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ABSTRACT

Single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells

(PBMCs) has enhanced our understanding of host immune mechanisms in small cohorts,

particularly in diseases with complex and heterogeneous immune responses such as sepsis.

However, PBMC isolation from blood requires technical expertise, training, and approximately

two hours of onsite processing using Ficoll density gradient separation (‘Ficoll’) for scRNA-seq

compatibility, precluding large-scale sample collection at most clinical sites. To minimize onsite

processing, we developed Cryo-PRO (Cryopreservation with PBMC Recovery Offsite), a

method of PBMC isolation from cryopreserved whole blood that allows immediate onsite sample

cryopreservation and subsequent PBMC isolation in a central laboratory prior to sequencing.

We compared scRNA-seq results from samples processed using Cryo-PRO versus standard

onsite Ficoll separation in 23 patients with sepsis. Critical scRNA-seq outputs including cell

substate fractions and marker genes were similar for each method across multiple cell types

and substates, including an important monocyte substate enriched in patients with sepsis

(Pearson correlation 0.78, p<0.001; 70% of top marker genes shared). Cryo-PRO reduced

onsite sample processing time from >2 hours to <15 minutes and was reproducible across two

enrollment sites, thus demonstrating potential for expanding scRNA-seq in multicenter studies

of sepsis and other diseases.
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INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) is a pivotal methodology with great potential

for advancing the understanding of biological systems (1). It has revealed previously

unrecognized cell types and transcriptional substates within complex tissues and demonstrated

differences in gene expression that illuminate pathophysiological variation in many aspects of

human disease (2–4). ScRNA-seq has particular appeal for dissecting the cellular basis for

heterogeneity in diseases and opening pathways to precision medicine. Sepsis, for example, is

a syndrome with expansive differences in clinical course and outcome between patients that is

impacted substantially by heterogeneity in patients’ immunological responses. However, there

has been limited progress in understanding this variation using existing methods. In particular,

transcriptional profiling in patients with sepsis has mostly relied on bulk RNA sequencing (bulk

RNA-seq) to generate averaged signatures from all circulating immune cells, obscuring the

cellular basis and underlying mechanisms of immune dysfunction (5–9).

In previous work, our group has used scRNA-seq to profile circulating peripheral blood

mononuclear cells (PBMCs) in urosepsis, identifying a unique CD14+ monocyte subtype

(monocyte substate 1, or MS1), that is expanded in sepsis relative to infection without sepsis

(10). These monocytes have a gene expression profile similar to myeloid-derived immune

suppressor cells, which are immune regulatory cells that inhibit T cell activation, proliferation

and cytotoxic activity (11). MS1 cells may therefore play an immunosuppressive role in sepsis

and contribute to an important transcriptional subphenotype, or “endotype”, of sepsis (12).

Several other studies have employed scRNA-seq in small sepsis cohorts (13–16). However,

resolution of sepsis endotypes and the contributory roles of immune cell subtypes requires large

cohorts enrolled at multiple, geographically-separated clinical sites. Such large-scale studies are

necessary to appropriately represent the heterogeneity of sepsis with its variable pathogen

types, anatomic sites of infection, timing of presentation, severity, trajectory, clinical

characteristics (e.g., age, sex, race and ethnicity, comorbidities), and complex host immune

responses. Leveraging the resolution of scRNA-seq at a scale that allows sufficient sampling of

all relevant subphenotypes of sepsis has the potential to enable endotyping assessment with

sufficient accuracy to impact sepsis care.

Implementing scRNA-seq studies in clinical settings at scale is challenged by several

logistical barriers. Blood, which offers a diverse and dynamic snapshot of the systemic response

to infection, serves as a key resource for investigating immune responses in sepsis and other

conditions (17). However, since live blood cells are highly sensitive to environmental

perturbations, it is necessary to either process samples rapidly before sequencing or employ

cryostorage for later analysis. These steps help minimize any transcriptional changes in cells
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caused by stimuli after blood collection. Therefore, processing the blood sample to a point

where transcription is halted (e.g., by freezing live cells or fixing them unless sequencing is

performed immediately) often falls to operators at the sample collection site. Currently, standard

practice for scRNA-seq studies of PBMCs involves a density gradient centrifugation step

immediately following blood draw (Ficoll-paque processing, or "Ficoll") to isolate and store

immune cells (18). This process, which must be completed promptly at the site of blood

collection, is resource-intensive, time-consuming, sensitive to protocol variations, and requires

technical skill and training. The complexity of real-time processing of whole blood samples has

limited the widespread use of scRNA-seq in clinical investigations. Moreover, the lack of

standardization in processing and analysis can lead to batch effects, hindering comparisons

across sites and between studies.

