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Abstract 

In the summer of 2024, COVID-19 positive cases spiked in many countries, but it is no longer a deadly 
pandemic thanks to global herd immunity to the SARS-CoV-2 viruses. In our physical chemistry lab 
in spring 2024, students practice kinetic models, SIR (Susceptible, Infected, and Recovered) and 
SIRV (Susceptible, Infected, Recovered, Vaccinated) using COVID-19 positive cases and vaccination 
data from World Health Organization (WHO). In this report, we further introduce virus breakthrough 
to the existing model updating it the SIRVB (Susceptible, Infectious, Recovered, Vaccinated, 
Breakthrough) model. We believe this is the simplest model possible to explain the COVID-19 
kinetics in all countries in the past four years. Parameters obtained from such practice correlate with 
many indices of different countries. These models and parameters have significant value to 
researchers and policymakers in predicting the stages of future outbreaks of infectious diseases.  

Keyword:  

SIR, SIRV, SIRVB, COVID kinetic models, global data analysis, undergraduate teaching 

TOC: 

 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.21.24314129doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:chenj@ohio.edu
https://doi.org/10.1101/2024.09.21.24314129
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Introduction 

“Pandemic” would have been just a word in modern times, if we all had not experienced the true 
sense of it until COVID-19 happened. The novel coronavirus, caused by virus SARS-CoV-2, first 
appeared in Wuhan, China in December 2019 1. The World Health Organization (WHO) announced it 

a pandemic named COVID-19 in March 2020 and released the alarm in May 2023 2,3. During these 
three years and until this report in the summer of 2024, over 700 million people around the world 
have been infected with this virus, and over 7 million people died, with an unknown but estimated 
much larger number of excess deaths by WHO 4–6. Among those, over 1 million deaths in the USA 7, 
indicating the impact of COVID-19 on the country, which spends the highest percentage on 
healthcare from GDP 8. Therefore, it is an interesting study for students to explore how fast COVID-
19 spread and recovery using kinetic models.  

The COVID-19 pandemic data has been used in our physical chemistry teaching lab course since 
2021. In early 2020, when the world was exposed to COVID-19, the kinetic models were used by 
epidemiologists to predict the impact of COVID-19, way before the world had realized it 9,10. The basic 
reproduction number, R0, meaning how many people can get infected by one infected person of 
COVID-19, was estimated ~3.0 in the early stage 11,12, higher than seasonal influenza, which is 
around 0.9-2.1 13. The incubation period of the SARS-CoV-2 virus was also higher than that of the 
common flu and society had no natural immunity as it was a novel virus type 14. Until vaccines were 
invented and properly distributed, the epidemiologists suggested that the best way to slow down the 
spreading was by enforcing social distancing 15,16. Throughout the COVID–19 peak period, kinetic 
models were used as a main tool for decision making 16. After 4 years since its first outbreak, positive 
cases are still reported worldwide daily 17, with different variants emerging. Luckily, it is no longer 
considered deadly due to the cumulative herd immunity achieved by the world. Herd immunity is the 
point at which the amount of susceptible people is less than 1/R0 of the total population 18. 
Vaccination and getting infected are the two ways to achieve herd immunity. We are interested in 
analyzing which country takes which way. 

Our in-class practice of COVID-19 kinetics analysis began in 2021, it was introduced to teach 
students how to do kinetic model analysis using an Excel spreadsheet and enabled them to perform 
lab work remotely 12. Since then, SIR (Susceptible, Infectious, and Recovered) and SIRV (Susceptible, 
Infectious, Recovered, Vaccinated) models have been used. The SIR model was originally developed 
by biochemist William Ogilvy Kermack and physician and epidemiologist Anderson Grey McKendrick 
in 1927 as a meaning to use the simplest possible mathematical model to predict spreading speed 
19. Modifications have been added over the past years 20, such as the SIRV model 21. In the past three 
years, we have been performing this lab experiment, with each year exploring more data. Our first 
lab in 2021 spring focused on two states’ data in the USA 12, and our second lab in 2022 focused on 

eight states in the USA 22. Then our 3rd lab in 2023 focused on different countries across all continents 
23. This year, in the spring 2024 lab, the COVID-19 data was downloaded from the Our World in Data 

