Supplementary information

Morphology-based classification of sickle cell disease and β -thalassemia using a low-cost automated microscope and machine learning

Pranav Shrestha^{1*}, Hendrik Lohse^{1,2}, Christopher Bhatla³, Heather McCartney⁴, Alaa Alzaki³, Navdeep Sandhu⁵, Pradip Kumar Oli⁶, Hongquan Li⁷, Manu Prakash⁸, Ali Amid³, Rodrigo Onell³, Nicholas Au³, Hayley Merkeley³, Videsh Kapoor³, Rajan Pande^{6,9}, Boris Stoeber^{1,10*}

¹Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia, V6T 1Z4, Canada.

²Department of Mathematics and Computer Science, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands.

³Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada.

⁴Division of Hematology & Oncology, BC Children's Hospital, 4480 Oak Street, Vancouver, British Columbia, V6H 3V4, Canada.

⁵Adult Red Cell Disorders Program of BC and Yukon, St. Paul's Hospital, 1081 Burrard Street, Vancouver, British Columbia, V6Z 1Y6, Canada.

⁵Division of Hematology, Providence Health Care, 440-1144 Burrard Street, Vancouver, British Columbia, V6Z 2A5, Canada.

⁶Mount Sagarmatha Polyclinic and Diagnostic Center, Nepalgunj, Bheri Zone, Province no-5, Nepal.

⁷Department of Electrical Engineering, Stanford University, 350 Jane Stanford Way, Stanford, California, USA.

⁸Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California, USA.

⁹Department of Internal Medicine, Bheri Hospital, Nepalgunj, Bheri Zone, Province no-5, Nepal.

¹⁰Department of Electrical and Computer Engineering, The University of British Columbia, 2332 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada.

* Corresponding authors (email: pranav.shrestha@alumni.ubc.ca; boris.stoeber@ubc.ca)

List of supplementary videos

<u>Supplementary video 1</u>: Example of sickling at the cellular level for a sample with sickle cell disease. Video playback speed is 20× real-time.

<u>Supplementary video 2</u>: Example of sickling at the cellular level for a sample with sickle cell trait. Video playback speed is 20× real-time.

<u>Supplementary video 3</u>: Example of sickling at the image level (same as Fig 2b-g), showing differential phase contrast image of red blood cells and morphological characterization of roundness and eccentricity. Cells are predominantly round at t = 0 s, and change to sickled shapes by 3000 s. Number of cells = 2805 ± 17 (mean ± standard deviation for 1000 images). Video playback speed is 120× real-time.

Automated microscope

The automated microscope, Octopi, used for both studies in Canada and Nepal, is shown in Fig. S1.

Fig. S1: Picture of the automated microscope, Octopi, during imaging of 225 images/coverslip at the study site in Nepal.

Morphological and intensity parameters

A complete list of 40 morphological and intensity-based parameters extracted for each cell is provided below, with the numbers corresponding to those in Fig. 4 i and j in the main text.

Number	Morphological or intensity parameter	Туре	Formula
1	Area	Basic morphological	
2	Perimeter	Basic morphological	
3	Angle	Basic morphological	
4	Major axis	Basic morphological	
5	Minor axis	Basic morphological	
6	Height	Basic morphological	
7	Width	Basic morphological	
8	Mean intensity	Intensity	
9	Standard deviation intensity	Intensity	
10	Median intensity	Intensity	
11	Skewness	Intensity	
12	Kurtosis	Intensity	
13	Feret	Basic morphological	
14	Feret angle	Basic morphological	
15	Minimum feret	Basic morphological	
16	Feret X coordinate	Basic morphological	
17	Feret Y coordinate	Basic morphological	
18	Circularity	Non-dimensional morphological	$\frac{4 \cdot \pi \cdot Area}{Perimeter^2}$
19	Aspect ratio	Non-dimensional morphological	Major Minor
20	Roundness	Non-dimensional morphological	$\frac{4 \cdot Area}{\pi \cdot Major^2}$

