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Supplementary Figures

Figure S1. Flowchart summarizing the data processing and modeling pipeline and the
corresponding user-defined inputs.

Figure S2. Conceptual diagram of how observations are mapped to the spatial modeling grid.
Observations linked to geographic shapefiles (green) at different spatial scales are overlaid
onto a 20 km by 20 km grid. Grid cells whose centroids overlap with the shapefile are linked to
the observation.

2



Figure S3. Scatterplot of full-year observations versus fitted values by administrative unit
levels 0 to 3 for countries in Central Africa (log-scale). Dots and lines represent the mean and
95% CrI and colors indicate observations in different periods. Points falling along the 1:1
diagonal black dashed line indicates alignment between modeled and observed cases.
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Figure S4. Scatterplot of partial-year observations versus fitted values by administrative unit
levels 0 to 3 for countries in Central Africa. Dots and lines represent the mean and 95% CrI
and colors indicate observations in different periods. Partial-year observations were treated as
right-censored in the model likelihood. Models that fit well should have fitted values (y-axis) at
or above their corresponding model observation values (x-axis).
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Figure S5. Scatterplot of full-year observations versus fitted values by administrative unit
levels 0 to 3 for countries in Eastern Africa. Legend as in Figure S3.
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Figure S6. Scatterplot of partial-year observations versus fitted values by administrative unit
levels 0 to 3 for countries in Eastern Africa. Legend as in Figure S4.
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Figure S7. Scatterplot of full-year observations versus fitted values by administrative unit
levels 0 to 3 for countries in Southern Africa. Legend as in Figure S3.
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Figure S8. Scatterplot of partial-year observations versus fitted values by administrative unit
levels 0 to 3 for countries in Southern Africa. Legend as in Figure S4.
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Figure S9. Scatterplot of full-year observations versus fitted values by administrative unit
levels 0 to 3 for countries in Western Africa. Legend as in Figure S3.
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Figure S10. Scatterplot of partial-year observations versus fitted values by administrative unit
levels 0 to 3 for countries in Western Africa. Legend as in Figure 4.
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Figure S11. Coverage of full-year model observations by administrative unit level versus the
credible interval width for 2011-2015 models. This figure indicates the appropriateness of the
width of the fitted credible intervals based on the spread of the observation data. In a model
that is neither overfit (with an interval that is too narrow) nor underfit (with an interval that is
too wide), the credible interval width should roughly match the fraction of observations
covered by the interval. For example, at the 50% CrI (x-axis), 50% of full observations (y-axis)
should fall within the interval. Note that administrative unit level 0 (country-level) coverage is
not comparable to that of other levels because the model fit is more restricted for these
observations.
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Figure S12. Coverage of full-year model observations by administrative unit level versus the
credible interval width for 2016-2020 models. Legend as in Figure S11.

12



Figure S13. Spatial coverage of cholera observation data for the 2011-2015 period. Colors
represent the smallest administrative unit level with at least one observation available during
this period. For example, any spatial area with a yellow fill was covered only by an
administrative unit level 0 (country-level) observation, while any spatial area with a red fill was
covered by at least one administrative unit level 3 (subdistrict-level) observation. Only
modeled countries are shown.
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Figure S14. Spatial coverage of cholera observation data for the 2016-2020 period. Legend
as in Figure S13.

Figure S15. Percent of spatial area in the country that is covered by administrative unit level 2
or lower observations in at least one year from 2011-2020. Countries are displayed in
descending rank order.
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Figure S16. Percent of 20 km by 20 km grid cells in the country spatial modeling grid with at
least 1 suspected case estimated per year, by country and period. Colors differentiate the two
periods and labels indicate the percent value.

Figure S17. Population living in areas by incidence category and region in 2011-2015. Mean
and 95% CrI for ADM2 populations living in a given incidence category (per 100,000
population) across Africa. Regional population contributions are indicated by fill colors.
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Figure S18. Continent-wide map showing assignment of incidence categories to ADM2 units
for 2011-2015. ADM2 units were assigned to an incidence category if 50% of posterior draws
classified the ADM2 unit to the assigned color of incidence category or above. ADM2 units in
gray had an incidence category of <1 per 100,000 population. Only modeled countries are
displayed in the map.

Figure S19. Distribution of population living in ADM2 units in each 10-year incidence category
by country. Countries are grouped by region and displayed in descending order by the sum of
the population fraction in the sustained and history of high-incidence categories.
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Figure S20. Log-odds ratios of reporting cholera occurrence in the post-2020 period by
10-year incidence category relative to the baseline probability of cholera occurrence in the
sustained low incidence reference category by country. Countries are grouped by region in
facets and by color. Bars indicate the 95% CrIs from 4000 HMC posterior draws.

Figure S21. Proportion of 2011-2015 cases (y-axis) reached when prioritizing people living in
ADM2 units (x-axis) by 2011-2015 incidence categories (“oracle” targeting).

Supplementary Tables
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Table S1. Comprehensive list of suspected case definitions and number of unique data
sources using this definition.

No. Case definition Number of
sources

1 Any person presents with or dies from acute watery diarrhoea. 491

2 Unknown (The document indicates that the case reports represent cholera, but no
specific case definition is provided.)

230

3 In a non-epidemic setting, a patient aged 5 years or more develops severe dehydration
or dies from acute watery diarrhoea.

26

4 A patient aged 2 years or more develops acute watery diarrhoea, with or without
vomiting.

21

5 In an epidemic setting, a patient aged 2 years or more develops acute watery
diarrhoea, with or without vomiting.

20

6 Any person presents with acute watery diarrhoea. 3

7 In a non-epidemic setting, any patient presents with severe dehydration or dies from
acute watery diarrhoea.

2

8 A patient aged 5 years or more develops acute watery diarrhoea and severe
dehydration, with or without vomiting. In an epidemic setting, a patient aged 2 years or
more develops acute watery diarrhoea, with or without vomiting.

1

9 A patient aged 5 years or more develops acute watery diarrhoea, with or without
vomiting and was hospitalised for at least 1 night and treated with intravenous fluids.

1

10 A patient aged 5 years or more develops acute watery diarrhoea, with or without
vomiting.

1

11 A patient aged 5 years or more develops severe dehydration or dies from 3 or more
acute watery stools per day, with or without vomiting. A patient aged 2-4 years
develops severe dehydration or dies from acute watery diarrhoea, with or without
vomiting.

1

12 Any patient develops acute watery non-bloody diarrhoea with more than 3 liquid stools
in a day.

1

13 Any person aged 2 years or more presents with acute watery diarrhoea and severe
dehydration or dies from acute watery diarrhoea.

1

14 Any person presents with or dies from acute non-bloody watery diarrhoea with more
than three liquid stools per day.

1

15 At the community level, any person presents with or dies from acute watery diarrhoea.
At the health facility level and in a non-epidemic setting, a patient aged 5 years or more
develops acute watery diarrhoea, with or without vomiting. At the health facility level
and in an epidemic setting, a patient aged 2 years or more develops acute watery
diarrhoea, with or without vomiting.