website 24,25. Since the SIR and SIRV models showed difficulty in explaining the reproduction number 
in the later stages, we are introducing the SIRVB (Susceptible, Infectious, Recovered, Vaccinated, 
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Breakthrough) model to analyze the COVID-19 data. Finding the next simplest model is an essential 
intention in research and education. It also has practical significance for policymakers to predict 
stages and to suggest proper social restrictions. The key achievement of these models is to obtain a 
central parameter Rt, real-time reproduction number, that is independent of testing and can be 
predicted from social parameters that are readily available 26. We believe that the stringency index 24 
and R0 alone are enough to estimate Rt values in these models, providing a fast estimation of COVID-
19 spreading speed. 

 

Method  

 
Figure 1. Scheme of (a) SIR, (b) SIRV, and (c) SIRVB models. 

 

Using Microsoft Excel and SIR or SIRV model (Figures 1a, 1b) with the forward Euler method to 
extract the real-time effective reproduction number RE and real-time reproduction number Rt has 
been explained in our previous publications 12,22,23. The SIRVB model used in this report has the same 
structure as the SIRV model with one additional infection pathway (Figure 1c). The once immune 
people may still get infected with a breakthrough rate simplified to a single number b. This number 
is difficult to find and may change over time after the day when a person has recovered or been 
vaccinated 27. The meanings of the parameters are shown in Figure 1, where the boxes represent the 
number of people in each category, and the variables on the arrows represent the rate of transfer to 
another category. The discrete SIR and SIRV models have been detailed and explained in our 
previous publications 12,22,23. We are introducing the data analysis procedure of the Discrete SIRVB 
model (Figure 1c) as follows. The analysis can be done in Microsoft Excel, which is relatively time-
consuming and is suitable if a relatively larger class shares the load. In this report, we have coded 
MATLAB codes to speed up the process by automatizing the Excel process we have been doing 
before. 

Briefly, from the raw data downloaded from Our World in Data 24, we selected the smoothed new 
tested positive cases (n) per million population data with an additional 20-day window Gaussian 
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smooth, and fully vaccinated (V) per million population data to analyze the reproduction numbers 
over time. We set the discrete time step ∆t = 1 day, whose effect on convergence is simulated to be 
properly small for a million people 12,22,23. Thus, the initial values are set to be total population N = 
1,000,000, S = N, daily new case n = 0, active infectious population I = 1, recovered population R = 0, 
vaccinated population V = 0, infection rate constant β = 0 (day-1), recovery rate constant γ = 0.2 (day-

1), vaccination rate constant rv = 0 (day-1), and breakthrough rate constant b = 0.2. N, γ, and b are 
simplified to be fixed values throughout the calculations, n and V are from the raw data, and the rest 
are calculated variables 12,22,23. The average breakthrough rate value of the R+V population is difficult 
to find, although it is definitely smaller than 1/R0, otherwise, the pandemic would have never ended. 
As an example, we simplify the value to be fixed over time, b = 20% based on the literature values,27–

29 and a few different values will be tested later.  

These models resemble the logistics problem of self-pumped water/current flows and can be solved 
mathematically using various methods, among which we will use the Euler method. According to the 
Euler forward method, at time t = i, the ith day after day 1 of choice from the raw data, on Jan 5th, 2020, 
the second-order “rate constant” of infection is calculated from the number of new cases ni from 
the raw data. 

𝛽𝑖

𝑁
=

𝑛𝑖

𝑆𝑒𝑓𝑓𝑖−1
𝐼𝑖−1

=
𝑛𝑖

(𝑆𝑖−1+𝑏(𝑅𝑖−1+𝑉𝑖−1))𝐼𝑖−1
 (1) 

The daily fully vaccinated people vi can be directly pulled out from the raw data or calculated from 
the accumulated cases of the fully vaccinated population V, 

𝑣𝑖 = 𝑉𝑖 − 𝑉𝑖−1    (2) 

Thus, each day, the susceptible population is reduced by the newly infected and vaccinated 
population. They are simplified to be no overlap in this report instead of an overlap assumed in the 
previous classes 23, 

𝑆𝑖 = 𝑆𝑖−1 − 𝑛𝑖 − 𝑣𝑖   (3) 

The infectious population gaining from daily infection and losing to daily recovery, 

𝐼𝑖 = 𝐼𝑖−1 + 𝑛𝑖 − 𝛾𝐼𝑖−1   (4) 

And the recovered population, 

𝑅𝑖 = 𝑅𝑖−1 + 𝛾𝐼𝑖−1   (5) 

During the calculation, S and I are kept >=1, and R is kept <=N-S-I-V to avoid zeros in the 
denominators. 