21	Convex hull area	Basic morphological	
22	Solidity	Non-dimensional morphological	Area Convex Hull Area
23	Eccentricity	Non-dimensional morphological	1. $\sqrt{1 - \frac{0.5 \cdot Minor^2}{0.5 \cdot Major^2}}$
24	Elliptical shape factor (ESF)	Non-dimensional morphological	$\frac{1}{AR} = \frac{Minor}{Major}$
25	ElongationFW	Non-dimensional morphological	Width Feret
26	ElongationFmF	Non-dimensional morphological	<u>Minimum Feret</u> Feret
27	Convex perimeter	Basic morphological	
28	Convexity	Non-dimensional morphological	Convex Perimeter Perimeter
29	Fiber length	Basic morphological	
30	Fiber width	Basic morphological	
31	Curl	Non-dimensional morphological	$\frac{Feret}{Fibre \ Length}$ $= \frac{4 \cdot Feret}{Perimeter - \sqrt{Perimeter^2 - 16 \cdot Area}}$
32	CurlW	Non-dimensional morphological	$\frac{Feret}{Fibre \ Width} = \frac{Feret \cdot Fibre \ Length}{Area}$
33	Normalized area	Normalized	
34	Normalized perimeter	Normalized	
35	Normalized major axis	Normalized	
36	Normalized minor axis	Normalized	
37	Normalized height	Normalized	
38	Normalized width	Normalized	
39	Normalized feret	Normalized	
40	Normalized minimum feret	Normalized	

List of models or classifiers

The complete list of different models/classifiers in MATLAB Classification Learner App (2023a) is provided below:

- 1. Fine Tree
- 2. Medium Tree
- 3. Coarse Tree
- 4. Linear Discriminant
- 5. Quadratic Discriminant
- 6. Efficient Logistic Regression
- 7. Efficient Linear Support Vector Machine (SVM)
- 8. Gaussian Naive Bayes
- 9. Kernel Naive Bayes
- 10. Linear SVM
- 11. Quadratic SVM
- 12. Cubic SVM
- 13. Fine Gaussian SVM
- 14. Medium Gaussian SVM
- 15. Coarse Gaussian SVM
- 16. Fine K-Nearest Neighbors (KNN)
- 17. Medium KNN
- 18. Coarse KNN
- 19. Cosine KNN
- 20. Cubic KNN
- 21. Weighted KNN
- 22. Boosted Tree (Ensemble)
- 23. Bagged Tree (Ensemble)
- 24. Subspace Discriminant (Ensemble)
- 25. Subspace KNN (Ensemble)
- 26. RUS Boosted Tree (Ensemble)
- 27. Narrow Neural Network
- 28. Medium Neural Network
- 29. Wide Neural Network
- 30. Bi-layered Neural Network
- 31. Tri-layered Neural Network
- 32. SVM Kernel
- 33. Logisitic Regression Kernel

Performance metrics

Additional performance metrics F1-Score, accuracy (one-versus-all), positive predictive value (PPV) and negative predictive value (NPV) for the models described in the main text are provided in tables S1-S3.

