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Abstract 21 

Artificial intelligence holds promise for individualized medicine. Yet, predictive models in the 22 
neurobiomedical domain suffer from a lack of generalizability and replicability so that transitioning models 23 
from prototyping to clinical applications still poses challenges. Key contributors to these challenges are 24 
confounding effects; in particular the oftentimes purely statistical perspective on confounding. However, 25 
complementing these statistical considerations with causal reasoning from domain knowledge can make 26 
predictive models a tool for causal biomedical inference beyond associative insights. Such causal insights give 27 
answers to biomedical questions of how and why, arguably what most biomedical investigations ultimately 28 
seek for. Here, we suggest a 5-step approach for targeted, context-informed deconfounding. We exemplify the 29 
5-step approach with a real-world neurobiomedical predictive task using data from the UK Biobank. The core30 
of this approach constitutes a bottom-up causal analysis to identify a correct set of deconfounders and the 31 
appropriate deconfounding method for a given causal predictive endeavour. Using the 5-step approach to 32 
combine causal with statistical confounder considerations can make predictive models based on observational 33 
(big) data a technique comparable to Randomized Control Trials (RCTs). Through causally motivated 34 
deconfounding we aim at facilitating the development of reliable and trustworthy AI as a medical tool. In 35 
addition, we aim to foster the relevance of low performing or even null result models if they originate from a 36 
“skilful interrogation of nature”, i.e. a deconfounding strategy derived from an adequate causal and statistical 37 
analysis. Ultimately, causal predictive modelling through appropriate deconfounding can contribute to mutual 38 
recursive feedback loops of causal insights across disciplines, scales and species that enable the field to 39 
disentangle the cause-effect structure of neurobiomedical mechanisms. 40 
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1. Main 41 

Machine Learning (ML) holds promise for personalized medicine and is increasingly employed in biomedical 42 
research and applications. ML workflows use large, high-dimensional and oftentimes observational data to 43 
arrive at predictive models to identify biomarkers of health and disease or to aid in diagnosis, prognosis and 44 
treatment choice, targeted to individuals1–3. Predictive modelling is thereby a prominent strategy to derive both, 45 
scientific insights regarding biomedical mechanisms as well as a clinical tool for precision-medicine. 46 

Although promising, biomedical AI suffers from unreliable predictions4–7, a lack of reproducibility and 47 
replicability, non-interpretability8, and limited generalizability9 of models. A key contributor to these 48 
challenges are confounding effects10–12. Classical examples of confounders include measurement artifacts13–16, 49 
site effects17, demographics18–20, or lifestyle factors21. Large data, as required for AI applications, tend to be 50 
observational in nature. However, in observational data confounders must be accounted for by post-hoc 51 
statistical approaches, such as (linear) confounder regression10,11,13,22–26. In many biomedical disciplines it is 52 
common to correct for a conventionally established set of confounders, such as sex and age5,10,27,28, without 53 
any justification29–31. If a justification is given, this is often in the form of a statistical association between the 54 
predictors and the confounder29,32,33. Reporting statistical associations appears appropriate when following the 55 
ubiquitous (but faulty – see Box 3) definition of confounders as any variable that correlates with the feature 56 
(predictor) and the target (outcome), but which’s variance is of no interest34,35. Despite a variety of statistical 57 
methods for post-hoc confounder treatment, confounding still leads to - or is at least part of - the AI-challenges 58 
mentioned above. The reason being, treating confounding based on the above definition as a purely statistical 59 
notion, leads to confounding being dealt with purely by statistical means. However, confounding is not only a 60 
statistical notion, but also necessitates causal reasoning36, on which we will elaborate within this paper. 61 

Complementing statistical confounder considerations with causal reasoning from domain knowledge can make 62 
predictive models a tool for causal biomedical inference, going beyond associative insights. Here, we explain 63 
and exemplify how targeted, context-informed deconfounding in observational (big) data can make predictive 64 
models a technique comparable to Randomized Control Trials (RCTs). First, we distinguish between high 65 
performance and understanding biology models and highlight the role of confounding in this distinction. 66 
Second, by means of an exemplary predictive task we illustrate why and how ignoring causal reasoning while 67 
solely relying on correlative reasoning can lead to biased models and well-known paradoxes such as the 68 
Simpson’s Paradox. As a solution, we discuss theoretically how to arrive at understanding biology models 69 
with (big) observational data through causal reasoning. We use the introduced real-world predictive example 70 
to illustrate an actionable 5-step approach to arrive at provisional causal models through targeted and informed 71 
deconfounding. Eventually, we discuss that it is particularly hard in the field of biomedical research to define 72 
a set of satisfying causal assumptions because of the inherently multi-dimensionality of biomedical 73 
mechanisms and close with suggestions on how to treat this dilemma.  74 

2. The necessity for causal reasoning in predictive models and the role of confounders 75 

2.1. Biomedical questions ultimately ask about the “why” and “how” of a phenomenon of interest 76 

In the development of AI-tools, the medical usefulness and clinical trustworthiness of ML models is oftentimes 77 
(solely) judged based on a model’s performance – “the higher the accuracy, the better the model”, leading to 78 
a performance race in model development. Problematically, the achieved high performances oftentimes cannot 79 
be replicated under changing conditions. This makes previously high performing models fail in clinical 80 
deployment, i.e. models fail to generalize. The statistical solution is to avoid data distribution37 and covariate 81 
shifts38, by attempting to keep or make distributions of variables the same in the training and testing data. 82 
However, in real-world (medical) use-cases this cannot always be guaranteed. There is the demand for 83 
transportable and adaptable models between settings, i.e. under changing distributions. For example, a useful 84 
model should work in different hospitals, not just in the one on which’s data it was trained. The demand is for 85 
models that can be used in the same way as for instance a glucose test, which gives the same results no matter 86 
where it is applied. Independent of the setting, it informs about glucose-tolerance and thereby supports 87 
diagnosis of diabetes. This is different for predictive models. Under new conditions, models must be trained 88 
again to learn a new prediction function as fitting a function to data is ultimately what any type of learning 89 
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technique can achieve36. While the high performance model operates based on learned patterns in data, the 90 
glucose test operates based on the knowledge of the underlying biological mechanism: Sustained higher blood 91 
glucose level after glucose intake can be caused by insulin resistance, i.e. diabetes type 2. In other words, the 92 
glucose test works under changing conditions because it is based on knowing the “why” and “how” of the 93 
biochemical mechanisms underlying diabetes, or put differently, knowing the underlying cause-effect 94 
relationship. Consequently, what is ultimately desired in biomedical predictive modeling are understanding 95 
biology models, that both, incorporate and enhance knowledge on causal biomedical effects. High performance 96 
aims should build on such causal models, because high performance based on valid biomedical mechanisms 97 
fosters model generalizability across different settings, which can improve trust in the usage of predictive 98 
models as biomedical tools. 99 