Finally, the real-time effective reproduction number and the actual reproduction number are 
calculated, 

𝑅𝐸𝑖 =
𝑅𝑡𝑖𝑆𝑖

𝑁
=

𝑛𝑖

𝐼𝑖𝛾
   (6) 
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𝑅𝑡𝑖
=

𝛽𝑖

𝛾
    (7) 

These two curves are then smoothed using the moving median method (15 days) to exclude the 
spikes caused by irregular data collection. 

The purpose of disease control is to reduce the effective reproduction number closer to 1 to 
flattening-the-curve (FTC) 30, or keep it <1 long enough for the epidemic to fade. For a set of 
experimental data, RE values are the same, and Rt values are dependent on the three models in 
Figure 1. If no action is taken and no virus mutation, Rt is expected to remain constant throughout 
the pandemic. With social regulations, Rt is expected to be inversely proportional to social distance 
and thus, they carry very useful information 26. It can be used to quantify the overall effect of 
government stringency and social restrictions. Thus, the calculated values in the SIRVB model are 
further analyzed and correlated to various social data and indices, to find the significance of the 
SIRVB model in predicting and evaluating COVID-19 kinetics. 

 

Results and discussion  

Assuming a basic reproduction number R0 = 3.0 for COVID-19, the SIR model predicts that herd 
immunity will be achieved in 45 days with 1-1/R0 = 67% of the population infected and recovered if 
no restrictions are carried out in each million population (Figure 2). The infection period can be 
roughly described as early stage/phase (left part in Figure 2), middle stage (the sand-clock region), 
and later stage (right part). Rt remains constant in all three stages, similar to the rate constants in a 
chemical reaction, and RE decreases over time. Herd immunity is reached at RE = 1. This 2-month 
simulated lifetime is way faster than the > 3-year pandemic. This is because social regulations have 
reduced the otherwise constant Rt thus the spreading is slowed down, a social practice named 
flattening-the-curve (FTC) 30. 

 
Figure 2. Simulation of SIR model with Rt = R0 = 3.0. Detail algorithm available in the literature and 
an Excel file running the simulation can be found in our previous publications.12,22,23 

 

Our models consistently pulled out the effective reproduction number RE from the raw data Mathieu 
et al. published on Our World in Data, almost exactly the same but a little noisier than what they had 
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calculated (Figure 3).24 However, the SIR model ignores the vaccination, and the SIRV ignores the 
breakthrough, thus both give unreasonable estimations of Rt at later stages of the pandemic, which 
are supposed to return to R0 when social restrictions have been removed, as indicated by the social 
stringency index returning to zero after the pandemic 24.   

 

 
Figure 3. Reproduction number analysis of the world average data grouped and summarized in the 
raw data by Mathieu et al.24 (a) RE and Rt values of different models for the world average data. The 
reference RE values is taken from the raw data. Rt values of (b) SIRV model, (c) SIRVB model for the 
average of four groups of countries ordered from low to high incomes, and (d) SIRVB model for the 
countries in the six continents. Data are smoothed. The dashed lines are when WHO announced 
the start (March 11, 2020) and the end of the pandemic (May 5, 2023). 

 

In these three models, the n and V values are fixed from the testing data and vaccination data 
reported to WHO. Fixed n values and the γ value yield the same I values for the three models and 
thus the same effective reproduction numbers RE (Equation 6). These values are consistent with 
what Mathieu et al. have calculated (Figure 3a). The true I values are an epidemiological and 
statistical challenge to find. The consistency between our RE values and those reported by Mathieu 
et al. suggested that we have chosen a similar γ value with a proper smooth method and analysis 
procedure/algorithm.  