	F1-Score	Accuracy (OvA)	PPV	NPV
Quadratic SVM				
Macro-averaged	0.889 (0.887-0.891)	0.927 (0.925-0.928)	0.893 (0.891-0.895)	0.946 (0.945-0.947)
AA&ABeta	0.862 (0.859-0.865)	0.907 (0.905-0.909)	0.852 (0.848-0.856)	0.94 (0.938-0.942)
AS	0.833 (0.829-0.836)	0.891 (0.889-0.893)	0.858 (0.853-0.862)	0.91 (0.908-0.913)
SCD	0.973 (0.971-0.974)	0.982 (0.981-0.983)	0.97 (0.968-0.972)	0.989 (0.988-0.99)
Linear SVM				
Macro-averaged	0.881 (0.878-0.883)	0.922 (0.921-0.924)	0.894 (0.892-0.897)	0.946 (0.945-0.947)
AA&ABeta	0.864 (0.861-0.867)	0.9 (0.898-0.902)	0.794 (0.79-0.798)	0.974 (0.973-0.976)
AS	0.805 (0.8-0.809)	0.884 (0.882-0.887)	0.912 (0.908-0.916)	0.877 (0.874-0.879)
SCD	0.973 (0.972-0.975)	0.982 (0.982-0.983)	0.977 (0.975-0.979)	0.986 (0.985-0.987)
Wide Neural Net				
Macro-averaged	0.882 (0.88-0.885)	0.921 (0.92-0.923)	0.888 (0.885-0.89)	0.942 (0.941-0.943)
AA&ABeta	0.862 (0.858-0.865)	0.908 (0.906-0.91)	0.861 (0.857-0.866)	0.935 (0.933-0.937)
AS	0.831 (0.828-0.835)	0.886 (0.884-0.888)	0.829 (0.825-0.833)	0.92 (0.918-0.922)
SCD	0.954 (0.951-0.956)	0.97 (0.969-0.972)	0.972 (0.97-0.974)	0.971 (0.969-0.973)
Cubic SVM				
Macro-averaged	0.879 (0.877-0.882)	0.92 (0.918-0.922)	0.883 (0.881-0.886)	0.941 (0.94-0.942)
AA&ABeta	0.841 (0.838-0.845)	0.895 (0.893-0.897)	0.84 (0.836-0.845)	0.926 (0.924-0.928)
AS	0.822 (0.818-0.826)	0.883 (0.88-0.885)	0.836 (0.832-0.84)	0.909 (0.907-0.912)
SCD	0.974 (0.973-0.976)	0.983 (0.982-0.984)	0.973 (0.972-0.975)	0.988 (0.987-0.99)
Trilayered Neural Net				
Macro-averaged	0.878 (0.876-0.88)	0.919 (0.917-0.92)	0.883 (0.881-0.885)	0.94 (0.939-0.941)
AA&ABeta	0.852 (0.849-0.855)	0.902 (0.9-0.904)	0.856 (0.851-0.86)	0.929 (0.927-0.931)
AS	0.825 (0.821-0.828)	0.881 (0.879-0.884)	0.823 (0.819-0.827)	0.916 (0.914-0.918)
SCD	0.958 (0.956-0.96)	0.973 (0.971-0.974)	0.971 (0.969-0.974)	0.975 (0.973-0.977)

Table S1: Additional performance metrics for 3 groups (AA & ABeta, AS, SCD) typically considered for screening only HbS without β -thalassemia (referred to as 3 groups or *3Gp*)

OvA = one vs. all; PPV = positive predictive value; NPV = negative predictive value

both HbS and β -thalassemia, which combines the trait conditions together (referred to as 3 groups for screening or <i>3GpSc</i>)					
	F1-Score	Accuracy (OvA)	PPV	NPV	
Quadratic SVM					
Macro-averaged	0.844 (0.84-0.847)	0.897 (0.895-0.899)	0.855 (0.853-0.858)	0.926 (0.924-0.927)	
AA	0.764 (0.758-0.771)	0.859 (0.856-0.862)	0.839 (0.835-0.843)	0.872 (0.868-0.875)	
ABeta & AS	0.79 (0.787-0.794)	0.848 (0.844-0.851)	0.747 (0.741-0.753)	0.919 (0.917-0.921)	
SCD	0 076 (0 075 0 079)		0 991 /0 979 0 993)		

Table S2: Additional performance metrics for 3 groups (AA, ABeta & AS, SCD) relevant for screening for