1

16 In an endemic setting, any person presents with acute watery diarrhoea. 1

17 In a non-epidemic setting, a patient aged 2 years or more develops acute watery
diarrhoea and severe dehydration or death, with or without vomiting. In an epidemic
setting, any person presents with or dies from acute watery diarrhoea.

1

18 In a non-epidemic setting, a patient aged 5 years or more develops severe dehydration
or dies from acute watery diarrhoea. In an epidemic setting, a patient aged 5 years or

1
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more develops acute watery diarrhoea.

19 In a non-endemic setting, a patient aged 5 years or more develops acute watery
diarrhoea with severe dehydration or death, with or without vomiting. In an epidemic
setting, any person presents 3 or more liquid stools with or without vomiting for the past
24 hours.

1

20 In an non-epidemic setting, a patient aged 5 years or more develops acute watery
diarrhoea and severe dehydration, with or without vomiting. In an epidemic setting, a
patient aged 2 years or more develops acute watery diarrhoea, with or without
vomiting.

1

Table S2. Summary of model observations by period. This table represents observation
counts after data processing steps including temporal aggregation, but it excludes imputed
national-level observations.

Period Data
sources

Countries Locations Administ
rative
levels

Observations National
Observati
ons

Subnation
al
observatio
ns

2011-15 291 43 2,944 6 14,872 276 14,596

2016-20 622 43 3,473 7 15,230 587 14,643

2011-20 807 43 4,574 7 30,102 863 29,239

Table S3. List of statistical model structures and data processing settings for each country and
time period. Blank cells indicate that there was either no data processing deviation or no
non-standard settings.

Country
(ISO3 code) Period Model Data processing

deviation, if any
Reasons for non-standard
settings

Angola (AGO) 2011-2015 Non-mixture prior - Limited subnational data

2016-2020 Non-mixture prior - Limited subnational data

Burundi (BDI)
2011-2015 Standard - -

2016-2020 Standard - -

Benin (BEN)
2011-2015 Standard - -

2016-2020 Standard - -

Burkina Faso
(BFA)

2011-2015 Non-mixture prior - Limited subnational data

2016-2020 No spatial
autoregressive term - Zero cases

Botswana (BWA
2011-2015 No spatial

autoregressive term - Zero cases

2016-2020 No spatial
autoregressive term - Zero cases

Central African
Republic (CAF)

2011-2015 Non-mixture prior - Limited subnational data

2016-2020 Non-mixture prior - Limited subnational data

Côte d'Ivoire
2011-2015 Non-mixture prior - Limited subnational data
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(CIV) 2016-2020 No spatial
autoregressive term - No subnational data

Cameroon
(CMR)

2011-2015 Standard - -

2016-2020 Standard - -

Democratic
Republic of the
Congo (COD)

2011-2015 Standard - -

2016-2020 Standard Censoring threshold is
1

Substantial annual and
incremental near-annual
observations

Republic of the
Congo (COG)

2011-2015 Standard - -

2016-2020 Standard - -

Djibouti (DJI)
2011-2015 No spatial

autoregressive term - No subnational data

2016-2020 No spatial
autoregressive term - No subnational data

Eritrea (ERI)
2011-2015 No spatial

autoregressive term - Zero cases

2016-2020 No spatial
autoregressive term - Zero cases

Ethiopia (ETH)
2011-2015 Standard - -

2016-2020 Standard -

Gabon (GAB)
2011-2015 No spatial

autoregressive term - Zero cases

2016-2020 No spatial
autoregressive term - Zero cases

Ghana (GHA)
2011-2015 Standard - -

2016-2020 No spatial
autoregressive term - No subnational data

Guinea (GIN)
2011-2015 Standard - -

2016-2020 Standard - Limited subnational data

Guinea-Bissau
(GNB)

2011-2015 Non-mixture prior - Limited subnational data

2016-2020 No spatial
autoregressive term - Zero cases

Equatorial
Guinea (GNQ)

2011-2015 No spatial
autoregressive term - Zero cases

2016-2020 No spatial
autoregressive term - Zero cases

Kenya (KEN)
2011-2015 Standard - -

2016-2020 Non-mixture prior - Improved convergence

Liberia (LBR)
2011-2015 No spatial

autoregressive term - No subnational data

2016-2020 Standard - -

Lesotho (LSO)
2011-2015 No spatial

autoregressive term - Zero cases

2016-2020 No spatial
autoregressive term - Zero cases

Madagascar
(MDG)

2011-2015 Non-mixture prior - Limited subnational data

2016-2020 No spatial
autoregressive term - Zero cases

Mali (MLI)
2011-2015 Non-mixture prior - Limited subnational data

2016-2020 No spatial - Zero cases
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autoregressive term

Mozambique
(MOZ)

2011-2015 Non-mixture prior - Limited subnational data

2016-2020 Standard - -

Mauritania
(MRT)

2011-2015 Non-mixture prior - Limited subnational data

2016-2020 No spatial
autoregressive term - Zero cases

Malawi (MWI)
2011-2015 Standard - -

2016-2020 Standard - -

Namibia (NAM)
2011-2015 Non-mixture prior - Limited subnational data

2016-2020 No spatial
autoregressive term - Zero cases

Niger (NER)
2011-2015 Standard - -

2016-2020 Standard - -

Nigeria (NGA)

2011-2015 Standard - -

2016-2020 Standard Censoring threshold
is 1

Substantial annual and
incremental near-annual
observations

Rwanda (RWA)
2011-2015 Standard - -

2016-2020 No spatial
autoregressive term - Zero cases

Sudan (SDN)
2011-2015 No spatial

autoregressive term - Zero cases

2016-2020 Standard - -

Senegal (SEN)
2011-2015 No spatial

autoregressive term - Limited subnational data

2016-2020 No spatial
autoregressive term - Zero cases

Sierra Leone
(SLE)

2011-2015 Standard - -

2016-2020 Non-mixture prior - Improved convergence

Somalia (SOM)
2011-2015 Non-mixture prior - Improved convergence

2016-2020 Standard - -

South Sudan
(SSD)

2011-2015 Standard - -

2016-2020 Standard - -

Eswatini (SWZ)
2011-2015 No spatial

autoregressive term - Zero cases

2016-2020 No spatial
autoregressive term - No subnational data

Chad (TCD)
2011-2015 Standard - -

2016-2020 Standard - -

Togo (TGO)
2011-2015 Non-mixture prior - Limited subnational data

2016-2020 Non-mixture prior - Limited subnational data

Tanzania (TZA)
2011-2015 Standard - -

2016-2020 Standard - -

Uganda (UGA)
2011-2015 Standard - -

2016-2020 Standard - -

South Africa
(ZAF)

2011-2015 No spatial
autoregressive term - Zero cases
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2016-2020 No spatial
autoregressive term - No subnational data

Zambia (ZMB)
2011-2015 Standard - -

2016-2020 Standard - -

Zimbabwe
(ZWE)

2011-2015 Standard - -

2016-2020 Standard - -

Table S4. Source of unified geographic shapefiles for modeled outputs at the country and
second administrative level scales.