The three models, SIR, SIRV, and SIRVB, calculate the S and R populations very differently, yielding 
very different Rt values (Figure 3a). The SIR and SIRV models have difficulties explaining the Rt values 
of the later stages, namely 600-1600 days after the first day of the raw data (Jan 5th, 2020). During this 
period, social restrictions have been lifted and stringency has lowered in most countries. Thus, the 
Rt values are supposed to be similar to R0 if the mutations have a similar R0 or raised to a plateau if 
they have a larger R0.  

The SIR model ignores the effect of vaccination in reducing susceptible populations, and typically 
limited testing may have lower estimated the I population, thus, it yields a Rt very close to RE over the 
whole pandemic and after. We have little interest in using the SIR model to explain the raw data.  

The SIRV model seems to work properly at first glance for the world average data with reasonable 
shape and a reasonable Rt plateau value ~4, but it produces an unreasonably large Rt in the later 
stages for the counties, especially the developed countries that have a high vaccination rate (Figure 
3b). This is reasonable because, in the SIRV model, S can reach 0 and even negative if not restricted, 
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especially when both vaccination and testing rates are high. Rt and β will go to infinity if S = 0. Our 
analysis in Figure 3b has already restricted S and I to be >1 and maintained the sum of S, I, R, V = N 
but still has trouble. Thus, the SIRV model is not suitable for these countries in the late phase of the 
COVID-19 pandemic. In our past practice, we have assigned an overlap of the R and V population 
but the over-shooting of Rt still existed in the later stage.  

The SIRVB model correctly reflects these expectations in both the world average and most individual 
countries. However, a dependence on incomes (Figure 3c) and continents (Figure 3d) is observed. 
Individual countries also show different Rt plateau values. Africa data do not have an uprising plateau 
in the later phase, which is particularly different from the other continents. We believe this is 
because of the low testing ratio in developing countries 31,32. Low statistics will directly affect the 
calculation of the Rt and RE values. It has been reported that getting COVID data from some countries 
in Africa has been challenging 33, thus we suspect the difference between Africa and other continents 
is a low statistical problem of the raw data. The average Rt curve of all 242 countries listed in the raw 
data is consistently aligned with the average of the curves in Figure 3c and Figure 3d. The decay of 
Rt on the average curves after 900 days is because many countries stop reporting test results, 
especially after the pandemic. We assume that vaccination data are more accurate because it is 
easier to track than the other factors thus, we believe uncertainty in vaccination is not the major 
source of error in this model. The breakthrough b value potentially has a big effect on the model and 
thus is further analyzed. 

By changing the average breakthrough rate b in the SIRVB model, the equilibrium Rt plateau can be 
adjusted (Figures 4a-4d, Figure 3c). The average breakthrough rate of COVID-19 in immune people 
(V+R) must be <1/R0 for the pandemic to end. But b>0.3 (30%) can be used in the SIRVB model. The 
plateau Rt values decrease over the increase of the b value, and at b = 1, Rt converges to RE.  Note, 
the SIRV model could have provided a reasonable plateau of Rt if we had factored in ratios of S, I, R, 
and V to their hidden true values and/or a sophistic overlap model of different populations.  

 
Figure 4. (a-d) The effect of breakthrough rate on the calculations of Rt values in the SIRVB model. 
The four groups of countries in the raw data with low to high incomes are used as examples. Curves 
of b = 0.2 have been shown in Figure 3c.  
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The SIRVB model is more straightforward than the SIRV model in that it simplifies all complicated 
factors into a single parameter b and maintains the other values unchanged. Because the 
protection/immune effect of both infected and vaccinated fades over time 34–36, we select b = 0.2, a 
20% breakthrough rate in the next analysis based on estimations in the literature 27–29. In the SIRV 
model, the cumulative (I*γ)cumu = R. Introducing a breakthrough rate in the SIRVB model allows (I*γ) 

cumu > R or even the total population N while maintaining S+I+R+V =N over time. This b = 0.2 setting 
generates Rt values in 2-4 after 1000 days on the average data of the world and five continents (Figure 
3). These values are consistent with the estimations of R0~3 in the literature 11. with no need to 
assume much bigger R0 values for the later mutations of SARS-CoV-2. It has been challenging to find 
the R0 values for different virus strings 11,37. Thus, keeping R0 the same in a model can be strategically 
beneficial until solid data are obtained to update its value.  