Beyond biomedical models as clinical tools, arguably, biomedical questions often ultimately implicitly - even 100 
if not formulated explicitly - ask about the why and how of a phenomenon of interest. Why does person A have 101 
a higher hand grip strength (HGS) than person B? Why does person A suffer from depression, but a seemingly 102 
matching person B does not and why is the treatment in patient A successful but not in patient B? The problem 103 
though is, no matter how big, data are inherently “dumb about questions of why”36. The reason is that most 104 
predictive data-driven models are associative and observational in nature. However, asking why is a causal 105 
question that seeks for understanding of cause-effect relationships between variables. Given the well-known 106 
fact that correlation is not causation, it becomes clear that one cannot derive medical cause-effect relationships 107 
from a correlative (associative), observational approach, such as purely data-driven modeling. However, some 108 
correlations do imply causation. To disentangle if an association between a feature (predictor) and a target 109 
(outcome) does indeed imply causation, one needs to combine qualitative, causal information with quantitative, 110 
data information36. This does not only apply to causal predictive modeling but also domains such as structural 111 
equation modeling, i.e. some hypothesized causal structure has to be added to pure quantitative, associative 112 
interrogations39. Integrating causal assumptions can push ML techniques to allow for answering real-world 113 
why questions beyond quantifying associative patterns in data. 114 

Box 1 – The ladder of causation 

Causation can be distinguished into three levels of increasing causal insight: Seeing, doing and imagining36 
(Table B1).  

Table B1. Ladder of causation (adapted from36).  

Ladder 
Rung 

Action Learning Type Questions Examples Gained 
Insight 

Rung 3 Imagining 

💭 

Counterfactuals, 
imaging worlds 
that do not exist 

What if X had 
not occurred, 
would Y have 
happened? 

What if I had not smoked 
for the last 2 years, 
would I still have gotten 
lung cancer? 

Understanding 

Rung 2 Doing 

🔨 

Intervention, act 
by planning and 
learn from 
interventions 

What would Y 
be if I do X? 

If I take aspirin, will my 
headache be cured? 

Causal 
mechanism 

Rung 1 Seeing 

👁 

Learning from 
association 

How are two 
variables 
related? 

What does a symptom 
say about a disease? 

Correlative, 
pattern in the 
data 
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Rung one refers to the seen world. By investigating how two variables are related, new insights are derived 
from associations. This resembles the investigation of correlative patterns in data. Rung one analyses can 
answer observational, associative questions, for example in the 1700s being a sailor was associated with a 
higher risk of developing scurvy. 

Rung two requires doing or intervening. Here, the interest lies in gaining more detailed understanding in 
cause-effect relationships by changing (intervening on) a predictor (feature) variable X and learning how an 
outcome (target) variable Y would change as an effect of manipulating X. Interventions allow to get insights 
into causal mechanisms. In a medical setting RCTs are the established means for interventional 
investigations. For example intervening on one ship with sailors having citrus fruits while another ship does 
not have could show that sailors on the citrus-fruit-ship didn’t develop scurvy.  

Rung three deals with a world that cannot be seen because it contradicts what is seen. Deriving insight on 
rung three requires imagining situations that do not exist, for example “would the outcome (target) Y have 
happened, if the predictor (feature) X had not occurred”? Rung three allows for not only seeing effects of 
interventions but understanding cause-effect mechanisms. For example, would a sailor S on the non-citrus-
fruit-ship also not have developed scurvy if they (he) had had citrus fruits? 

2.2. Not acknowledging the causal nature of confounders leads to paradoxes 115 

Interventions allow to gain insights into causal mechanism beyond associative patterns in data and are therefore 116 
the next step towards answering questions of why (Box 1). Randomized Control Trials (RCTs) in medical 117 
experimentation are an established method to gain interventional insights because they implicitly take a causal 118 
note (Box 2). In contrast, confounder regression in predictive models stays correlative. However, not 119 
acknowledging the causal nature of confounders and other types of 3rd variables (Box 3) leads to a set of 120 
paradoxes such as Simpson’s paradox (confounder bias) or Berkson’s paradox (collider bias) (Box 3). As an 121 
example consider the supervised prediction of hand grip strength (HGS) from T1w-MRI derived grey matter 122 
volume (GMV) features in a large observational dataset such as the UK Biobank40 (for methods see 123 
supplementary materials). A vanilla model without confounder considerations decently predicts HGS from 124 
parcellated GMV (Fig. 1a top). Following common practice of confounder removal, a second model can be 125 
built with linearly regressing out sex as a conventionally established confounder (also referred to as 3rd 126 
variable) (Fig. 1a bottom). Following the above given ubiquitous definition of a confounder as a variable that 127 
correlates with both, the features and the target, this decision could be backed up by the given point biserial 128 
correlation (statistical association) between sex and both HGS (r=.73) and GMV (r=.45) (Fig. 1b). The vanilla 129 
and the sex-adjusted model differ notably in their predictive performance (R2