Source Countries

GADM v4.1 (pulled
from R package
geodata v0.5.9)

Angola, Benin, Botswana, Burkina Faso, Cameroon, Central African Republic, Chad, Côte
d'Ivoire, Djibouti, Equatorial Guinea, Eritrea, Eswatini, Gabon, Ghana, Guinea,
Guinea-Bissau, Kenya, Lesotho, Liberia, Madagascar, Mali, Mauritania, Mozambique,
Namibia, Niger, Nigeria, Republic of the Congo, Rwanda, Senegal, Sierra Leone, Somalia,
South Africa, South Sudan, Sudan, Tanzania, Togo, Zambia, Zimbabwe

geoboundaries v3.0
(pulled from R
package
rgeoboundaries
v0.0.0.9)

Burundi, Democratic Republic of the Congo, Ethiopia, Malawi, Uganda

Table S5. Public documents from which cholera occurrence data were extracted in the
post-2020 period by country, administrative unit level, and time range. Data from these
documents were used for the analysis assessing associations between ten-year cholera
incidence categories and post-2020 cholera occurrence. While the comprehensive time range
represented in the data was from October 2021 to January 2024, the vast majority of data
represents cholera occurrence from January 2022 to December 2023.

Document Name Country Admin-level and Time Range

WHO External Sitrep #1

Burundi Admin 1: Jan 2023 - Mar 2023
Admin 2: Jan 2023 - Mar 2023

Democratic Republic of
the Congo

Admin 2: Jan 2023 - Mar 2023
Admin 3: Jan 2023 - Mar 2023

Malawi Admin 1: Mar 2023 - Mar 2023

Mozambique Admin 2: Sep 2022 - Mar 2023
Admin 3: Sep 2022 - Mar 2023

South Africa Admin 2: Jan 2023 - Mar 2023

Tanzania Admin 2: Jan 2023 - Mar 2023

Zambia Admin 2: Jan 2023 - Mar 2023
Admin 3: Jan 2023 - Mar 2023

Zimbabwe Admin 1: Jan 2023 - Mar 2023

WHO External Sitrep #2

Democratic Republic of
the Congo

Admin 1: Jan 2023 - Apr 2023
Admin 2: Jan 2023 - Apr 2023

Ethiopia Admin 2: Jan 2023 - Jan 2023

Kenya Admin 1: Jan 2023 - Jan 2023

Malawi Admin 1: Apr 2023 - Apr 2023
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Somalia Admin 2: Jan 2023 - Jan 2023

Zimbabwe Admin 1: Feb 2023 - Apr 2023

WHO External Sitrep #3

Cameroon Admin 1: Mar 2023 - May 2023

Democratic Republic of
the Congo Admin 2: Feb 2023 - Feb 2023

Ethiopia Admin 2: Feb 2023 - Feb 2023
Admin 3: Feb 2023 - Feb 2023

Kenya Admin 1: Feb 2023 - Feb 2023

Malawi Admin 1: Apr 2023 - May 2023

Mozambique Admin 2: Feb 2023 - May 2023

Somalia Admin 2: Feb 2023 - Feb 2023

South Africa Admin 2: Feb 2023 - Feb 2023

Tanzania Admin 2: Feb 2023 - Feb 2023

Zambia Admin 2: Feb 2023 - Feb 2023

Zimbabwe Admin 1: Feb 2023 - May 2023

WHO External Sitrep #4

Burundi Admin 1: Mar 2023 - Mar 2023
Admin 2: Mar 2023 - Mar 2023

Democratic Republic of
the Congo Admin 2: Mar 2023 - Mar 2023

Eswatini Admin 1: Mar 2023 - Mar 2023

Ethiopia Admin 2: Mar 2023 - Mar 2023
Admin 3: Mar 2023 - Mar 2023

Kenya Admin 1: Mar 2023 - Mar 2023

Mozambique Admin 2: Mar 2023 - Jun 2023
Admin 3: Mar 2023 - Mar 2023

Malawi Admin 1: May 2023 - Jun 2023

Somalia Admin 2: Mar 2023 - Mar 2023

South Africa Admin 2: Feb 2023 - Jun 2023

Tanzania Admin 1: Mar 2023 - Mar 2023
Admin 2: Mar 2023 - Mar 2023

Zambia Admin 2: Mar 2023 - Mar 2023

Zimbabwe Admin 1: Mar 2023 - Jun 2023

WHO External Sitrep #5

Burundi Admin 2: Apr 2023 - Apr 2023

Democratic Republic of
the Congo Admin 2: Apr 2023 - Apr 2023

Eswatini Admin 1: Apr 2023 - Apr 2023

Ethiopia Admin 2: Apr 2023 - Apr 2023
Admin 3: Apr 2023 - Apr 2023

Kenya Admin 1: Apr 2023 - Apr 2023

Mozambique Admin 2: Apr 2023 - Apr 2023
Admin 3: Apr 2023 - Apr 2023

Malawi Admin 1: Apr 2023 - Jul 2023

Somalia Admin 2: Apr 2023 - Apr 2023

South Africa Admin 2: Feb 2023 - Jul 2023

Zambia Admin 2: Apr 2023 - Apr 2023

Zimbabwe Admin 1: Apr 2023 - Apr 2023

WHO External Sitrep #6
Burundi Admin 2: May 2023 - May 2023

Democratic Republic of Admin 2: May 2023 - May 2023
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the Congo