To test the significance of the SIRVB model, we extracted several parameters for each country from 
the raw data as well as other reports on the Our World in Data website and compared them to the 
results obtained from the SIRVB model 38. 

First, Rt can be used to confirm/detect herd immunity status with high-quality global or local data, 
e.g. one city. This is because unlike RE, which changes over time even if no action is taken, Rt is a 
constant only dependent on the nature of the virus and the intensity of social interactions 39. Thus, 
when social stringency is back to normal, Rt should be close to R0, which can be used to back-
calculate the true immune populations and judge or predict the herd immunity status. For after-
pandemic analysis of the raw data, we can simply use the testing data and find the turning point of 
Rt at the beginning of the later stage Rt plateau, which is ~900 days for the data shown in Figures 3 
and 4. We propose to use this date as the day of herd immunity i.e. ~67% of the population is truly 
immune to SARS-CoV-2 at the middle point of the sand clock region in Figure 2.  

The consistency of this assignment with other parameters is found in many countries, e.g., for France 
data (Figure 5a). Rt is calculated from the raw data (Figure 5a), and the herd immunity time of France 
is assigned using Rt at ~800 days (Figure 5b). This is significantly earlier than the 900 days of the 
world data. This earliness makes sense because of the fast and high vaccination rate of France 
compared to the rest of the world, reaching ~80% at this time (Figure 5a). It is also consistent with 
the time of the biggest wave in France (Figure 5a), right before the government relieved social 
restrictions, and ~65% of total excess mortality due to COVID-19, which is estimated in the raw data 
by Mathieu et al.24  
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Figure 5. Example data analysis of France. (a) Raw data of n and V. (b) Social stringency estimated 
by Mathieu et al.24 in the raw data and Rt calculated in this report. Dashed lines indicate our 
estimation of the herd immune date. (c) Excess mortality estimated in the raw data. (d) Correlation 
of Rt with other time dependent parameters for COVID-19 in days 1-1200. If a curve goes up with 
the increase of another curve, the correlation will be positive, 0 if no correlation, and negative if 
goes down with the increase of another curve.  

 

Zoom in France’s data and correlate Rt with other time-resolved raw data, we can also find 
reasonable correlations and anti-correlations of the evolution of Rt with other time-resolved data 
(Figure 5d). Rt is calculated from n and V, and a positive correlation is observed for the France data. 
Rt has a stronger correlation with V because social recovery is timely correlated with vaccination in 
France (Figures 5a, 5b). Rt has low to no correlation with new vaccinations, new deaths, new 
hospitalizations, and new tests. These low correlations make sense because these parameters are 
indirectly affect social behavior and may have a delay effect, thus the simple correlation calculation 
cannot correctly reflect their true correlations.  

The positive correlations between Rt , n (new daily I), V, new tests, and the social intensity obtained 
(inversed) from stringency in the raw data estimated by Mathieu et al.,24 beautifully explain the 
flattening-the-curve practice. The same data can be seen from the anti-correlation between Rt and 
stringency in Figure 5b. If a community halves social intensity/frequency/“temperature” by reducing 
activities or increasing social distance, it halves the disease transmission and thus halves the Rt. The 
weak correlations of Rt with other parameters, especially new V and new deaths are good signs 
because Rt is a constant in the SIRVB model if there are no social intensity changes. Because of the 
large R0 value of COVID-19, it takes less than two months for it to infect the whole population at 
normal social intensity. Thus, assigning the turning point of the Rt curve as the herd-immunity date 
is a reasonable choice. 

The other significant correlations or anti-correlations in France data (Figure 5d) can be explained. 
The positive correlations between n, new hospitalization, and new tests are expected. The 
correlations of V with many parameters are due to the time correlation not because of causality 
correlation as indicated by the weak correlation of the new V (differential) column. New deaths, new 
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hospitalizations, and new tests are correlated with each other, which are expected. They are also 
expected to be anti-correlated with social intensity when people adjust their social activities with the 
correct information of the spreading status. New tests have no effect on true Rt in the model, but it 
changes the value of Rt and social behaviors, so its positive correlations with Rt and other parameters 
are observed. But its weak to no anticorrosion with social intensity is surprising. Even if we expect a 
stronger anticorrelation, this weakening could be due to the wave structure of the new cases and a 
delay in social responses. Finally, in this figure, the excess mortality is positively correlated with n, 
new death, new hospitalization, and new tests, and anticorrelated with social intensity, which is very 
reasonable and expected. From the above analysis, we can conclude that the France data is 
statistically significant and well-behaved in the framework of the SIRVB model. 