To overcome the practical limitations of scRNA-seq in clinical settings, we developed

Cryo-PRO (Cryopreservation with PBMC Recovery Offsite), a method for isolating PBMCs from

cryopreserved whole blood samples. The approach utilizes magnetic depletion of red blood cells

followed by fluorescence-activated cell sorting to recover immune cells for scRNA-seq.

Cryo-PRO enables the immediate cryopreservation of whole blood samples at clinical sites, with

onsite freezing and storage, allowing for their transfer at a later time to a centralized laboratory

for PBMC isolation and scRNA-seq. In this study, we directly compare the scRNA-seq output

from sepsis patient samples processed using Cryo-PRO with those processed by the standard

onsite Ficoll-gradient separation method. Our findings demonstrate technical equivalence and

biological reproducibility between the two methods. Cryo-PRO has the potential to enable broad

application of scRNA-seq to multicenter studies and clinical trials by simplifying sample

collection and centralizing cell isolation to improve cost efficiency, minimize batch effects, and

increase sample sizes. This method could advance our understanding of the complexity of

sepsis and other heterogeneous diseases, enabling development of precision diagnostics and

targeted therapeutic strategies.

RESULTS

Patients greater than 18 years of age who presented to the Emergency Departments of

two large, academic hospitals in Boston MA, Massachusetts General Hospital (MGH) and Beth

Israel Deaconess Medical Center (BIDMC), with clinical concern for sepsis or septic shock with

associated organ dysfunction were enrolled in the study. Up to 10 mL of blood was obtained

from patients and processing was initiated onsite using two methods: 1) standard Ficoll gradient

separation from whole blood by following standard procedures for isolating and freezing PBMCs

(18), followed by -80°C freezing; and 2) Cryo-PRO, by adding dimethyl sulfoxide (DMSO) to a
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final volume of 10% in 1 mL aliquots of fresh whole blood and immediately freezing at -80°C. To

enable comparison of outcomes by processing site, for a subset of patients, up to 20 mL of

blood (separated in two 10-mL tubes) was obtained; one tube was immediately couriered to the

other clinical site while one tube remained at the enrolling site. Processing at both sites using

both Ficoll and Cryo-PRO began at the same time upon sample receipt at the receiving site.

Blood from one healthy donor was obtained from Research Blood Components (Watertown,

MA) and processed using both Ficoll and Cryo-PRO methods to use as a reference standard.

All samples were sent to the Eli and Edythe L. Broad Institute of MIT and Harvard (Broad

Institute) for long term storage at -140°C and subsequent processing and scRNA-seq.

We adjudicated 23 subjects based on the presence of sepsis or bacterial infection for

sample processing and sequencing. Septic shock requiring vasopressors for over 24 hours was

present in 15 subjects (65%), sepsis without shock in 6 subjects (26%), and bacterial infection

not meeting Sepsis-3 criteria (19) in 2 subjects (9%). Bacteremia was present in 7 (30%) of the

23 subjects. The median patient age was 66 years (IQR 62.5 - 76.5), with 35% women. The

healthy donor was a 63 year old man.

Of the 23 included subjects, 8 were processed in parallel at both sites and 15 were

processed only at the site of enrollment. Patient-paired frozen Ficoll and Cryo-PRO samples

were processed for scRNA-seq at the Broad Institute. Processing included a magnetic red blood

cell depletion step (Cryo-PRO samples only), fluorescence-activated cell sorting to recover

DAPI- CD45+ CD235a- CD15- cells, and a standard workflow for droplet-based single-cell RNA

capture with surface proteome measurement (10X Genomics Chromium Next GEM 5’ V2 Kit

with cellular indexing of transcriptional epitope sequencing (CITE-seq)) (see Methods) (20).

Sample hashing was used to enable pooling of eight samples per processing batch, and to

facilitate post-sequencing demultiplexing and multiplet detection. An overview of the sample

collection, storage, and processing strategies is summarized in Figure 1.
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Samples processed using Cryo-PRO yield high quality scRNA-seq data with minimal

on-site processing time

The mean time required for complete on-site processing (from processing start time to

storage at -80ºC) for Ficoll samples was 2 hours and 23 minutes (SD: 40 minutes), while

Cryo-PRO samples required an average of 13 minutes (SD: 7 minutes) (Figure 2a). The

proportion of viable PBMCs recovered by either method was estimated using live/dead staining

during flow cytometry sorting. The mean proportion of live (DAPI-) PBMCs (CD235a- CD15-

CD45+ cells) was 96.7% (SD 3.0%) for Ficoll samples and 94.1% (SD 8.4%) for Cryo-PRO

samples (Figure 2b).