Ethiopia Admin 2: May 2023 - May 2023
Admin 3: May 2023 - May 2023

Kenya Admin 1: May 2023 - May 2023

Mozambique Admin 1: May 2023 - May 2023
Admin 2: May 2023 - Aug 2023

Malawi Admin 1: May 2023 - Aug 2023

Somalia Admin 2: May 2023 - May 2023

South Africa Admin 2: May 2023 - May 2023

Tanzania Admin 1: May 2023 - May 2023
Admin 2: May 2023 - May 2023

Zambia Admin 2: May 2023 - May 2023

Zimbabwe Admin 1: May 2023 - May 2023
Admin 2: May 2023 - May 2023

WHO External Sitrep #7

Burundi Admin 2: Dec 2022 - Sep 2023

Democratic Republic of
the Congo Admin 2: Jun 2023 - Jun 2023

Ethiopia Admin 2: Jun 2023 - Jun 2023
Admin 3: Jun 2023 - Jun 2023

Kenya Admin 1: Jun 2023 - Jun 2023

Mozambique Admin 2: May 2023 - Sep 2023
Admin 3: Jun 2023 - Jun 2023

Malawi Admin 1: Jun 2023 - Jun 2023

Somalia Admin 2: Jun 2023 - Jun 2023
Admin 3: Jun 2023 - Jun 2023

South Africa Admin 1: Jun 2023 - Jun 2023

Zambia Admin 2: Jun 2023 - Jun 2023

Zimbabwe Admin 1: Jun 2023 - Jun 2023

WHO External Sitrep #8

Burundi Admin 2: Jul 2023 - Jul 2023

Democratic Republic of
the Congo Admin 2: Jul 2023 - Jul 2023

Ethiopia Admin 2: Jul 2023 - Jul 2023
Admin 3: Jul 2023 - Jul 2023

Kenya Admin 1: Jul 2023 - Jul 2023
Admin 3: Jul 2023 - Jul 2023

Mozambique Admin 2: Jul 2023 - Oct 2023
Admin 3: Jul 2023 - Oct 2023

Malawi Admin 1: Jul 2023 - Jul 2023

Somalia Admin 2: Jul 2023 - Jul 2023
Admin 3: Jul 2023 - Jul 2023

South Africa Admin 2: Jul 2023 - Jul 2023
Admin 3: Jul 2023 - Jul 2023

Tanzania Admin 1: Jul 2023 - Jul 2023
Admin 2: Jul 2023 - Jul 2023

Uganda Admin 1: Jul 2023 - Jul 2023

Zimbabwe Admin 1: Jul 2023 - Oct 2023

WHO External Sitrep #9

Burundi Admin 2: Aug 2023 - Aug 2023

Democratic Republic of
the Congo Admin 2: Aug 2023 - Aug 2023

Ethiopia Admin 1: Aug 2023 - Aug 2023
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Kenya Admin 1: Aug 2023 - Aug 2023

Mozambique Admin 2: Aug 2023 - Nov 2023
Admin 3: Aug 2023 - Nov 2023

Malawi Admin 1: Aug 2023 - Aug 2023

Somalia Admin 2: Aug 2023 - Aug 2023
Admin 3: Aug 2023 - Aug 2023

Sudan Admin 1: Aug 2023 - Aug 2023

Uganda Admin 1: Aug 2023 - Aug 2023
Admin 2: Aug 2023 - Aug 2023

Zambia Admin 2: Aug 2023 - Aug 2023

Zimbabwe Admin 1: Aug 2023 - Nov 2023

WHO External Sitrep #10

Burundi Admin 1: Sep 2023 - Sep 2023
Admin 2: Sep 2023 - Dec 2023

Democratic Republic of
the Congo

Admin 2: Sep 2023 - Jan 2024
Admin 3: Oct 2023 - Dec 2023

Ethiopia Admin 1: Sep 2023 - Dec 2023

Kenya Admin 1: Sep 2023 - Nov 2023

Mozambique Admin 2: Sep 2023 - Dec 2023
Admin 3: Sep 2023 - Dec 2023

Malawi Admin 1: Sep 2023 - Dec 2023

Somalia Admin 2: Sep 2023 - Dec 2023

Sudan Admin 1: Sep 2023 - Dec 2023

Tanzania Admin 1: Oct 2023 - Dec 2023

Zambia Admin 2: Sep 2023 - Dec 2023

Zimbabwe Admin 1: Sep 2023 - Dec 2023

AFRO Cholera Bulletin.49

Cameroon Admin 1: Oct 2021 - Jan 2024

Togo Admin 1: Dec 2023 - Dec 2023

Zambia Admin 1: Jan 2024 - Jan 2024

An update of Cholera outbreak in
Nigeria_221222_52 Nigeria Admin 1: Jan 2022 - Dec 2022

An update of Cholera outbreak in
Nigeria_221223_52 Nigeria Admin 1: Jan 2023 - Dec 2023

Weekly Bulletin on Outbreaks and
Other Emergencies - WHO African
Region

Tanzania Admin 2: Sep 2023 - Oct 2023

South Sudan Cholera Situation
Report_Issue #39 South Sudan Admin 2: Feb 2023 - Apr 2023

WHO Sudan Outbreaks dashboardSudan Admin 3: Jun 2023 - Jan 2024

Table S6. Summary of full-year observations by period. This summary represents all model
input observations, including imputed national-level observations. Observations with a time
fraction greater than or equal to eight months (0.65 years) were considered full-year
observations. Observations with shorter time fractions were considered as right-censored in
the model likelihood.

Period Full-year observations (%) Total observations

2011-2015 13,324 (89) 14,940

2016-2020 8,756 (57) 15,271
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2011-2020 22,080 (73) 30,211

Supplementary Material

Cholera data sources and data processing

Cholera data were extracted from a database and processed before being passed to a
statistical mapping model to produce gridded estimates of mean annual incidence (Figure
S1). The main data processing steps consist of temporal aggregation to the yearly time
scale, identifying temporally censored observations (those spanning less than 8 months of a
year), filtering observations that do not contribute to the likelihood, imputation of limited
national-level observations, and assigning observation-linked geographic areas (“locations”)
to the spatial modeling grid. After modeling, the resulting gridded estimates undergo
post-processing to produce estimates for unified, non-overlapping administrative units.

All countries in Africa that had at least one national-level report of suspected cholera
(including zero) in both periods of analysis were modeled (Table S2). Following this criterion,
11 of 54 countries in Africa were excluded (Algeria, Cape Verde, Comoros, Egypt, Gambia,
Libya, Mauritius, Morocco, Sao Tome and Principe, Seychelles, Tunisia).

Cholera data collection and data template

All cholera surveillance and alert documents were systematically scraped for all reported
counts of suspected cholera (henceforth “observations”) that were explicitly linked to date
ranges and geographical areas (henceforth “locations”) and were thought to represent all
cases reported in a specific space-time unit (e.g., not representing just a subset of cases,
such as age- or sex-stratified counts). Location names were systematically verified and
associated geographic shapefiles were identified with a standard location audit protocol, which
consisted of searches on reputed websites and resources and comparison to locations that
already existed in the Cholera Taxonomy database 1,2. Metadata, source documents,
shapefiles, and observations were then added to the global cholera surveillance database.
Each observation contained the following information: location shapefile, date range, number
of suspected cases, and time fraction (tfrac) within a calendar year, which is calculated from
the date range.

Temporal aggregation

Our statistical mapping model aimed to infer mean annual incidence rates, so we sought to
aggregate observations to the annual time resolution. As observations may exist for arbitrary
locations and date ranges, non-overlapping observations that were consecutive in time were
aggregated if they were in the same location, calendar year, and source document. If a
location had multiple observations of suspected cholera for the same time bounds within a
same data source, we included the observation with the largest case count in the aggregated
observation; the implicit assumption here is that cases are more likely to be underreported
than overreported so we give preference to higher case count reports. This resulted in a set of
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aggregated observations per location, year, and data source, and the corresponding fraction
of calendar year they covered, that were used as model inputs.

Identifying time-censored observations

Our modeling framework did not assume that cholera incidence was homogenous throughout
the year (cf. Inference modeling framework), and we therefore differentiated full-year
observations from partial-year observations in the model likelihood. Partial-year observations
were considered to be right-censored if they spanned less than eight months (0.65 years). We
dropped all right-censored observations with zero suspected cases, as these have a likelihood
of 1 and therefore do not contribute to the model likelihood.