The Rt curves of the world average and France both have the laydown ‘5’ shape so do many other 
countries. Thus, we use this shape to fit data from all countries using a fitting algorithm named “jcfit”, 
which we have previously developed (Figure 6a).40 In countries with high testing and vaccination 
rates, the summation of the infected and vaccinated population (assuming no overlap for simplicity 
of the model) has exceeded the total population, for example, France. Thus, the Rt in the later phase 
is controlled by the breakthrough factor at Rt ≈ 1/b. The turning point occurs on the 802 days. The 
world average contains data from countries that have low testing and vaccination rates, thus all Rt < 
1/b. The global turning point (t4) is observed on the 940 day (Aug. 2, 2022), 276 days before WHO 
announced the end of the pandemic41 (May 5, 2023), about the average time between the last three 
big global waves. The slope between t3 and t4 reflects the social recovery after the most significant 
peak of COVID-19 in the area and is correlated with the release of stringency. We assign Aug. 2, 2022, 
the global herd immunity day on the SIRVB model. 

 
Figure 6. (a) Example fitting of Rt curve using the laydown ‘5’ shape for France and world average. 
(b)Histogram of Group 1 countries that do not follow (a) and Group 2 countries that follow the 
laydown ‘5’ pattern in (a) with today’s immune ratios. (c) Example data treatment of Group 1 
countries with low COVID-19 testing rates, briefly, multiplying a testing rate correction factor 
estimated using world average timing and recalculating the Rt values. 

 

In the next step, we manually check the Rt curves of the 254 records in the raw data to group them 
into three groups: 87 countries that do not follow (Group 1), 121 countries follow the laydown ‘5’ 
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pattern (Group 2), and the rest, being the averages of groups of countries, or countries missing a 
significant amount of data.  

Simplifying the total immune population as cumulated n times γ plus cumulative fully vaccinated 
population,  

Immune𝑡 = 𝑅𝑡 + 𝑉𝑡 ≈ ∑ 𝑛𝑖
𝑡
𝑖=1 + 𝑉𝑡  (8) 

The 87 Group 1 countries have a relatively low average immune population (0.30±0.20) compared to 
that of the Group 2 countries (0.73±0.21) at the end date of the raw data accessed in July 2024 
(Figure 6b). These values are correlated with GDP per capita, which makes sense because both 
testing and vaccination cost money. The average GDP per capita of Group 1 countries is $6000, and 
Group 2 countries is $20,000. Many Group 1 countries have relatively low testing rates, thus a 
smaller Rt at the later phase in the SIRVB model compared to Group 2 countries. Some countries 
also have low vaccination rates. To simplify our analysis, we assume that at the global herd immunity 
day, these countries also reach herd immunity with an assumed ~67% immune population. We 
assume a constant correction factor to be, 

𝐹𝑐  =
𝑁(1−

1

𝑅0
)−𝑉940

γ ∑ 𝑛𝑖
940
𝑖=1

    (9) 

And the corrected new case per day is 

𝑛𝑐𝑖 = 𝐹𝑐𝑛𝑖    (10) 

The average correction factor for the 87 Group 1 countries is 775 (1-9000), suggesting a very low 
testing ratio for many countries. 

After the daily case correction, the Rt values are recalculated, and a laydown 5 shape is observed for 
most of the Group 1 countries. For example, the first country on the list, Afghanistan, has a low 
detected cases per day per million people, peaking ~40 (Figure 6c). It also has relatively low 
vaccination at ~20% around day 940. Thus, its Rt is almost flat over time. This data suggests it is still 
at an early phase till the last day of the raw data in the SIRVB model, which is unlikely true. We apply 
a correction factor of 564 to the data and a new Rt curve showing a laydown 5 shape. Its trend anti-
correlates with the stringency index very well. The herd-immunity date for Afghanistan is re-defined 
to the 620th day on the revised Rt curve, right after the last major social restriction peak and the most 
intensive outbreak peak (Figure 6c). 