6

Figure 1. Overview of sample processing methods; Ficoll and Cryo-PRO. Cryo-PRO is designed to expedite 

sample processing at the site of collection by incorporating a whole blood cryopreservation step (and subsequent 

red cell depletion step) to replace standard Ficoll processing. Blue bars represent processing done at site of 

enrollment; purple bars represent processing done at centralized laboratory and include steps up to single-cell 

droplet formation.	
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The Cellranger pipeline (10X Genomics) was used to process the raw sequencing data,

and the Seurat V5 package in R (21) was used for subsequent analysis of single-cell

sequencing data (see Methods). Multiplets (cells associated with more than one patient

hashtag) were removed from analysis. We recovered an average of 2,690 (SD 950) and 2,472

(SD 918) singlet cells per sample for the Ficoll and Cryo-PRO methods respectively

(Supplemental Figure 1). Sequencing quality was assessed using the following standard

metrics: 1) number of genes sequenced per cell, 2) number of unique molecular identifiers

(UMIs) per cell, and 3) percent of mitochondrial genes sequenced per cell. Higher numbers of

genes per cell and UMIs per cell indicate greater per-cell transcript recovery, while a greater

percentage of mitochondrial genes suggests cell damage (22). Quality metrics showed similar

distributions between methods (Figure 2c). The majority of cells (97.6% from Ficoll processing

and 94.4% from Cryo-PRO) passed commonly-used quality thresholds (i.e., >250 genes per

cell, >1,000 UMIs, and <10% mitochondrial genes) (23). Detection of antibody-derived tags

(ADT) used for CITE-seq surface proteome measurement was similar between the two methods

(Figure 2d). Quality metrics were similar between methods at an individual patient level

(Supplemental Figure 2).
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Cryo-PRO enables identification of immune cell transcriptional substates and gene

expression patterns

We next assessed whether Cryo-PRO generates scRNA-seq datasets of sufficient

quality to reproduce biologically relevant results compared to Ficoll. ScRNA-seq analysis was

performed separately for cells obtained from each processing method (86,083 cells for Ficoll

and 79,089 cells for Cryo-PRO) to ensure independent identification of cell identity and gene

expression patterns (see Methods). Clusters of dead and dying cells, identified by the

predominance of mitochondrial genes, were removed from further analysis as an additional

quality control measure (24). We identified transcriptionally similar cells that expressed

canonical marker genes for the major mononuclear immune cell lineages (i.e., T cells, B cells,

natural killer cells, monocytes, and dendritic cells). Subclustering within each cell type identified
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Figure 2. Processing time and quality metrics by cryopreservation method. (a) “Hands-on” time spent by operators 

at clinical sites to process patient samples from initiation of processing after blood draw to placing the sample in a 

freezer for storage. (b) Percent of CD45+ CD235a- CD15- cells staining DAPI negative on flow cytometry as an 

indicator of cell membrane integrity and cell viability. (c) Violin plots of RNA sequencing quality metrics by method 

(left to right): unique genes per cell, unique molecular identifiers (UMIs) of RNA transcripts per cell, percent of 

transcripts represented by mitochondrial genes per cell. (d) Violin plots of CITE-seq quality metrics by method: 

unique surface protein features (left panel) and UMIs (right panel) per cell (detected via CITE-seq). PRO denotes 

Cryo-PRO.	
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higher-resolution clusters of cells with additional transcriptional similarity (i.e., cell substates,

e.g., CD4+ memory T cells, naive B cells, etc.), which were classified by comparison with

reference datasets (25). All the major mononuclear immune cell lineages, divided into a total of

17 cell substates, were identified from cells isolated using either Ficoll or Cryo-PRO, each

clustered independently but projected onto a shared set of two-dimensional uniform manifold

approximation and projection (UMAP) axes for visualization (Figure 3a; see Methods). Our

analysis identified the MS1 monocyte state that we previously discovered in cohorts of patients

with sepsis (10). The average expression of key identifying genes (Figure 3b, color scale) and

cell surface proteins (Figure 3c, color scale) was similar between Ficoll and Cryo-PRO methods

for each cell type and substate, as was the proportion of cells for which these features could be

detected (Figure 3b-c, dot size).

Top marker genes to distinguish each cell type and substate were identified using the

FindMarkers function in Seurat (21); rank was determined by fold-change of the gene

expression within cells of each cluster compared to the cells outside of the cluster (26). Of the

top 30 marker genes for each cell type, shared genes between processing methods ranged

from 24 to 28, and shared genes between processing methods for cell substates ranged from

14 to 29 (Supplemental Table 1). Notably, we observed a high degree of overlap of top MS1

marker genes between processing methods, with 21 of the top 30 marker genes in common

(Supplemental Table 1c-d) and similar expression patterns of key MS1 marker genes

(Supplemental Figure 3a).