Observation filtering
Observations were dropped from inclusion in the model if they have a likelihood of 1 (and
therefore would not contribute to the likelihood) or were otherwise not informative to the
model. While some of these decisions are discussed elsewhere in the SM, broadly speaking,
observations that were removed include those that: 1) were not associated with a geographic
shapefile, 2) were ADM0 (country-level) observations that spanned multiple years, 3) exactly
duplicated observations prior to temporal aggregation, 4) had the exact same location and
time bounds but reported fewer cases than another temporally aggregated observation from
the same data source, 5) time-censored observations that reported zero cases, 6)
time-censored observations at the ADM0 level that had less than half the reported cases as
full-year ADM0 observations in that timeslice, or 7) had zero population according to the
WorldPop raster.

National-level data imputation

At least one country-level annual observation was sought for every country-year combination
modeled. This imposed a critical constraint to bound modeled incidence rate estimates,
particularly when fitting a model to data with only censored observations or only subnational
observations and incomplete spatial coverage across the country.

When a country-level observation was not found in a given year, imputation of a country-level
annual observation was performed. If there were no observations at any spatial scale
available for that year, a zero-case observation was imputed, thus assuming that absence of
data in a year corresponded to a report of 0 cases for that country. If subnational observations
were available and they covered a non-overlapping spatial area that represents at least 10%
of the country population, a mean tfrac-adjusted incidence rate was computed across all
subnational observations and multiplied by the country population to impute a country annual
observation. If subnational observations were available and they covered a spatial area
representing less than 10% of the country population, an observation was imputed as the
maximum of the sum of cases across all unique data source and administrative unit level
combinations. If only censored national observations and no subnational observations were
available, the maximum value censored observation was imputed.

In the end, a limited number of observations were imputed (109 imputed relative to 30,102
non-imputed observations) in order to ensure that all modeled countries had at least one
country-level observation per year, a data feature that was found to improve model stability
and performance. Of these, zero-case observations were added when no annual
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country-level report was found (96 imputed observations in 21 countries). When subnational
or censored national annual reports were available, non-zero-case observations were
aggregated to impute an annual country-level report (13 imputed observations in 10
countries).

Geographic linkage of observations to modeling grid

Our statistical modeling framework was applied to a space-time modeling grid (Figure S2),
where the space dimension was composed of 20 km by 20 km grid cells that overlapped with
a given country’s geographic shapefile and had a population greater than zero according to
the associated WorldPop gridded population estimates in that year; the time dimension was
represented in annual time slices.

Observations of suspected cholera were associated with space-time cells in the modeling grid
according to their geographic shapefiles and date ranges. In the space dimension,
observations were geographically linked to all 20 km by 20 km grid cells that intersected the
observation’s geographic shapefile. When grid cells were only partially covered by the
observation’s geographic shapefile (eg., grid cells at country borders), we computed and
assigned a spatial fraction (sfrac) to the grid cell-shapefile pairs. The sfrac value was
calculated as the sum of the 1 km by 1 km grid cell population (after aligning the 1 km by 1 km
WorldPop gridded population estimates to the 20 km by 20 km spatial modeling grid) that
intersected the observation’s geographic shapefile divided by the total 20 km by 20 km grid
cell population. In the time dimension, observations were mapped to all annual time slices that
overlapped with the observation date range.

We removed cell-shapefile linkages with small overlaps in order to improve the smoothness of
model estimates at shapefile borders. Spatial grid cells that overlapped with an observation's
geographic shapefile with a population-weighted spatial fraction below 0.05 were removed
from being associated with the shapefile. To improve the smoothness of model estimates at
country borders, we removed spatial grid cells from the space-time modeling grid if the
grid-cell sfrac was less than 0.3.

Incidence modeling framework

The goal of our modeling framework was to produce gridded estimates of mean annual
incidence of suspected cholera by harnessing potentially overlapping data from
heterogeneous spatial and temporal resolutions and multiple sources. In particular, the
framework accounted for misalignment in spatial and temporal resolutions both across data
sources and between observed case counts and intended outputs. This model expanded on a
previously published approach 1. We first describe the base statistical model and add
complexity that improves the base model’s ability to handle challenges presented by the
real-world observation data. At the end, we present the full final “standard” model structure
and deviations from this standard model structure, which were deployed in country-periods
described in Table S3.

Base model

To estimate mean annual incidence across a period of T years (T annual time slices), we first
must model annual cholera incidence estimates corresponding to a “modeling time resolution”

28

https://paperpile.com/c/zkMb2h/PEkT


of 1 year. In a simple scenario, suppose that all observations have a duration of 1 year, which
means that the “observation time resolution” always equals the modeling time resolution. To
model space-time incidence rates over a spatial domain that covers the area of interest across
the T years, we defined a modeling space-time grid with a time resolution of 1 year for a given
gridded spatial resolution, i.e., each space-time grid-cell (s,t) spans one year t and a spatial
grid cell s.

Observation-level cases can then be modeled as:

,𝑐
𝑖

=
𝑆

𝑖,𝑠,𝑡

∑ λ
𝑠,𝑡

ϕ
𝑖,𝑠

𝑝𝑜𝑝
𝑠,𝑡

,𝑙𝑜𝑔(λ
𝑠,𝑡

) = γ + ω
𝑠

+ η
𝑡

where represents the modeled mean number of cases for observation i, is the set of𝑐
𝑖

𝑆
𝑖,𝑠,𝑡

space-time grid cells intersecting observation i, is the annual incidence rate in space-timeλ
𝑠,𝑡

grid cell s,t, is the population-weighted spatial fraction of grid cell s,t that is covered by theϕ
𝑖,𝑠

observation location, and is the total population in grid cell s,t. Grid cell incidence rates𝑝𝑜𝑝
𝑠,𝑡

were modeled with a log link as the sum of the offset , which is the expected incidence rateγ
across the space-time modeling grid, spatial random effect , and yearly random effect .ω

𝑠
η

𝑡

The expected incidence rate was calculated as the population-weighted mean of the impliedγ
incidence rate (time-adjusted reported cases of full-year observations divided by location
population) across all full-year observations contributing to the model (cf. Identifying
time-censored observations). If the expected incidence rate was less than 0.01 per 100,000
population, it was changed to be 1E-7.

Observation is then linked to modeled cases through an observation model. For instance, in𝑦
𝑖

the simplest setting, one can assume that observations follow a Poisson distribution:
.𝑦

𝑖
∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑐

𝑖
)

However, a Poisson model does not reflect the heterogeneity in case-counts observed in the
data, thereby necessitating a more elaborate observation process model. We expand on the
observation process below.