SCD	0.976 (0.975-0.978)	0.984 (0.984-0.985)	0.981 (0.979-0.982)	0.987 (0.986-0.988)	
Medium Gaussian SVM					
Macro-averaged	0.83 (0.827-0.833)	0.888 (0.885-0.89)	0.837 (0.834-0.84)	0.918 (0.916-0.919)	
AA	0.764 (0.758-0.77)	0.844 (0.841-0.848)	0.761 (0.757-0.765)	0.893 (0.889-0.896)	
ABeta & AS	0.751 (0.747-0.755)	0.835 (0.832-0.838)	0.775 (0.768-0.782)	0.873 (0.871-0.875)	
SCD	0.974 (0.973-0.976)	0.983 (0.982-0.984)	0.975 (0.973-0.976)	0.988 (0.987-0.989)	
Cubic SVM					
Macro-averaged	0.828 (0.824-0.831)	0.887 (0.885-0.889)	0.844 (0.841-0.847)	0.919 (0.918-0.921)	
AA	0.728 (0.722-0.735)	0.842 (0.839-0.845)	0.832 (0.828-0.836)	0.849 (0.846-0.853)	
ABeta & AS	0.775 (0.771-0.778)	0.831 (0.828-0.834)	0.712 (0.707-0.717)	0.921 (0.919-0.923)	
SCD	0.98 (0.979-0.981)	0.987 (0.986-0.988)	0.988 (0.987-0.989)	0.987 (0.986-0.988)	
Trilayered Neural Network					
Macro-averaged	0.828 (0.825-0.832)	0.886 (0.884-0.889)	0.842 (0.839-0.845)	0.918 (0.916-0.919)	
AA	0.751 (0.745-0.757)	0.851 (0.848-0.854)	0.826 (0.822-0.83)	0.865 (0.861-0.868)	
ABeta & AS	0.771 (0.767-0.774)	0.832 (0.829-0.835)	0.721 (0.716-0.727)	0.911 (0.909-0.913)	
SCD	0.963 (0.961-0.965)	0.976 (0.975-0.978)	0.978 (0.977-0.98)	0.977 (0.975-0.978)	
Subspace Discriminant					
Macro-averaged	0.828 (0.824-0.831)	0.886 (0.884-0.888)	0.835 (0.832-0.838)	0.917 (0.915-0.918)	
AA	0.742 (0.736-0.748)	0.837 (0.834-0.84)	0.773 (0.768-0.777)	0.871 (0.868-0.875)	
ABeta & AS	0.758 (0.754-0.762)	0.833 (0.83-0.836)	0.747 (0.741-0.753)	0.888 (0.886-0.891)	
SCD	0.983 (0.981-0.984)	0.989 (0.988-0.99)	0.986 (0.985-0.988)	0.99 (0.989-0.991)	

OvA = one vs. all; PPV = positive predictive value; NPV = negative predictive value