In an orthogonal approach, we used FindMarkers and the DESeq2 package in R to

compare gene expression between all cells processed by the two methods to identify

differentially expressed genes (Supplemental Table 2). Of the statistically significant (p<0.05)

genes, we did not observe substantial (greater than 4) fold-change differences in expression

between the two methods. Most genes with more than a 2-fold expression change were

non-coding genes, with the exceptions of the genes CXCL8, FOSB, and JUN being slightly

up-regulated in Ficoll cells (Figure 3d). Similar differentially-expressed genes were identified

when comparisons were performed within each major cell type (Supplemental Figure 3b),

instead of all cells combined. Crucially, no genes that are used to identify cell lineages or cell

types were differentially expressed by more than a 2-fold change. Pathway analysis could not

be performed due to the sparse number of substantially differentially expressed genes.

However, immediate early genes are a class of genes commonly transiently upregulated in

many types of cells as a primary response to a variety of stimuli; the presence of the immediate

early genes JUN and FOSB may suggest an early response to ex vivo stimulation in Ficoll cells

(27, 28).
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Cryo-PRO and Ficoll yield similar immune cell type and substate abundances

Defining the composition of circulating immune cells and their substates on a per-patient

level is an informative application of scRNA-seq. In sepsis, heterogeneity in the distribution of

immune cell types and states between patients is thought to contribute to differences in illness

trajectory, outcomes, and response to therapies (29). To evaluate the congruence between

methods for characterizing immune cell profiles in sepsis, we computed proportions for each cell

type and substate for each sample processed using both Ficoll and Cryo-PRO methods. We

defined proportion of cell type as the number of cells of a particular type (e.g., B cells) divided

by the number of all PBMCs combined. For cell substates, proportion was defined as the

number of cells assigned to a substate divided by the total number of cells of that cell type (e.g.,

number of CD16+ monocytes divided by the total number of monocytes). We compared cell

type proportions between paired Ficoll and Cryo-PRO samples from each of the 24 subjects by

investigating their correlations. Substate proportions were calculated for substates of

monocytes, T cells, B cells and dendritic cells. Natural killer cells did not demonstrate unique

substates; therefore substate proportions were not computed.

Proportions of cell types were significantly correlated between methods (Figure 4a), with

Pearson correlations (R) ranging between 0.86 and 0.93 (p<0.001 for all comparisons). There

were significant positive correlations between methods for most substates (R values from 0.48

to 0.96; p<0.05); the exceptions were memory B cells (R = 0.42; NS, not significant) and gamma

delta T cells (R = 0.28, NS) (monocytes, B cells, and T cells: Figures 4b-d, dendritic cells:

Supplemental Figure 4). Within monocytes, correlations across methods were higher for CD16+

monocytes (R = 0.96, p<0.001) than for CD14+ MS1 (R = 0.78, p<0.001) and classical CD14+

(R=0.83, p<0.001). The poorly correlated memory B cell proportions may be influenced by the

fact that naive and memory B cells exist on a continuum (30) such that stochastic differences in

clustering may have a bigger impact in assignment between these similar substates.
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Figure 3. Comparison of gene and protein profiling by method. (a) Two-dimensional uniform manifold approximation 

and projection (UMAP) of cells by processing method; Ficoll (left) and Cryo-PRO (right). Dotted outlines represent 

major PBMC lineages. Cell substates were identified by clustering cells of each method independently; substate 

identities were then projected onto a shared set of UMAP axes (see Methods). (b) Dot plots of key marker genes 

and percent mitochondrial reads (percent.mt) for cell substates identified in scRNA-seq analysis by method (top: 

Ficoll, bottom: Cryo-PRO). (c) Dot plots of key surface marker proteins (detected using CITE-seq) for each cell 

substate. For both (b) and (c), color represents scaled relative expression (blue = higher expression), and size 

represents the proportion of cells in each substate where the feature was detected. (d) Volcano plot showing genes 

differentially up-regulated (positive log2FC) or down-regulated (negative log2FC) in Ficoll compared to Cryo-PRO 

using pseudobulk expression data from all cells (see Methods). Genes with adjusted p-values of less than 0.05 are 

shown in red; those with p < 0.05 and abs(log2FC) > 1 are labeled. 	
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Correlations for the CD14+ monocyte substates (MS1 versus classical) may have been affected

by transcriptional similarity as well. Gamma delta T cells were present in very low numbers

across each method, with enhanced effects of outliers likely impacting correlations. Comparison

of cell substate proportions between Ficoll and Cryo-PRO at an individual subject level showed

a high degree of similarity across each of the 24 subjects analyzed (Supplemental Figure 5),

especially for the 15 patients whose samples were processed immediately at clinical sites

(Supplemental Figure 5a).