Prior on the spatial random effect ( )ω
𝑠

To capture spatial variability in the incidence rates and produce spatially smooth maps, we
introduced spatial random effects into the model at the grid-cell level. We assumed that the
spatial random effect was constant across the T time slices to reduce the number ofω

𝑠

parameters that must be estimated from a model that may have limited observations in any
given time slice. We acknowledge that this model may not adequately capture situations
where the spatial autocorrelation in cholera cases changes across time slices. In such
scenarios, the estimates of will represent the average spatial variability across all the timeω

𝑠

slices.
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In our model, the joint distribution of for all spatial grid cells s is specified as a directedω
𝑠

acyclic graph auto-regressive (DAGAR) prior. The DAGAR model was demonstrated to have
improved model performance, interpretability of parameters, and computational efficiency over
other spatially-smooth priors that are traditionally used in disease mapping (e.g., conditional
auto-regressive (CAR) prior) 3. The DAGAR prior can be specified via a sequence of simple
conditional normal distributions. Specifically, the conditional distribution of , conditional onω

𝑠

its directed neighbors on the grid, follows a normal distribution with mean and standardµ
ω

𝑠

deviation :σ
ω

𝑠

,ω
𝑠

∼ 𝑁𝑜𝑟𝑚𝑎𝑙(µ
ω

𝑠

, σ
ω

𝑠

)

,µ
ω

𝑠

= ρ

(1+(𝑛𝑛
𝑠
−1)ρ2) 𝑢∈Ω

𝑠

∑ ω
𝑢

σ
ω

𝑠

= ξ
σ

𝑤

(1−ρ2)

(1+(𝑛𝑛
𝑠
−1)ρ2)

,

where is the strength of the spatial autocorrelation between grid cells, is the number ofρ 𝑛𝑛
𝑠

neighbors of cell s, and is the set of neighbors to cell s. We denote the DAGAR prior asΩ
𝑠

where is a vector containing for all the spatial grid cells s.ω ~ 𝐷𝐴𝐺𝐴𝑅(ρ, ξ
σ

𝑤

) ω ω
𝑠

Prior on the temporal random effect ( )η
𝑡

While the yearly temporal random effects were initially assumed to be independent, we
imposed a zero-sum constraint to improve identifiability of these parameters and enforced a
marginal standard normal prior on the set of these terms 4. Briefly, the approach applies a QR
decomposition on the covariance matrix of the yearly random effect to obtain a set of random
variables with a zero-sum constraint and marginal standard deviations of 1. In practice, priors
are set on T - 1 independent random effects, and the random effect of the Tth time slice is
computed from them.

Expansion for partial-year observations

Partial-year observations (i.e., those with tfrac < 0.65 within a given annual modeling time
slice) were treated as right-censored in the likelihood (cf. Identifying time-censored
observations). Because we assumed that incidence rates were non-homogeneous within a
given annual time slice, we chose to treat partial-year observations as right-censored
observations of the annual counts as opposed to performing an extrapolation to represent a
full year. In other words, we make no assumptions beyond that the number of cases in the
full-year modeling time slice would be at least as large as the number of observed cases in
the partial-year observation. The observation model likelihood for partial-year observations
was:

𝐿(𝑦
𝑖
) = 𝑃𝑟(𝑌 ≥ 𝑦

𝑖
|𝑐

𝑖
),  

so in the case of the Poisson observation model, the likelihood is:
.𝐿(𝑦

𝑖
) = 1 − 𝐶𝐷𝐹

𝑃𝑜𝑖𝑠𝑠𝑜𝑛
(𝑦

𝑖
|𝑐

𝑖
)
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Expansion for overdispersed observation data

Examination of the observation data determined that a Poisson observation model would not
be sufficient to account for the overdispersion observed in many country-period models and
across different administrative unit levels. Consequently, we accounted for overdispersion with
a negative binomial observation likelihood:

,𝑦
𝑖

∼ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(𝑐
𝑖
|τ

𝐴[𝑖]
)

where is the overdispersion parameter that defines the relationship of the mean to theτ 𝑐
variance:

.𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑐 + 𝑐2/τ
To account for expected differences in overdispersion across administrative level reporting,
the model allowed for different overdispersion parameters by observation administrative unit
level A[i]. The overdispersion parameter ( ) was fixed at the country level (A0), but inferredτ

𝐴0

for all other administrative unit levels.

Complete standard model formulation

The final standard model followed a hierarchical structure, such that the process model was
defined:

,𝑐
𝑖

=
𝑆

𝑖,𝑠,𝑡

∑ λ
𝑠,𝑡

ϕ
𝑖,𝑠

𝑝𝑜𝑝
𝑠,𝑡

,𝑙𝑜𝑔(λ
𝑠,𝑡

) = γ + ω
𝑠

+ η
𝑡

and the observation model was defined for full-year and partial-year observations:
𝑃𝑟(𝑦

𝑖
|𝑐

𝑖
) = 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(𝑐

𝑖
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𝐴[𝑖]
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𝑖
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𝑖
) = 1 − 𝐶𝐷𝐹

𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚
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𝑖
|𝑐

𝑖
, τ

𝐴[𝑖]
)             𝑖𝑓 Φ

𝑖,𝑡
< 𝑎

where is range of time fractions for which an observation i is considered to𝑎 ∈ [0. 65, 1] Φ
𝑖,𝑡

represent the full year t.

We used the following hyperpriors for the spatial random effects:
,ω ~ 𝐷𝐴𝐺𝐴𝑅(ρ, ξ

σ
𝑤

)

,ρ ∼ 𝐵𝑒𝑡𝑎(5, 1. 5)

,𝑃𝑟(ξ
σ

𝑤

) = θ𝑓
𝑁𝑜𝑟𝑚𝑎𝑙

(ξ
σ

𝑤

|10, σ
ω,1
' ) + (1 − θ)𝑓

𝑁𝑜𝑟𝑚𝑎𝑙
(ξ

σ
𝑤

|0, σ
ω,2
' )

,θ ∼ 𝐵𝑒𝑡𝑎(1, 3)

σ
ω,1
' ∼ 𝐻𝑎𝑙𝑓 𝑛𝑜𝑟𝑚𝑎𝑙(0, 2),

,σ
ω,2
' ∼ 𝐻𝑎𝑙𝑓 𝑛𝑜𝑟𝑚𝑎𝑙(0, 0. 5)

where represents a mixture prior on the standard deviation scaling constant ( ),𝑃𝑟(ξ
σ

𝑤

) ξ
σ

𝑤

which is the sum of two normal distribution densities ( ), one centered at 0 and the other𝑓
𝑁𝑜𝑟𝑚𝑎𝑙

centered at 10, weighted by the mixture parameter . The hyperpriors on the standard(θ)
deviation of the normal distribution densities contributing to the mixture prior are represented

by and . This mixture prior reflects the possibility that different models may have highσ
ω,1
' σ

ω,2
'

or low magnitude of spatial variability.
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We used the following prior for temporal random effects:
,η'

[1:𝑇−1]
∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1

1−1/𝑇
)

where is multiplied by the QR matrix (cf. Prior on the temporal random effects) to yieldη'
[1:𝑇−1]

the yearly random effects for all T time slices whose sum is enforced to be 1.η
[1:𝑇]

For the observation model, the overdispersion term for administrative unit level 0 (A0)
observations was fixed at 100 or 1000, which corresponded to a moderate amount of
overdispersion for case counts of that magnitude. We used the following priors for the
overdispersion term in the observation model:

,τ
𝐴0

= 100      𝑖𝑓 𝑚𝑎𝑥(𝑦
𝑖,𝐴0

) ≤ 5000 

,τ
𝐴0

= 1000     𝑖𝑓 𝑚𝑎𝑥(𝑦
𝑖,𝐴0

) > 5000 

,1
τ

𝐴>0
∼ 𝐻𝑎𝑙𝑓 𝑛𝑜𝑟𝑚𝑎𝑙(0, 1)

where A>0 refers to administrative level units below the national level.