vanilla=.40 vs. R2
sex=.03) (Fig. 1a). 130 

This high difference suggests that the good predictive performance of the vanilla model originated from a 131 
feature-target correlation that only exists without confounder regression. Such correlations – sometimes 132 
referred to as spurious correlations - can arise when two heterogenous populations are aggregated into one36, 133 
known as Simpson’s paradox. It occurs inter alia when the statistical result of the subgroups differs from the 134 
whole (aggregated) population (Fig. 1c) (see Box 3 for definition). For example a drug happens to be bad for 135 
men and bad for women but good for people. In our scenario, a correlation of r=.44 between (unparcellated, 136 
whole brain) GMV and HGS in the aggregated population (male and female) in contrast to rm=.22 and rf=.15 137 
in the two groups (Fig. 1b, d) suggests that the aggregation of the subpopulations creates a spurious correlation 138 
which the vanilla model leverages. In other words, by inappropriately combining two distinct populations 139 
(here: male and female), we created a supposedly good performing vanilla model whose success however was 140 
built on sex information, i.e. on a spurious correlation between the features and the target. 141 
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 142 

Fig. 1. Not acknowledging the causal nature of confounding can lead to paradoxes and spurious 143 
correlations that drive predictions. a) Supervised prediction of hand grip strength (HGS) from grey matter 144 
volume (GMV) with no confounder regression (vanilla) and regression of sex as confounder. b) Association 145 
of GMV and HGS in the aggregated population (male and female) with each other and with sex. c) 146 
Visualization of the Simpson’s paradox. d) Association of GMV and HGS separately for males and females.  147 

In the above example, partitioning the data seemed to be the right decision. However, aggregating the data (not 148 
adjusting for a 3rd variable) is not always wrong or partitioning the data (adjusting for a 3rd variable) is not 149 
always right. Rather, the right decision depends on the process that generated the data. This process needs to 150 
be understood individually for each predictive modeling task and this understanding necessitates integrating 151 
causal structures between variables. The data generating process cannot be revealed by correlative 152 
considerations alone because the correlative nature of a 3rd variable with the feature(s) and the target stays the 153 
same irrespective of the 3rd variable being a confounder, a mediator or a collider, but directionalities 154 
(causalities) differ (Box 3). For example, only given the correlation between GMV, sex and HGS (Fig. 1b) 155 
directionalities (i.e. causalities) cannot be distinguished. Consequently, it remains unclear whether sex is a 156 
confounder, a mediator or a collider. The occurrence of the Simpson’s paradox when conditioning on 157 
(regressing out) sex suggested that here sex is a confounder because this paradox would not have occurred if 158 
sex were a mediator or collider (Box 3). Knowing that sex is a confounder, one needs to condition on sex to 159 
get insights into the causal path GMV → HGS. In contrast, conditioning on or regressing out a mediator would 160 
disable the causal path of interest (Box 3). Conditioning on a collider would even introduce a spurious 161 
correlation (Berkson’s paradox, Box 3), for instance detectable through an increased accuracy. This means that 162 
conditioning on all statistically associated 3rd variables - maybe with a “better safe than sorry”-mindset - can 163 
lead to wrong insights because the correct decision for conditioning on a variable depends on the causal story 164 
not on the data. The Simpson’s paradox alerts to cases where at least one of the statistical results - either from 165 
the aggregated data, the partitioned data, or both - cannot represent the causal effects. In the GMV-HGS 166 
example, the aggregated data does allow to investigate if GMV causes HGS. 167 

Predictive modelsa
Vanilla

Sex

Simpson’s paradoxcCorrelative structure of GMV-HGS example
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Box 2 – Concepts and Terminologies for Causal Investigations 

Investigations on causal inference require formal representation of causal concepts and assumptions. Causal 
diagrams or directed acyclic graphs (DAG), are used to express the known causal assumptions (“what we 
know”). Symbolic language supplements these diagrams by expressing the causal relationship to be found 
(“what we want to know”)36.  

DAG: directed acyclic graph – “What we know” 

A DAG is a circle-arrow picture. The circles represent variables, and the arrows represent directions of 
known or suspected causal relationships between two variables. X → Y in a DAG would mean that X is 
a direct cause of Y, i.e. the arrow implicitly says that some probability rule or function specifies how Y 
would change if X were to change or simplified, “Y listens to X”. The rule according to which this change 
happens might either be known (e.g. previous research) or has to be estimated from data. However, often 
the structure of the DAG itself already enables to estimate causal relationships (simple or complicated, 
deterministic or probabilistic, linear or nonlinear). For example, a barometer reading B tracks the 
atmospheric pressure P. We know that it is the pressure P that causes the barometer reading to change, 
i.e. P → B, and not the other way around. The mere formular P=B/k wouldn’t have revealed this causal 
directionality. Hence, a DAG depicts qualitatively the cause-effect forces that operate in the environment 
and that shape the data generated36. 

 
Formal probabilistic language and the do-operator - “What we want to know” 

Types of probabilities 

1. P(S=s): The probability of the Variable S taking the value s. E.g. the probability of people in a café 
ordering scones. 

2. P(T=t, S=s): The probability of simultaneously T taking the value t and S taking the value s. E.g. the 
probability of people in a café ordering scones and tea.  

3. P(T=t | S=s): The probability that T=t conditional on finding S=s, i.e. the population distribution of 
T among individuals whose S value is s. E.g. the probability of people who have ordered scones to 
also order tea. ⥤ a distribution based on an observation. 

4. P(T=t | do(S=s)): The probability that T=t when we intervene to make S=s, i.e. the population 
distribution of T if everyone in the population had their S value fixed at s. E.g. the probability to order 
tea when the person was “forced” to order scones. ⥤ do(s) creates a distribution by an intervention. 

Medical example using probabilistic language to express a causal question (query) 

Question: What is the effect of a drug (D) on lifespan (L)? 
Formal expression: P(L | do(D)) 
In words: What is the probability (P) that a typical patient would survive L years if made to take the drug? 