To evaluate the robustness of our Cryo-PRO approach, we assessed the technical

reproducibility of scRNA-seq results for the same blood samples processed at different clinical

sites. We compared cell type and substate abundances for the 8 patients whose samples were

processed simultaneously at MGH and BIDMC, noting inherent processing delays due to

sample transport between sites (see Methods). Proportions of major cell types (monocytes, B

cells, and T cells) were highly correlated when the patient sample was simultaneously

processed at different clinical sites for Ficoll (R values from 0.83 to 0.96, p<0.001) (Figure 4e)

and Cryo-PRO (R values from 0.86 to 0.99, p<0.001) (Figure 4f). Dendritic cells (Ficoll R = 0.05,

Cryo-PRO R = 0.44; both NS) and natural killer cells (Ficoll R = 0.34, Cryo-PRO R = 0.72; both

NS) were poorly correlated between sites, possibly due to small overall cell counts and variable

yield between processing runs that exaggerate differences in cell proportions. For cell

substates, correlations were significant for nearly all substates of monocytes, T cells, and B

cells, and dendritic cells for each method between sites (Supplemental Figure 6), though for

some substates including MS1, cross-site correlations were slightly lower for Cryo-PRO (right

column) than Ficoll (left column).
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Figure 4. Trends in cell type and substate proportion by patient between method and processing center. (a) Scatter 

plot of cell type proportion from Ficoll and Cryo-PRO. Each point represents the proportion of one cell type from one 

patient sample, as measured by each method. Each cell type is represented by a different color and trendline. 

Proportion is the number of cells of one cell type divided by the total number of PBMCs from that patient sample. 

Patient-paired Ficoll:Cryo-PRO samples are plotted to assess correlation by method for each patient. Pearson’s 

correlations (R) are shown for all correlations (*p < 0.05, ** p < 0.01, ***p < 0.001). (b-d) Scatter plots of cell 

substate proportion from Ficoll and Cryo-PRO. Each point represents the proportion of one cell substate from one 

patient sample, as measured by each method. Each cell substate is represented by a different color and trendline. 

Proportion is the number of cells of one cell substate divided by the total number of cells from its cell type from that 

patient sample. Patient-paired Ficoll:Cryo-PRO samples are plotted to assess correlation in method for each 

patient. (e-f) Scatter plots of cell type proportion from different processing sites. Each point represents the 

proportion of one cell type from one patient sample, processed at each site. Each cell type is represented by a 

different color and trendline. Proportion is the number of cells of one cell type divided by the total number of PBMCs 

from that patient sample. The patient-paired Ficoll:Ficoll samples and Cryo-PRO:Cryo-PRO samples from the two 

different enrollment sites are plotted to assess variation in technical duplicates for each patient. 
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DISCUSSION

Single-cell transcriptional profiling facilitates high-resolution characterization of the

heterogeneity among circulating immune cells, thereby revealing critical insights into diseases

such as sepsis where the immune response plays a pivotal role (31). Performing these

investigations with clinical samples is critical for translational goals, as it establishes a direct link

between cellular transcriptomics and patient-derived data. However, the current state-of-the-art

process for scRNA-seq faces a number of major roadblocks to application on clinical samples:

intensive sample collection strategies that require more time, equipment, and molecular

techniques than are typically available to clinical study teams; and cost. ScRNA-seq is

becoming more economical with emerging technologies and the ability to pool samples, but

performing scRNA-seq from patient blood still requires PBMC isolation via the time- and

resource-intensive process of Ficoll density gradient centrifugation. This limitation has greatly

constrained the application of scRNA-seq in clinical investigations, resulting in smaller clinical

cohorts that may not fully capture the heterogeneity of diseases under study.

Here, we demonstrated that direct cryopreservation of a small volume (~1 mL) of whole

blood at the point of care, followed by thawing and PBMC isolation at a centralized research

facility, is a viable alternative to on-site Ficoll processing for scRNA-seq and CITE-seq. This

simple and streamlined approach significantly reduced the time and technical expertise needed

to obtain clinical samples, while still preserving single-cell transcriptomes and surface

proteomes in patients with sepsis. We independently identified the same immune cell types and

substates in the datasets of Cryo-PRO and Ficoll, including the sepsis-enriched monocyte

substate MS1, considered important in sepsis immunopathophysiology (10, 32). We found a

high correlation between methods for the abundances of all major cell types. Although cell

substates may be less distinctly defined by their transcriptional profile and are therefore more

susceptible to misidentification due to stochasticity in clustering, we still observed high

correlations between most substate proportions derived from the two methods after independent

clustering and substate assignment. Moreover, we observed similar patterns of gene and

surface protein expression across cell types and substates with very minimal differential gene

expression between methods. Together, this substantial equivalence between the gold-standard

method of Ficoll processing and Cryo-PRO demonstrates that Cryo-PRO does not introduce

major artifacts from processing and generates results with biological significance in patients.