	F1-Score	Accuracy (OvA)	PPV	NPV
Subspace Discriminant				
Macro-averaged	0.762 (0.758-0.766)	0.882 (0.88-0.883)	0.777 (0.773-0.78)	0.923 (0.921-0.924)
AA	0.656 (0.65-0.663)	0.822 (0.819-0.825)	0.645 (0.638-0.652)	0.895 (0.892-0.897)
ABeta	0.651 (0.644-0.659)	0.828 (0.824-0.831)	0.66 (0.653-0.668)	0.89 (0.887-0.893)
AS	0.761 (0.756-0.766)	0.887 (0.884-0.889)	0.819 (0.812-0.825)	0.912 (0.91-0.914)
SCD	0.98 (0.979-0.982)	0.99 (0.989-0.991)	0.982 (0.981-0.984)	0.993 (0.993-0.994)
Quadratic SVM				
Macro-averaged	0.746 (0.742-0.75)	0.876 (0.874-0.878)	0.757 (0.753-0.76)	0.92 (0.919-0.921)
AA	0.678 (0.673-0.684)	0.836 (0.833-0.839)	0.672 (0.666-0.678)	0.9 (0.898-0.903)
ABeta	0.579 (0.57-0.587)	0.813 (0.81-0.816)	0.655 (0.647-0.662)	0.857 (0.854-0.86)
AS	0.757 (0.752-0.761)	0.87 (0.868-0.873)	0.731 (0.725-0.738)	0.931 (0.929-0.932)
SCD	0.97 (0.968-0.972)	0.985 (0.984-0.986)	0.968 (0.966-0.97)	0.991 (0.99-0.992)
Linear SVM				
Macro-averaged	0.75 (0.746-0.753)	0.875 (0.873-0.877)	0.769 (0.765-0.772)	0.918 (0.917-0.92)
AA	0.657 (0.651-0.663)	0.812 (0.808-0.815)	0.615 (0.608-0.622)	0.904 (0.901-0.906)
ABeta	0.612 (0.603-0.62)	0.812 (0.808-0.815)	0.627 (0.62-0.634)	0.876 (0.873-0.88)
AS	0.759 (0.754-0.764)	0.891 (0.889-0.893)	0.854 (0.848-0.86)	0.905 (0.903-0.906)
SCD	0.971 (0.97-0.973)	0.986 (0.985-0.987)	0.979 (0.978-0.981)	0.989 (0.988-0.99)
Wide Neural Network				
Macro-averaged	0.733 (0.729-0.736)	0.871 (0.869-0.872)	0.747 (0.744-0.751)	0.917 (0.916-0.918)
AA	0.676 (0.67-0.682)	0.83 (0.827-0.833)	0.655 (0.649-0.662)	0.903 (0.901-0.906)
ABeta	0.536 (0.527-0.544)	0.803 (0.8-0.805)	0.647 (0.639-0.655)	0.841 (0.839-0.844)
AS	0.767 (0.763-0.772)	0.873 (0.87-0.875)	0.721 (0.715-0.726)	0.942 (0.94-0.944)
SCD	0.952 (0.95-0.955)	0.977 (0.976-0.978)	0.967 (0.964-0.969)	0.981 (0.98-0.983)
Boosted Tree				
Macro-averaged	0.736 (0.732-0.74)	0.87 (0.868-0.872)	0.75 (0.746-0.754)	0.915 (0.914-0.916)
AA	0.68 (0.673-0.688)	0.848 (0.845-0.851)	0.723 (0.715-0.731)	0.893 (0.89-0.896)
Abeta	0.588 (0.58-0.596)	0.797 (0.793-0.8)	0.598 (0.591-0.606)	0.869 (0.865-0.872)
AS	0.73 (0.724-0.735)	0.86 (0.857-0.863)	0.721 (0.714-0.728)	0.917 (0.915-0.919)
SCD	0.948 (0.945-0.951)	0.974 (0.973-0.975)	0.959 (0.955-0.963)	0.981 (0.98-0.982)

Table S3: Additional performance metrics for 4 groups (AA, ABeta, AS, SCD) referred as 4Gp

Effect of temperature

Temperature increased the rate of sickling. This was more prominent in sickle cell trait samples than sickle cell disease samples (where majority of cells sickled even at room temperature), as shown in Fig. S2-S8.

Sickle cell disease

Fig. S2: Images of red blood cells from sickle cell disease sample at room temperature (left) and body temperature (right), taken immediately after sample preparation (t=0).

Fig. S3: Images of red blood cells from sickle cell disease sample at room temperature (left) and body temperature (right), taken 1 hour after sample preparation (t=1hr).

Fig. S4: Images of red blood cells from sickle cell disease sample at room temperature (left) and body temperature (right), taken 2 hours after sample preparation (t=2hrs).

Sickle cell trait

Fig. S5: Images of red blood cells from sickle cell trait sample at room temperature (left) and body temperature (right), taken immediately after sample preparation (t=0).

Fig. S6: Images of red blood cells from sickle cell trait sample at room temperature (left) and body temperature (right), taken 1 hour after sample preparation (t=1hr). Note: At room temperature there is negligible sickling, while at body temperature, most of the cells have sickled.

Fig. S7: Images of red blood cells from sickle cell trait sample at room temperature (left) and body temperature (right), taken 2 hours after sample preparation (t=2hrs). Note: At room temperature there is negligible sickling, while at body temperature, most of the cells have sickled.

Fig. S8: Images of red blood cells from sickle cell trait sample at room temperature (left) and body temperature (right), taken 3 hours after sample preparation (t=3hrs).