The do-operator formalizes interventional (treatment) questions and hence corresponds to what is 
measured in clinical trials. The “control” patients in the above example would be described as P(L | 
do(not-D)).  It is important to note that P(L | D) may be different from P(L | do(D)). P(L | D) notes the 
observed probability of Lifespan L among patients who voluntarily take the drug (D) (standard 
conditional probability), while P(L | do(D)) is the probability of Lifespan L of patients made to take the 
drug. It is hence the fundamental difference between seeing and doing. In the barometer example from 
above, seeing the barometer reading (B) to fall increases the probability of a storm (lower atmospheric 
pressure) (P(P | B)). However, forcing the barometer read to fall does not affect the probability of a storm 
(P(P | do(B)). This means that P(P | B) ≠  P(P | do(B)). 
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Randomized Control Trials (RCTs) 

In an RCT a treatment X is randomly assigned to some individuals (treatment group), but not to others 
(control group). If there are differences in an outcome variable Y, they are attributed to the treatment 
(intervention) and one can claim that “X causes Y”. RCTs are an interventional approach and thereby 
enable deriving cause-effect relationships (Box 1). This is supported by the crucial aspect of 
randomization of group assignment in RCTs. Randomization rules out influential factors on the outcome 
Y beside the treatment of interest X. Speaking in the terminology of DAGs and the do-operator, 
randomization erases all arrows that come into X and thereby prevents information about Y from flowing 
in the non-causal direction36. Conveniently, randomization even controls for confounders that cannot be 
observed, measured or named. This makes randomization not only an effective tool to erase confounding 
effects but makes RCTs in medical experimentation often seen as the gold standard for cause-effect 
investigations. 

 
 168 

Box 3 – Types of 3rd variables and associated biases 

When investigating the relationship between a predictor (feature) X and an outcome (target) Y, a 3rd variable 
Z can be related to X and Y in different ways. The different natures can be best visualized by using directed 
acyclic graphs (DAGs) (Box 2). 

Confounding  

Confounding can be expressed in the form of a causal diagram or formal language (Box 2). A confounder 
Z is a (direct or indirect) common cause of the feature (predictor) X and the target (outcome) Y. 

         Fig. B3.1 DAG of a confounder Z.  

Formally, a confounder can be defined as a variable Z that leads to a discrepancy between the conditional 
probability of Y given X (seeing) and the probability when intervening on X (doing):  

P(Y | X) ≠ P(Y | do(X))  (B3.1) 

In the lifespan-drug example from Box 2 that means that one must ensure that the observed change in 
Lifespan L is due to the drug itself (do(D)) and is not confounded with other factors Z that tend to shorten 
or lengthen life. If, instead of intervening, the patient had decided by themselves whether to take the drug 
(P(L | D)), those other factors Z might influence their decision and lifespan differences between taking 
and not taking the drug would no longer be solely due to the drug. 

Not controlling for a confounder will obscure the causal effect of X on Y. One can either control for the 
confounder itself or any variable that lies on the path X ← Z → Y. 

 
Other variable types that can lead to biases: Collider – Mediator – Proxy 

X Y

Z
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A. Collider                                            B. Mediator                                         C. Proxy 

                                           
Fig. B3.2 DAG of a collider (A), a mediator (B) and a proxy (C). 

A collider Z is the common effect of a predictor X and a target Y. Conditioning on a collider induces a 
spurious (i.e. non-causal) association between X and Y (Berkson’s paradox)41–43 (Fig. B2.2A). In other 
words, if X and Y were independent to begin with, conditioning on Z will make them dependent (see 
Berkson’s paradox for an example).  

A mediator Z is caused by X and is a cause of Y44–46. For example blood pressure might mediate the 
relationship between a drug and the risk for a heart attack such that the drug decreases the risk for a heart 
attack via lowering blood pressure. When interested in the total effect of the predictor on the outcome (X 
→ Y and X → Z → Y), conditioning on Z blocks the causal path X → Z → Y and will hence only reveal 
a partial effect. When only interested in the direct effect X → Y conditioning on Z can nonetheless lead 
to biased estimates, if the mediator and the outcome share a common cause because then the mediator is 
a collider for the predictor and this common cause. 

A proxy Z is caused by X but has no causal relation to Y39. If the predictor X is a perfectly reliable 
measure of the construct of interest, then controlling for a proxy will not affect the path X → Y. However, 
in many disciplines X is an unreliable measure of the true causal variable, e.g. a MRI scan for the 
underlying morphology. In this case, the proxy is a second unreliable measure of the same true predictor 
(e.g. morphology) and conditioning on this proxy will partition the true predictive effect between the two 
unreliable proxies so that neither of the unreliable measures will capture the full causal effect29. 

Note: Defining confounding via correlations and not as a causal note is not sufficient because each of the 
causal structures A.-C. produces a correlation between Z and both X (predictor) and Y (outcome), which 
could all produce the same correlation matrix. Consequently, correlations cannot help to distinguish 
between a confounder, a collider or a mediator47,48. 

 
Types of biases (paradoxes) associated with 3rd variables 

Simpson’s paradox (confounder bias) 
Simpson’s paradox is a statistical phenomenon in which the statistical relationship between two variables 
in a population can appear, disappear, or reverse when splitting the population in subgroups or when 
aggregating two heterogenous subgroups into a population. For example, two variables might be 
positively associated in the overall population but either not or negatively associated within the 
subgroups49. More generally, it is characterized by the statistical results of the subgroups differing from 
the aggregated population. It alerts to cases where at least one of the statistical trends (either in the 
aggregated data, the partitioned data, or both) cannot represent the causal effects36. 