When deployed across two different enrolling emergency departments, cell type and substate

abundances from Cryo-PRO showed strong correlations across sites. This finding shows that

Cryo-PRO is robust to variations in collection site and operator, further validating it as a reliable
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strategy for expanding scRNA-seq studies.

The Cryo-PRO method has transformative potential for multicenter sample collection and

clinical trial enrollment efforts by greatly simplifying on-site protocols for scRNA-seq and

transferring the technically demanding steps to a centralized location. The resource demands of

onsite processing for scRNA-seq particularly impact studies of highly heterogeneous diseases

with acute onset where study collection strategies must be deployable at any time a patient may

present. Sepsis is an archetype of such a condition, and sample sizes for scRNA-seq studies of

sepsis have, as a consequence, been too small to bring the full power of the method to bear on

investigating biological reasons underlying the clinical heterogeneity of the condition (10,

13–16). The substantial reduction in technical skill and time requirements for sample processing

and preservation (i.e., mean time of 13 minutes for Cryo-PRO vs 143 minutes for Ficoll) has

crucial operational implications in the clinical research setting. Simplifying sample collection also

offers an opportunity for improving cost efficiency by enabling the rapid enrollment of many

potentially suitable patients for clinical studies, followed by retrospective adjudication based on

subsequent clinical course to inform the selection of appropriate patients for sequencing.

Widening the net of subjects enrolled in this manner would better reflect the true patient

heterogeneity in conditions under study, enabling post-hoc enrichment for rare clinical

phenotypes or outcomes. For sepsis, this strategy could facilitate the derivation of

scRNA-seq-based endotypes on a large, diverse cohort of sepsis patients with varied clinical

presentations and demographic backgrounds, including those from hospitals in underserved

communities without dedicated research teams and resources to typically participate in clinical

research.

Other forms of rapid whole blood cryopreservation have recently been demonstrated

with scRNA-seq (33, 34). In one of these studies, a substantial loss in the fractional abundance

of myeloid cells was observed when compared with samples obtained using Ficoll (33). Our

approach produces better equivalence with the standard Ficoll method across immune cell

types. Another method (34) is based on the use of fixed cells, which provides more flexibility in

the cryopreservation process compared to Ficoll (35). However, because fixation impairs

polymerases involved in cDNA library preparation, fixed cell RNA profiling requires hybridization

to a predefined set of probes, rather than sequencing, to detect transcripts (36), introducing a

number of limitations. In particular, hybridization-based approaches require a priori knowledge

of the cell’s potential transcriptional signature, and thus fail to capture regions of high allelic

diversity such as BCR and TCR clonotypes. Additionally, sample processing and preservation

with fixed cell profiling is generally kit-specific, requiring users to commit to a technology prior to

the start of sample collection and use the costly reagents for all collected samples. In addition,
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these prior approaches, in part due to smaller sample size, relied on co-clustering of scRNA-seq

data with the traditional Ficoll method to assign cell states. In order to be useful at the point of

care, any streamlined collection method must stand alone; we therefore independently clustered

and analyzed patient-matched data from Cryo-PRO alone, versus Ficoll alone, and found

substantial technical and biological equivalence.

Our study has several limitations. First, our cohort size remains small in the context of

sepsis studies. However, to the best of our knowledge, this study (n = 24 subjects and 32 paired

samples) is the largest to date evaluating the feasibility of whole blood cryopreservation for

scRNA-seq and CITE-seq in any context, and demonstrates substantial equivalence with

conventional methods. We aim to further validate Cryo-PRO as a sample processing approach

in a larger cohort of subjects in the future. Second, although all major cell types and substates

had substantial equivalence in patient-level abundance, some cell substate abundances

deviated between Cryo-PRO and Ficoll methods. Some differences in substate assignment

within cell types (e.g., MS1 versus classical CD14+ monocytes or memory versus naive B cells)

are less well-defined than differences in cell types, and may reflect more of a continuum than a

dichotomy, so more stochastic differences in assignments are expected. Other cell substates

like gamma delta T cells and substates of dendritic cells were present at very low abundances

and therefore more susceptible to outlier effects. While some differences between methods may

reflect differences in either gene expression or survival by cell type and substate, each method

introduces processing steps that may perturb transcription, i.e., centrifugation for 2 hours

through a density gradient followed by freezing, thawing, and flow cytometry for Ficoll; exposure

to DMSO, freezing, thawing, magnetic cell separation, and flow cytometry for Cryo-PRO.

Additionally, 8 of our 23 subjects were processed in parallel at two sites, with a resulting mean

delay of just over 2 hours prior to processing by either method, which may have affected

subsequent sequencing results in these samples. Despite these limitations, the overall

agreement in cell type and substate proportions between methods, and the minimal

perturbations seen in differential expression by method suggests that major transcriptional

signals that reflect relevant biology are preserved. Third, this study does not yet assess the

function of PBMCs isolated by Cryo-PRO, whereas Ficoll preparation is known to yield

functional PBMCs (35), enabling correlation of transcriptional states with cellular activity. We

plan future studies to assess the functional capacity of PBMCs isolated using the Cryo-PRO

method.