Model formulation without spatial autoregressive term

For country-periods with no subnational observations or only zero-case observations, we
removed the spatial random effect from the process model. For this model deviation, spatial
random effect priors were removed and the process model was as follows:

,𝑐
𝑖

=
𝑆

𝑖,𝑠,𝑡

∑ λ
𝑠,𝑡

ϕ
𝑖,𝑠

𝑝𝑜𝑝
𝑠,𝑡

.𝑙𝑜𝑔(λ
𝑠,𝑡

) = γ + η
𝑡

Model selection and model formulation with non-mixture prior

All country-periods with at least one subnational non-zero-case observation were first
attempted with the standard model formulation. We found that models with limited subnational
data had poor model fit and convergence due to identifiability issues in the spatial
autocorrelation strength parameter in the spatial random effect . The standard modelρ ω
employed a mixture prior on the scaling factor ( ) of the standard deviation of ( ) toξ

σ
𝑤

ω σ
ω

𝑠

account for possible bimodality in the strength of spatial autocorrelation (i.e., country-periods
may have high or low depending on the data).ρ

For country-periods with limited subnational data, model convergence improved when the
mixture prior on was replaced with a unimodal prior that favors a higher and thereforeξ

σ
𝑤

σ
ω

𝑠

lower . The scaling constant priors for this model deviation reduced to:ρ
ξ

σ
𝑤

 ∼ 𝐻𝑎𝑙𝑓 𝑛𝑜𝑟𝑚𝑎𝑙(5, 0. 5) 

Incidence modeling post-processing

Our modeling framework produced 20 km by 20 km gridded mean annual incidence estimates
for each country and time period (1000 posterior samples). Grid cell estimates were then
aggregated to administrative unit level 0 (country or ADM0) and administrative unit level 2
(district or ADM2) scales according to standardized sets of non-overlapping country-unified
shapefiles. These were obtained for each modeled country from GADM 25 or geoBoundaries 24
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after an additional quality assessment (Table S4). Lesotho did not have ADM2 shapefiles from
a standard source, so these were processed to the administrative unit level 1 scale instead.

A set of continent- and region-wide posterior samples were assembled by summing across a
single random posterior predictive sample of each country model; mean and 95% credible
intervals (CrIs) were then calculated from the summed results, thus yielding 1000
continent-wide and region-wide posterior predictive samples that are internally consistent.

Multiple outputs were calculated at continent, regional, ADM0, and ADM2 scales for each
model in post-processing: mean annual incidence (cases per year), mean annual incidence
rate (cases per population per year), incidence rate ratio (abbreviated “IRR”, calculated as
mean annual incidence rate in 2016-2020 divided by that in 2011-2015), assignment of ADM2
units to 5-year and 10-year incidence categories, and population in ADM2 units in 5-year and
10-year incidence categories. Mean annual incidence and mean annual incidence rate
posterior mean and 95% CrI estimates were calculated across 1000 posterior predictive
samples at the relevant spatial scale. To estimate IRRs, the mean and 95% CrIs were
calculated across all pairwise ratios of 1000 posterior predictive samples in each period (i.e.,
evaluated across the distribution of 10002 samples – all 2016-2020 samples were
pairwise-divided by all 2011-2015 samples). IRRs were deemed statistically significant if the
95% CrIs did not cross one.

Number of people living in ADM2 units by 5-year incidence categories at continent and region
scales were estimated across the summed 1000 continent- and region-wide posterior samples
described above (corresponds to results in Fig 3A and Figure S17). The mean and 95% CrIs
for each 5-year incidence category were calculated across the 1000 posterior samples.
Consequently, the variability in these estimates reflects variation in ADM2 incidence category
assignment across samples.

Assignment of ADM2 units to specific 5-year incidence categories was performed in a
two-step procedure (corresponds to results in Fig 3B and Figure S18). First we determined
incidence categories for each 20 km by 20 km modeling grid cell and posterior sample, and
retained the highest incidence category encompassing at least 10% of the unit’s population or
100,000 people in 2020. Then, ADM2 units were assigned to the lowest incidence category
with at least 50% posterior cumulative probability of assignment at or above that level (e.g.,
ADM2 unit was assigned to the 50-100 cases per 100,000 category if ≥ 50% of posterior
samples categorized the ADM2 unit in the 50-100 or ≥100 cases per 100,000 people
categories). Thus, the assignment of an ADM2 unit to an incidence category already factors in
the variability in assignment across samples. We note that summing the number of people in
all ADM2 units by 5-year incidence category would not yield the same number as the
continent-wide mean estimate of population living in the ADM2 category.

Assignment of ADM2 units to 10-year incidence categories was based directly on their
2011-2015 and 2016-2020 incidence category assignments. We defined four 10-year
incidence categories: “sustained high” for ADM2 units classified as high incidence (≥10 cases
per 100,000 people per year) in both periods, “history of high” for ADM2 units classified as
high incidence in at least one period, “sustained low” for ADM2 units classified as <1 case per
100,000 per year in both periods, and “history of moderate” for all other combinations.
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Analysis of 2022-2023 cholera outbreak occurrence

A second extracted dataset and modeling framework were used to estimate the association
between 2011-2020 incidence categories and the probability of reporting suspected cholera
occurrence in the 2022-2023 period.

Extraction and spatial linkage of cholera occurrence data

Fourteen situation report documents (Table S5) with map images of cholera occurrence in the
post-2020 period were loaded into the QGIS geographic information system software (version
3.28.12) and overlaid with the standardized set of country-unified shapefiles (Table S4). Each
image was georeferenced to the country-unified shapefiles as a basemap with country
borders as control points. After aligning the administrative unit boundaries, we manually
added centroids to extract point locations for each administrative unit and added attributes to
identify the administrative unit level, confidence about the certainty of the administrative unit
level, presence of reported cholera cases, and the time range represented by the map.

We spatially joined extracted locations with cholera occurrence to the set of unique ADM2
units used to summarize the cholera incidence mapping results. Cholera occurrence was
extrapolated to ADM2 units if cholera was reported in ADM3 scale units or below.

Base statistical model

This analysis aimed to estimate the association between 10-year incidence categories and the
probability of reporting suspected cholera occurrence in the 2022-2023 period. For all
locations that were modeled, those that reported cholera were indexed with j and those that
did not report cholera were indexed with k .