After we have re-defined the herd immunity date for the Group 1 countries in the model, we correlate 
these dates with other social parameters to check for a pattern among them (Figure 7). We leave the 
Group 2 countries with low testing ratio unchanged, resulting in some having a later herd-immunity 
date than the rest of the countries. The average day to reach herd immunity (SIRVB model) for Group 
1, mostly developing countries, is 655±184 days, and for Group 2, including most developed 
countries is 873±134 days. After analyzing the correlations of the herd-immunity days with other 
parameters (Figure 7), we suspect this difference is due to the two different strategies of achieving 
herd immunity, mainly through infection vs mainly through vaccination. Also, many developing 
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countries have lower median ages 42. Because COVID-19 is less toxic to young people 43, choosing 
infection to gain herd-immunity for young people is a natural choice. 

 
Figure 7. (a) Correlation of the turning time t4 in the SIRVB model with parameters of countries from 
Our World in Data. (b) Example plots of t4 with four parameters. Fall data available in the SI. 

 

A few correlations are further expanded in Figure 7b. Our assigned herd-immunity time (t4 in Figure 
6) is positively correlated with vaccination for Group 1 and all countries. This correlation makes 
sense because I and V determine t4 in the SIRVB model. Interestingly, a negative correlation is 
observed within Group 2 countries. We suspect it to be the cost of time to wait for the vaccination to 
be available. Group 1 countries have significantly shorter time than Group 2 because they achieve 
herd-immunity mainly via infection with an average median age of 24±8; thus, there is  less need to 
wait for the vaccines as Group 2 countries with an average median age of 36±7. Average population 
density should not matter because it is the local or median population density that determines the 
R0 and Rt values. Thus, a significant correlation between this parameter and the herd-immunity day 
is not observed for all countries. The median age, life expediency, handwashing facility, and election 
democracy index all contribute to the calculation of the human development index. Thus, their 
distribution vs t4 shows a positive correlation with a binary pattern between the two groups.  

 

Conclusions 

We believe the SIRVB model is the simplest mathematical model to explain the COVID-19 kinetic 
data of all countries in Our World in Data (raw data) from the World Health Organization (WHO). The 
calculated Rt values from the model are strongly anti-correlated with the stringency index estimated 
in the raw data. Thus, it is possible to calculate the Rt values of the SIRVB model just using stringency-
index and R0 in a future outbreak of an epidemic or pandemic, providing valuable prediction power 
to researchers and policymakers, especially in regions where testing is rare. 

In summary, there is an epidemiological significance of SIR, SIRV, and SIRVB models, and choosing 
a proper model and finding out the proper parameters could be essential in predicting trends and 
suggesting policy changes for a future epidemic or pandemic. A modification of the SIRVB model 
allows the adjustment of low-statistics data to obtain otherwise hidden Rt values, taking advantage 
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of parameters fitted from the data of high-statistics regions. Thus, the central disease monitoring 
department, such as WHO or the disease control department of a country can have an estimation of 
the stages of the spreading in low statistics regions.  

A few weak points of the simplified SIRVB model may need further improvement to a more 
sophisticated model. The post-pandemic data analysis we have carried out is a mathematical 
practice based on naïve assumptions rather than a restricted epidemiological study. We believe the 
parameters of the SIRVB model can be obtained experimentally during a pandemic and used to 
predict its trend. Due to our limited knowledge of epidemiology, we will leave this task to others who 
are more suitable. The model does not have an internal overlap of populations; neither does the 
model have imported cases. Time-dependent variables such as γ and b are assumed constants. 
Estimation of testing and vaccination rates have significant uncertainties. Also, the model treats the 
whole entity, either a city, a state, a country, or the whole world, uniformly. These assumptions 
introduce errors in Rt calculation, which is also part of why the after-pandemic Rt approaches 1/b 
rather than (should be) R0. The number of susceptible populations will be estimated to be 0 at a later 
phase, and all cases are breakthrough which is not true. Thus, any tested positive case, even 1 in the 
whole population, will give a calculated Rt = 1/b losing its significance. 
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