By simplifying sample collection at the point of care, Cryo-PRO can unlock greater

potential of scRNA-seq to study the biology of complex clinical conditions across multiple

collection sites, including lower-resource settings, thus enabling better capture of the true
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heterogeneity of diseases. This method greatly lowers the barrier to embedding

scRNA-seq-compatible collection strategies in randomized clinical trials, which would enable

post-hoc analyses to identify biological subsets of patients (i.e., endotypes) that may selectively

respond to therapeutic interventions. In addition, Cryo-PRO could enhance the cost-efficiency of

scRNA-seq by enabling “overcollection” at the point of care, reserving PBMC isolation and

scRNA-seq only for samples from patients who display clinical phenotypes or disease

trajectories of interest on subsequent adjudication. Thus, Cryo-PRO has substantial potential to

expand the application of scRNA-seq towards personalized medicine in complex and

heterogeneous conditions like sepsis, and this work represents an important first step towards

that goal.

METHODS

Patient enrollment and clinical adjudication. This study was approved by the

Massachusetts General Brigham IRB (2022P002833) and conducted at Massachusetts General

Hospital and Beth Israel Deaconess Medical Center. Inclusion criteria were adult patients

arriving to the Emergency Department with evidence of organ dysfunction for whom bacterial

infection was possible or suspected. Eligible patients had a blood sample collected under an

IRB-approved alteration of informed consent, which allowed a research sample to be drawn

simultaneously with the initial clinical blood draw. Informed consent was obtained from the

patient or a surrogate at a later time after initial resuscitation.

Sample was collected for 100 patients during a 12-month period from April 2023 to

March 2024. Of those 100, consent to analyze sample for research was obtained in 84 patients,

thus considered enrolled. Sample was discarded for those who did not provide consent. Clinical

data were collected on all enrolled subjects and entered into REDCap by clinical research

coordinators. Physician adjudication (MRF) was later performed via retrospective chart review

with access to all available clinical data and notes during the subject’s hospitalization. Subjects

were adjudicated as meeting Sepsis-3 criteria (19) for sepsis or septic shock during the first 48

hours of hospitalization, or whether infection without sepsis versus other non-infectious cause

for presenting illness was present. For the current analysis, we prioritized sequencing in those

subjects adjudicated as sepsis and septic shock. We selected 23 subjects to be sequenced and

included in the analysis.

Sample collection at clinical sites. Research blood samples were collected in 10 mL

EDTA tubes. Up to 20 mL was collected if patient samples were being parallel-processed at

both clinical sites; up to 10 mL was collected if patient samples were being processed at only a

single site. For samples parallel-processed at both clinical sites, one of the two 10 mL EDTA
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tubes collected at the enrolling site was couriered to the second site.This resulted in a delay in

processing of about 2 hours on average; samples from one subject were delayed >3 hours.

Samples obtained for single-site processing were taken directly to the onsite lab for immediate

processing. Processing of all 10 mL EDTA samples involved cryopreservation of whole blood (2

mL) and onsite density gradient centrifugation with Ficoll (~3 to 6 mL) as described below. Up to

3 mL of the collected whole blood sample was used for other research purposes.

Onsite whole blood cryopreservation for Cryo-PRO. For immediate whole blood

cryopreservation, 2.0 mL of blood from the 10 mL EDTA tube were mixed with 200 uL DMSO.

Two 1-mL aliquots in cryovials were then prepared per sample and were slowly cooled using a

Mr Frosty (Sigma-Aldrich) in a -80ºC freezer. Aliquots were stored onsite at -80ºC for less than 1

month before being transported to the Broad Institute (Cambridge, MA) on dry ice and

immediately stored at -140ºC until the time of sequencing. Two 1 mL aliquots were

cryopreserved in order to have a backup sample if needed.

Onsite density gradient centrifugation (Ficoll) and cryopreservation of PBMCs.

Density gradient centrifugation was performed on the remaining blood in the EDTA tubes (~3 to

6 mL). Blood with EDTA was diluted 1:1 with room temperature PBS and layered over

Ficoll-Paque PLUS density gradient media (Cytivia) in a SepMate tube (STEMCELL) before

centrifuging at 1,200 rcf for 20 minutes at 20ºC with slow acceleration and the brake off. The

buffy coat layer was carefully collected and washed twice with cold RPMI (Gibco) before cells

were counted, resuspended in CryoStor CS10 (STEMCELL), and aliquoted into cryotubes

targeting 1 million cells per vial. Samples were cooled, stored, and transported in the same

manner as the Cryo-PRO samples.