For ADM2 locations that reported cholera occurrence, the likelihood is:
and𝐿(𝑦

𝑗,𝐴2 
= 1) =  𝑝

𝑗,𝐴2 
ϕ

𝑗,𝐴2

,𝑙𝑜𝑔𝑖𝑡(𝑝
𝑗,𝐴2

) =  α + β
𝑗,𝐴2

where is the reported cholera occurrence status extracted from the situation report𝑦
𝑗,𝐴2

documents in location j which is at the ADM2 level ( ), is the probability of true cholera𝐴2 𝑝
𝑗,𝐴2

occurrence, is the probability of reporting cholera if it is present (sensitivity of choleraϕ
𝑗,𝐴2

detection), is the model intercept, and is the effect of the 10-year incidence category inα β
𝑗,𝐴2

the ADM2 unit. Importantly, the model assumes that all reported cholera is a true instance of
cholera occurrence (i.e., no false positives).

As the absence of reported occurrence may be due to lack of cholera occurrence or lack of
reporting, we treated the absence of reported occurrence as missing data and marginalized
out all possible reporting statuses to estimate the underlying true cholera occurrence status.
For ADM2 locations that did not report cholera, the likelihood reads:
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where is the probability of true cholera occurrence in ADM2 unit , is the𝑝
𝑘,𝐴2 

𝑘 (1 − ϕ
𝑘,𝐴2

)

probability of not reporting cholera if it is indeed present, and is the effect of the 10-yearβ
𝑘,𝐴2

incidence category in the ADM2 unit.

Reports of cholera occurrence in ADM2 locations could therefore be modeled with a Bernoulli
distribution:

,𝑦
𝑖,𝐴2 

∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖( 𝑝
𝑖,𝐴2 

ϕ
𝑖,𝐴2

)

where i represents any location regardless of cholera reporting status.

Adding higher administrative unit level observations

As some occurrence data was only available at the ADM1 or ADM0 (country) level, these
observations were integrated into the model:

and𝑦
𝑖,𝐴<2 

∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖( η
𝑖,𝐴<2 

)

, η
𝑖,𝐴<2 

= 1 −
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ϕ
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where S,A2 represents the set of i,A2 ADM2 units contained within the location i,A<2 which is
above the ADM2 level, and is the probability of reported cholera occurrence in the η

𝑖,𝐴<2 
 

higher administrative unit level location i,A<2 .

Hierarchical country and region-level priors

We assumed that the association between 10-year incidence categories and the probability of
cholera occurrence may vary across countries and regions (e.g., Eastern Africa). We
accounted for these geographic differences by setting hierarchical priors, such that priors for
the association of the 10-year incidence category and probability of true cholera occurrence in
location , which is contained within country and region were defined as:𝑖 𝑐 𝑟

andβ
𝑐
𝑚 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(µ
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where denotes the 10-year incidence category associated with location , and are𝑚 𝑖 µ
β,𝑟
𝑚  σ

β,𝑟
𝑚

regional-level mean and standard deviation of the 10-year incidence category effect , andβ µ
β
𝑚

and are hyperpriors for the mean and standard deviation of the 10-year incidence categoryσ
β
𝑚

effect.

Hierarchical priors were also assumed for the cholera detection sensitivity parameters ,ϕ
which had analogous relationships on a logit scale:
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Model priors and hyperpriors

We used the following priors:

, σ
β,𝑟
𝑚 ∼ 𝐻𝑎𝑙𝑓 𝑛𝑜𝑟𝑚𝑎𝑙(0, 2. 5)

, µ
β
𝑚 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 2)

, σ
β
𝑚 ∼ 𝐻𝑎𝑙𝑓 𝑛𝑜𝑟𝑚𝑎𝑙(0, 2. 5)

, σ
𝑙𝑜𝑔𝑖𝑡(ϕ),𝑟

∼ 𝐻𝑎𝑙𝑓 𝑛𝑜𝑟𝑚𝑎𝑙(0, 1)

, µ
𝑙𝑜𝑔𝑖𝑡(ϕ)

∼ 𝑁𝑜𝑟𝑚𝑎𝑙(1. 5, 5)

. σ
𝑙𝑜𝑔𝑖𝑡(ϕ)

∼ 𝐻𝑎𝑙𝑓 𝑛𝑜𝑟𝑚𝑎𝑙(0, 1)

Assessing intervention reach when prioritizing targets by cholera incidence

We assessed the potential reach of interventions when targeted based on cholera incidence
through two analysis types. Both analyses ranked ADM2 units by decreasing incidence
category and decreasing population size within incidence categories as a simplification of
how intervention targets might be prioritized using cholera incidence data. “Prospective”
targeting used past incidence categories to target future interventions, while “oracle”
targeting prioritized interventions based on incidence categories from the same period.
In the first analysis, we assessed the proportion of mean annual 2016-2020 cholera cases
that would have been reached by interventions had 2011-2015 (“prospective”) or 2016-2020
(“oracle”) incidence categories been used for targeting. We also assessed the proportion of
mean annual 2011-2015 cholera cases that would have been reached by interventions had
2011-2015 incidence categories been used for targeting (“oracle” only).

In the second analysis, we examined the proportion of population living in ADM2 units with
modeled 2022-2023 cholera occurrence (modeled according to the above described
statistical analysis) that would have been reached by interventions had 2011-2015,
2016-2020, 2011-2020 incidence categories (“prospective”) been used for targeting. These
three strategies were compared to an “oracle” targeting strategy where ADM2 units with
2022-2023 cholera occurrence were ranked in decreasing order of population size.

References

1 Lessler J, Moore SM, Luquero FJ, et al. Mapping the burden of cholera in sub-Saharan
Africa and implications for control: an analysis of data across geographical scales. Lancet
2018; 391: 1908–15.

2 Johns Hopkins Cholera Dynamics Team. Cholera Taxonomy.

36

http://paperpile.com/b/zkMb2h/PEkT
http://paperpile.com/b/zkMb2h/PEkT
http://paperpile.com/b/zkMb2h/PEkT
http://paperpile.com/b/zkMb2h/ddyR


https://cholera-taxonomy.middle-distance.com/ (accessed June 12, 2024).

3 Datta A, Banerjee S, Hodges JS, Gao L. Spatial disease mapping using directed
acyclic graph auto-regressive (DAGAR) models. Bayesian Anal 2019; 14: 1221–44.

4 Goodman A. Test: Soft vs Hard sum-to-zero constrain + choosing the right prior for soft
constrain. The Stan Forums. 2018; published online Sept 24.
https://discourse.mc-stan.org/t/test-soft-vs-hard-sum-to-zero-constrain-choosing-the-right-prior
-for-soft-constrain/3884/31 (accessed May 2022, 2023).

37

https://cholera-taxonomy.middle-distance.com/
http://paperpile.com/b/zkMb2h/ddyR
http://paperpile.com/b/zkMb2h/FYrJ
http://paperpile.com/b/zkMb2h/FYrJ
http://paperpile.com/b/zkMb2h/F4yg
http://paperpile.com/b/zkMb2h/F4yg
https://discourse.mc-stan.org/t/test-soft-vs-hard-sum-to-zero-constrain-choosing-the-right-prior-for-soft-constrain/3884/31
https://discourse.mc-stan.org/t/test-soft-vs-hard-sum-to-zero-constrain-choosing-the-right-prior-for-soft-constrain/3884/31
http://paperpile.com/b/zkMb2h/F4yg