Berkson’s paradox (collider bias) 
Berkson’s paradox is the opposite of the Simpson’s paradox, i.e. it occurs when falsely conditioning on 
a variable that is the effect of both the feature(s) and the target (collider). Conditioning on such a collider 
creates a spurious association between the feature(s) and the target. For example, performing a study on 
patients who are hospitalized, one controls for/conditions on hospitalization. However, if only a disease 
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1 and a disease 2 together could lead to hospitalization in the first place (with no causal relation between 
the diseases), conditioning on hospitalization (by performing the study only on hospitalized patients) 
would introduce non-existing relation between disease 1 and disease 2. 

 
To answer questions of why with predictive models, it is not enough to consider associative (correlative) 169 
patterns in the data. It is essential to additionally acknowledge directionalities, i.e. the cause-effect structure 170 
between relevant variables. Among such relevant variables, it is crucial to carefully distinguish between 171 
different types of 3rd variables to identify confounders (Box 3). Considering either a standard set of variables 172 
or every conceivable 3rd variable as a confounder can lead to biased models if these variables in fact were a 173 
mediator, collider or proxy. Through randomization, RCTs disable a correct set of confounders without 174 
introducing new confounders and thereby implicitly have a causal reasoning integrated by design (Box 2). 175 
However, RCTs are often not feasible for a variety of reasons, such as ethical concerns, interest in population-176 
based insights or individual-level predictions (precision medicine). To achieve RCT-like causal insights with 177 
predictive models (Box 1 rung 2), one must find a means to purposefully integrate causal reasoning when 178 
building predictive models. 179 

3. A 5-step approach to identify valid deconfounders in causal predictive modelling 180 

The core mechanism for integrating causal reasoning into a predictive model is through the identification of 181 
and adjustment for a correct set of deconfounders (see Box 4 for definition). Identifying such a correct set of 182 
deconfounders requires a causal analysis around the cause-effect relationship of interest. This causal analysis 183 
relies on domain knowledge about the process that generates the observed data. The causal analysis results in 184 
a causal diagram or directed acyclic graph (DAG) (Box 2), which allows to identify different possibilities for 185 
confounder adjustment. For easy transferability to any kind of research project, we in the following describe a 186 
5-step approach to identify a correct set of deconfounders (Fig. 2). We exemplify each theoretical step with 187 
the previously introduced neuroimaging GMV-HGS prediction example.  188 

3.1. Step 1 and step 2 - Prerequisites and the causal question 189 

In step 1, the general predictive aim, such as the out of sample (OOS) prediction of HGS from GMV, is the 190 
basis for formulating the causal aim, for example if GMV causes changes in HGS (Fig. 2, step 1). 191 

In step 2, the causal question refines the causal aim by adding more detailed as well as interventional or 192 
counterfactual assumptions (Fig. 2, step 2). The causal question expresses the interest in the direct cause-effect 193 
relationship of a feature (predictor) X on a target (outcome) Y, i.e. X → Y. For example, if an individual 194 
managed to increase their GMV, would that make their hand grip stronger (GMV → HGS)? This causal 195 
question requires a causal predictive model because neither a direct interventional approach such as an RCT 196 
nor a counterfactual approach is possible (Box 1). One cannot experimentally manipulate the volume of grey 197 
matter of a participant with the hope to observe if this manipulation of volume will lead to changes in HGS 198 
(interventional). Even less, it is not possible that one could change GMV and not change the GMV at the same 199 
time in the same individual (counterfactual). Additionally, one might be interested in individual-level, i.e. out 200 
of sample predictions. We here focus on an interventional causal predictive model. 201 

3.2. Step 3 - Performing the causal analysis to build a causal diagram and identify deconfounders 202 

Step 3 consists of creating a DAG around the hypothesized direct cause-effect relationship X → Y. The DAG 203 
is built through a causal analysis that determines influential factors on both X and Y. The causal analysis starts 204 
off by asking about known and conceivable causes of the target Y and then repeats the question for 205 
subsequently added 3rd variables (Fig. 2, step 3). The answers can be found from previous research and rely 206 
on domain-expert knowledge that translates into cause-effect arrow-information. This procedure creates a 207 
DAG in a bottom-up way. For example, known direct causes of HGS could be lower arm/upper body muscle 208 
mass (muscle mass → HGS) and the muscles’ supply of oxygen and nutrients (oxygen supply → HGS). 209 
Additionally, GMV is the conceivable cause of HGS to be investigated (GMV → HGS). In the next iteration, 210 
known or conceivable causes of muscle mass could be sex hormones, eating behaviour, strength training, age 211 
etc.. The feature GMV is influenced by TIV, age, sex hormones and further - potentially unmeasurable or 212 
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unobserved - environmental and behavioural factors. This bottom-up procedure is continued until the DAG 213 
contains enough information to determine a suitable deconfounding strategy1 (Fig. 3a, Box 4). 214 

There are three essential aspects to keep in mind, when building a DAG. First, the feature must be included as 215 
a potential cause of the target as this is the goal of the causal question. Second, an omitted arrow restricts the 216 
assumed causal effect to zero, while a present arrow remains agnostic about the magnitude of the causal effect 217 
of the causal effect. Therefore, not putting an arrow can imply a more precise statement about the cause-effect 218 
relationship of two variables than putting an arrow. Third, the DAG relies on established cause-effect 219 
relationships but can, and oftentimes must, also be based on ambiguous cause-effect assumptions, for example 220 
when there is not yet enough existing causal domain-knowledge. Consequently, there can exist several DAGs 221 
for the same causal question. Even though it can be ambiguous, performing a causal analysis is nonetheless 222 
beneficial. Formalizing made assumptions with a DAG enables transparent communication. Additionally, the 223 
DAG provides a basis for interpreting the resulting “provisional causal”36 insights gained by the predictive 224 
model. Provisional causality thereby means causality contingent upon the set of assumptions that the DAG 225 
advertises. Eventually, the causal analysis forces a researcher to precisely think about the to-be-answered 226 
question and to formalize the causal assumptions. 227 

