from the functional p-value from sfFDR (black) and the standard

p-values (grey) that overlapped with the meta-analysis at a significance threshold of 5× 10−8.
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Figure S11: Comparison of functional p-values from sfFDR (y-axis) to UK Biobank standard p-

values (x-axis) for BMI using a set of null correlated traits (body fat percentage, cholesterol, and

triglycerides) as informative studies. There were 10 permutations of the null traits at each down-

sampling proportion and each point represents the average functional p-value across permutations.

A log10 transformation was applied to both axes.

45

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2024. ; https://doi.org/10.1101/2024.09.24.24314276doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.24.24314276
http://creativecommons.org/licenses/by/4.0/


Figure S12: Comparison of functional p-values from sfFDR to standard p-values for the EGPA

study when the informative traits are the UK Biobank null traits. Each point is the average of apply

sfFDR to 10 replicates. A log10 transformation was applied to both axes.
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Figure S13: Comparison of functional p-values from sfFDR to standard p-values for the EGPA

study when the informative traits are the UK Biobank obesity-related traits. A log10 transformation

was applied to both axes.
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Figure S14: Fine mapping results using the functional local FDR estimates from sfFDR. For each

lead SNP, the 95% credible set (CS) is shown in red for EGPA including SNPs 500kb upstream and

downstream of the lead SNPs. The top plot in each set shows the local Manhattan plot while the

bottom plot shows the fine mapping posterior probabilities calculated under the assumption of a

single causal variant. We distinguish the SNPs in the CS that also overlap with the CS from ASTAO

(square), ASTCO (triangle), and EOSC (diamond).
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Figure S15: Comparison of the published p-values from the EGPA study and the p-values used in

sfFDR.
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