In contrast to a pure correlative analysis, the DAG reveals the distinction of confounding pathways from 228 
colliders and mediators (Box 3) and enables a variety of deconfounding strategies (Box 4). Correct 229 
deconfounding thereby is the means to allow predictive models to give provisional causal insights. A correct 230 
set of deconfounders can be identified from a DAG either by following the graph rules or by employing 231 
available (online) tools (e.g. DAGitty50 or CausalFusion (https://causalfusion.net)). The DAG for the GMV-232 
HGS example contains 10 confounding, i.e. non-causal pathways (Fig. 3b red arrows). According to the 233 
“backdoor criterion”36 (Box 4) all 10 non-causal pathways between GMV and HGS can be blocked when 234 
adjusting for the deconfounders sex-hormone levels and age. 235 

In the selection of confounders for predictive modelling it can be challenging to know when and if all relevant 236 
confounders were identified. This uncertainty can be solved through the concept of deconfounders – in contrast 237 
to confounders – in combination with the suggested bottom-up causal analysis. Building the DAG bottom-up 238 
allows to identify the point where adding more variables to the DAG does not add more useful information. 239 
This point is reached when a set of sufficient deconfounders, blocking the non-causal pathways, can be 240 
identified. For example, specifying U2 more precisely in the DAG illustrated in Fig. 3a would not give any 241 
information gain with respect to the causal question of interest (GMV → HGS). 242 

 
1 Note: Strategy here does not refer to the kind of statistical tool to use to correct for confounding signals, e.g. linear 
regression, but to different ways of choosing a right set of deconfounders based on a DAG as described in Box 4. 
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3.3. Step 4 - Strategies if not all identified deconfounders are available 251 

When relying on existing observational (big) data, some of the identified deconfounders might not be available, 252 
for example sex-hormone levels in the example prediction. In such a case, in step 4 the DAG can either reveal 253 
an alternative sufficient set of deconfounders for which all variables are measured or the “frontdoor criterion”36 254 
can be applied (Box 4). The DAG for the GMV-HGS example (Fig. 3b) reveals that there is neither a fully 255 
measured alternative set of deconfounders available (Fig. 2, step 4) nor can the frontdoor criterion be applied. 256 
The latter can easily happen in the field of neurobiomedicine, where it can be challenging to almost impossible 257 
to find a deconfounding variable Z that unambiguously fulfils all three necessary criteria for the frontdoor 258 
criterion (Box 4). For example, given a neuroimaging derived feature such as GMV, there is no variable for 259 
which it can be unambiguously said that it is caused by GMV, and only GMV, and that at the same time is a 260 
cause of HGS (criterion a and b). The underlying reason is the multi-dimensionality of neurobiomedical 261 
phenomena. 262 

The third alternative option in step 4 is the use of a conceptual approximator, which makes use of the 263 
aforementioned multi-dimensionality. Different neurobiomedical measurements might measure a somewhat 264 
similar underlying biological concept, yet still different aspects thereof. For example, sex and sex hormones 265 
express almost the same underlying biology but are nonetheless different measures that also contain non-266 
overlapping biological information: Strength training influences sex-hormone levels51,52 or body-fat tissue can 267 
be hormonally active53 but neither of them changes the biological sex. One can make use of this multi-268 
dimensionality and overlap in biological information to identify a biological approximator as replacement for 269 
an unmeasured deconfounder. For instance, here sex is the best suited biological approximator for the 270 
unmeasured deconfounder sex hormone levels. The causes of the unmeasured deconfounder thereby serve as 271 
candidate conceptual (here: biological) approximators which are evaluated based on their conceptual (here: 272 
biological) information overlap with the unmeasured variable (Fig. 2, step 4).  273 

It is important to note that the conceptual approximator cannot directly replace the original deconfounder. The 274 
DAG must be modified after replacement because the conceptual approximator can change the previously 275 
determined cause-effect structure. For example, strength training can influence hormone levels, but it will not 276 
affect the sex of a person, which leads to a change in the structure of the DAG (Fig. 3c). After modification 277 
there are two pathways confounding GMV→HGS (Fig. 3c). They can either be blocked by adjusting for age 278 
and sex or by adjusting for age, muscle mass and oxygen supply/strength training. This makes age and sex the 279 
minimum correct set of deconfounders for which all variables are measured under the usage of a biological 280 
approximator.  281 
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 282 

Fig. 3. Practical illustration of 5-step approach with the GMV → HGS predictive example. a) Resulting 283 
DAG from a causal analysis. b) Sex hormones and age (green) qualify as minimum set of correct 284 
deconfounders to block all 10 non-causal (confounding) pathways (red arrows) between GMV and HGS. The 285 
causes of sex hormones (yellow) qualify as candidate conceptual approximators for the unmeasured 286 
deconfounder. 287 

 288 

Box 4 – Ways to account for confounding influences based on DAGs. 

Once the underlying causal structure of a causal question was specified in the form of a DAG, there are 
three ways to identify and account for confounding influences. 

Backdoor criterion 

A backdoor path is any path from X to Y that starts with an arrow pointing into X, for example X ← Z 
→ Y in Fig. B4.1A. Backdoor paths are non-causal paths. To deconfound X and Y one needs to block 
every non-causal path between X and Y without blocking or perturbing causal paths. This can be achieved 
by adjusting for variables with an incoming arrow into X based on the respective DAG (Fig. B4.1A). 
These variables are called deconfounders and can differ from the set of confounders. Confounders and 
deconfounders can differ for example when a confounder does not need to be controlled for because the 
backdoor path is already blocked by a collider (Fig. B4.1B) or when the actual confounder is unmeasured, 
but the backdoor path can be blocked by controlling for a measured deconfounder (Fig. B4.1C). RCTs 
block the non-causal pathways through randomization. Therefore, when picking the right set of 
deconfounders, statistical adjustment has the same effect as the randomization in RCTs. 
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 A.                              B.                                                         C.                                D. 

Fig. B4.1 Different positions of a confounder in the DAG structure require different confounder 
adjustment strategies. 

Frontdoor criterion 

The backdoor criterion is not feasible when one (or all) deconfounders cannot be measured or are not 
available. In this case the frontdoor criterion can be applied. The frontdoor criterion requires a variable Z 
that a) intercepts all direct paths from X → Y, b) there is no backdoor path from X to Z and c) all backdoor 
paths from Z to Y are blocked by X (Fig. B4.1D). As the relationship between X and Y is confounded by 
the unobserved variable U, in the frontdoor criterion the effect of X on Y is estimated indirectly by 
combining the estimate of effect X → Z and of Z → Y.  

Instrumental variables 

Instrumental variables are similar to a coin flip, which simulates a variable with no incoming arrow, such 
as Z in Fig. B4.2. Z there qualifies as an instrumental variable because: 

a) U and Z are independent, i.e. there is no arrow between U and Z 
b) There is an arrow between Z and X 
c) There is no direct arrow between Z and Y, i.e. no direct causal connection 

 

Fig. B4.2 DAG of instrumental variable Z 

There is no confounders of the relation between Z and Y, so that any observed association must be causal. 
Likewise, since the effect of Z on Y goes through X, one can conclude that the observed association 
between X and Y must also be causal. 

 

3.4. Step 5 - Combining causal and statistical information 289 

Confounders are often defined as any variable that correlates with the feature (predictor) X and the target 290 
(outcome) Y. In line with previous works (e.g.29,36,39,48), we challenged this pure statistical note on confounding 291 
and highlighted that correlation does not imply causation. However, causation only becomes relevant when a 292 
correlation exists (Box 1). We nonetheless put the causal analysis first because this allows for a bottom-up 293 
identification of deconfounders in contrast to a top-down pre-definition of confounders that creates insecurities 294 
about what confounders to include. By evaluating the statistical relationship of the causally, i.e. knowledge-295 
derived deconfounders with X and Y, step 5 combines the associative (statistical) and the causal perspective 296 
(Fig. 2, step 5). 297 

Only deconfounders which are statistically and causally relevant must be adjusted for in the predictive model 298 
(Fig. 4), in our scenario sex and age (Fig. 3d). The threshold for what is considered a sufficient statistical 299 
association should be determined based on knowledge about typical association strengths in the domain and is 300 
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a question with no strict answer, comparable to other statistical approaches where conventional thresholds are 301 
set (e.g. p=0.05 in null hypothesis testing). Deconfounders with no statistical relationship should not be 302 
adjusted for as they are in the best case irrelevant but in the worst case would bias the model by leaking 303 
information from the deconfounder into the feature or target in the adjustment process54 (Fig. 4). Importantly, 304 
it is also indispensable that there is a statistical association between X and Y (Fig. 1b). Otherwise it is not 305 
meaningful to evaluate if this statistical association (e.g. predictability) does imply a causal connection through 306 
the presented causal deconfounding approach. Deconfounders with a statistical but no causal connection are 307 
irrelevant because they would not have become part of the set of valid deconfounders based on the causal 308 
analysis (Fig. 4). For example length of working week in the main job correlates with HGS by rPearson = -0.24 309 
and with parcellated GMV in a range of rPearson = [-0.11, 0.09] but is not part of the DAG. Adjusting the 310 
predictive model with the final set of deconfounders leads to a model that allows for provisional causal insights. 311 
The sex and age adjusted GMV→HGS model therefore allows for the provisionally causal insights that GMV 312 
is no linear2 causal predictor of HGS (Fig. 3e, see supplementary materials for methods). 313 

Fig. 4. Combining causal and statistical information on deconfounders can technically lead to four 314 
different scenarios. Only deconfounders that play a statistical and causal role for the predictive aim should 315 
be adjusted for. 316 

4. Discussion 317 

Predictive neurobiomedical models suffer from a lack of generalizability and replicability fueled by a race for 318 
high performance models. We here argue that the field needs more models that aim to deepen the understanding 319 
of causal neurobiomedical mechanisms. A key mechanism to achieve causal predictive models is correct 320 
confounder adjustment. We proposed a 5-step approach to correctly identify deconfounders based on the 321 
combination of causal and statistical investigations. Incorporating causal domain knowledge (possibly 322 
supported by large language models, i.e. non-ML AI) about the data generation process into a machine learning 323 
model by means of a causal analysis enables to obtain enriched models beyond what is possible by purely data-324 
driven approaches. Proper deconfounding thereby enhances the understanding of biomedical mechanisms and 325 
supports the building of reliable (and trustworthy) medical AI tools.  326 

The causal analysis forms the core of causal predictive modelling. If a complete DAG can be derived from this 327 
causal analysis, employing methods for deconfounding are straight forward (Box 4). However, the multi-328 
dimensionality of neurobiomedical processes can impede the generation of a complete and unambiguous 329 
causal diagram. Given that the DAG originates from best knowledge based on literature and domain expertise, 330 
this ambiguity makes the decision on a final structure of the DAG to some extent subjective. The causal 331 
assumptions nonetheless enable causal insights through targeted confounder control. Those causal insights 332 
may be labelled provisional causality because they hold true under the set of assumptions expressed in the 333 
DAG. The remaining uncertainty for the causal claims remains as high as the possibility that further existing 334 
causal relationships and confounders were not considered. Even though provisional – by adding some causality 335 
to the system one gains more causal insights. 336 

A model that provides provisional causality supports answering questions of why, which is arguably the 337 
ultimate goal of most neurobiomedical investigations. For example, why does person A have a higher HGS 338 

 
2 Usage of a linear algorithm for the prediction (see methods in supplementary materials). 
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than person B? The DAG in Fig. 3a represents the known and assumed answers to this question based on 339 
literature. For example, person A has a higher HGS because person A has more muscle mass. The results from 340 
the provisional causal model inform us that given a linear model (Fig. 3e), no variance (R2 = -0.01) in HGS 341 
can be explained by changes in GMV. This means, that based on the assumed DAG and under the employment 342 
of a biological approximator, GMV is no linear3 cause of HGS, i.e. person A is not stronger because of a 343 
higher/lower volume in grey matter. Such a result may be disappointing: One must perform a timely causal 344 
analysis that is potentially incomplete and subjective, the determined confounders are sex and age, for which 345 
one might have adjusted anyway, and the resulting model performance may be lower than hoped for. However, 346 
there is an important gain from the investigation: A deeper understanding of a neurobiomedical mechanism.      347 

The causal analysis can be incomplete and to some extent ambiguous, but it allows for the formalization of 348 
assumptions and enables the skilful interrogation of nature. Knowing the set of assumptions behind a prediction 349 
through such formalization is not less valuable than attempting to circumvent those assumptions with an 350 
empirical interventional approach such as an RCT. Additionally, an uncertain answer to the right question is 351 
more helpful than a highly certain answer to the wrong question. The causal analysis is motivated by building 352 
models that help to better understand neurobiomedical mechanisms. It is needed when one aims to build 353 
explainable AI that asks to understand nature or models that are generalizable to new settings. An uncertain 354 
answer, i.e. a low performing model, that however helps to answer questions of why of neurobiomedicine, is 355 
therefore more helpful in the long-term than a high performing model for which it is ambiguous what it means 356 
and what questions it answers. Therefore, the low predictive performance of the provisional causal model 357 
should not distract from the fact that one learned something about the original causal question, in the example 358 
prediction if interventionally increasing an individual’s GMV would make their grip stronger. Assuming there 359 
was a small predictability, analysing the feature importances that were driving such a model’s predictions 360 
would be informative, for example revealing what brain areas’ GMV are causing stronger HGS. In contrast, 361 
the high performing vanilla model from Fig. 1a does not allow to derive any conclusions about the cause-362 
effect relationship between GMV and HGS. Therefore, it can be better to learn a small effect about a 363 
neurobiomedical mechanism of interest than learning a big effect, which’s neurobiomedical meaningfulness 364 
however remains unclear and that may lead to false conclusions and misinterpretations. 365 

The causal analysis in combination with the use of a biological approximator identified sex and age as 366 
deconfounders to adjust for in the GMV-HGS example. The multi-dimensionality of neurobiomedical 367 
mechanisms not only allows for the use of biological approximators, but it also explains why sex and age are 368 
the two most commonly considered deconfounders. Sex and age are comparably robust and biologically well-369 
explainable concepts4, that are often at the beginning of a chain of cause-effect relationships. Thereby, they 370 
exhibit a considerably strong biological overlap with many other variables. This makes them a coarse, but – to 371 
a varying degree – valid biological approximator for other variables further down a cause-effect chain. Here, 372 
sex served as a biological approximator for sex hormone levels. When neglecting more fine-grained cause-373 
effect relationships, sex could even serve as a biological approximator for e.g. muscle mass, because males in 374 
average have more muscle mass than females. However, the coarser the biological approximator, the more it 375 
prevents a fine-grained, in depth investigation of the causal question. A coarse biological approximator thereby 376 
fosters the use of generic average mechanisms, contradictory to the goal of individualized predictions through 377 
predictive modelling. Deconfounding predictive models without justification for sex and age in many cases 378 
may not be entirely wrong. However, if not based on a proper causal analysis, such unjustified adjustment may 379 
be imprecise and prevents both, replicability and a finer understanding of biological cause-effect relationships. 380 

For many neurobiomedical mechanisms, clear cause-effect relationships are still unknown. Potentially 381 
identical processes are approached and described by different disciplines from varying perspectives. This 382 
creates multi-dimensional explanations of potentially low-dimensional neurobiomedical mechanisms. The 383 
underlying and unambiguous cause-effect chains and networks however remain poorly understood. To 384 
determine the functioning, structure, interplay and dimensionality of neurobiomedicine, the field requires the 385 

 
3 Usage of a linear algorithm for the prediction (see methods in supplementary materials). 
4 The important investigation on the (un-)ambiguity of the concepts of biological sex and age is beyond the scope of this 
manuscript and can therefore be found in-depth elsewhere. 
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integration of information across disciplines, scales and species. The gained insights from provisional causal 386 
models can improve and inform the next formalized causal analyses and causal predictive models, which in 387 
turn can provide new provisional causal insights. Such a recursive feedback loop within causal predictive 388 
modelling but also across scales and species (e.g. from direct interventional animal research) can iteratively 389 
clarify and improve what is known about neurobiomedical cause-effect relationships. Additionally, mutual 390 
recursive feedback of causal knowledge from experimental setups can inform the DAGs for observational 391 
analyses. The observational causal predictive models in turn can both inform experimental setups about the 392 
generalizability of effects and create new provisional causal insights. A recursive feedback mechanism thereby 393 
is important to avoid accumulation of errors. Thereby the field as a whole, beyond individual research projects, 394 
can contribute to shaping a neurobiomedical causal diagram based on the understanding of underlying 395 
mechanisms. Ultimately, this could help disentangle the causal structure of neurobiomedicine and determine 396 
orthogonal (independent) biological dimensions.   397 

While the investigation and use of cause-effect relationships is more commonly used in fields such as 398 
economics or social sciences, it is so far seldomly applied for correctly deconfounding neurobiomedical 399 
predictive models. With the proposed 5-step approach, we hope to provide an easy-to-use standard approach 400 
for causal predictive modelling. Through causally motivated deconfounding, we aim to foster the relevance of 401 
low performing or even null results models if they originate from a “skilful interrogation of nature”. Ultimately, 402 
mutual recursive feedback loops of causal insights across disciplines, scales and species can enable the field 403 
to disentangle the cause-effect structure of neurobiomedical mechanisms. Through understanding and 404 
knowledge, this can facilitate reliable and trustworthy AI as a medical tool.  405 
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