Healthy donor blood cryostorage. Fresh healthy donor blood in EDTA tubes was

ordered from Research Blood Components (Watertown, MA) and processed within two hours of

receipt. Whole blood Cryo-PRO and Ficoll PBMC cryostorage steps took place as described,

though all processing steps occurred at the Broad Institute.

Pre-sequencing processing for both Ficoll and Cryo-PRO samples. All subsequent

processing and analysis steps described here were performed at the Broad Institute. On the day

of flow cytometry sorting and Chromium 10X processing, a sample of cryopreserved whole

blood (for Cryo-PRO) and a Ficoll sample were thawed for each patient. Sequencing batches

were designed to contain four Ficoll samples and four patient-matched Cryo-PRO samples to

minimize the effect of sequencing batch variation on the method comparison; therefore, 8

samples total were processed in parallel.

For each of the four Cryo-PRO samples, 1 mL of cryopreserved whole blood was thawed

in a 37ºC water bath for 1 min 15 seconds and transferred into a 5-mL polystyrene round-bottom
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tube using 1 mL of PBS containing 2 mM EDTA and 2.5% FBS. Samples were immediately

depleted of red blood cells using the STEMCELL EasySep RBC depletion kit. Briefly, the diluted

blood was mixed with 50 uL of the RBC depletion reagent before immediately being placed on a

magnet for 5 minutes at room temperature. The supernatant was pipetted off and mixed with an

additional 50 uL of RBC depletion reagent in a new tube before another immediate 5 minute

magnet incubation. At the end of the second incubation, the supernatant was transferred into

8.5 mL of FBS-RPMI (RPMI + 10% FBS + 1x penicillin/streptomycin) on ice. These steps were

performed in parallel for the four Cryo-PRO samples.

For each of the four Ficoll samples, one vial per patient was thawed in a 37ºC water bath

for 1 min 15 seconds before transfer with 1 mL of FBS-RPMI into 8.5 mL of FBS-RPMI on ice.

For patients with three or more Ficoll vials, two vials were thawed and combined to improve cell

recovery. These steps were performed in parallel for the four Ficoll samples.

For the subsequent steps, Cryo-PRO and Ficoll samples received the same treatment

and steps were performed in parallel. All samples were centrifuged to pellet the cells (300xg, 5

minutes, 4ºC), then resuspended with FACS-PBS (PBS + 2mM EDTA + 2.5% FBS) and

centrifuged again. Each sample was then resuspended in 50 uL FACS-PBS and incubated on

ice with a hashtag oligo for pooled sequencing (TotalSeq™ anti-human Hashtags, BioLegend),

an Fc receptor blocking solution (Human TruStain FcX™, BioLegend), and flow cytometry stains

(DAPI solution,Thermo Scientific; Alexa Fluor® 700 anti-human CD15 [Clone: HI98], BioLegend;

FITC anti-human CD235a [Clone: HI264], BioLegend; and PE anti-human CD45 [Clone: HI30],

BioLegend). Samples were then washed in cold FACS-PBS and sorted on a SONY MA800 cell

sorter to select for DAPI- CD15- CD235a- CD45+ cells, with a sorting target of 50,000 cells per

sample.

After sorting, the hashed and sorted cells from all eight samples were pooled, pelleted

(300xg, 5 minutes, 4ºC in FACS-PBS), and resuspended in a CITE-Seq cocktail for surface

proteome measurement (20) for a final incubation on ice. After 20 minutes, the cells were

washed twice more (centrifugation at 300xg, 5 minutes, 4ºC followed by resuspension in PBS +

2.5% FBS), counted, and resuspended in PBS + 2.5% FBS for a target concentration of 1,000

cells/uL.

Library construction and scRNA sequencing. Droplet-based single-cell RNA capture

and RNA and ADT library construction was performed with the Chromium single-cell 5’ kit v2

(10x Genomics, Inc). Forty uL of cells were loaded onto the Chromium Chip K, and Gel Bead-in

Emulsion creation and library construction followed according to the manufacturer’s protocol

(37). Eight batches of libraries were prepared (including gene expression libraries and cell

surface protein libraries), with each batch barcoded using the 10X Dual Index Kit and
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sequenced altogether. Gene expression libraries were sequenced at a low depth (~200

reads/cell) using the Illumina MiniSeq 150 Cycle Hi-Output Kit for a quality check and cell count

estimate to inform library balancing. Rebalanced libraries targeting 50,000 reads/cell for gene

expression and 10,000 reads/cell for surface proteins were then sequenced on an Illumina

NovaSeq S4.

Data preprocessing. FASTQ files were aligned to a reference genome (GRCh38) using

the Cell Ranger v6 pipeline by 10X Genomics. Demultiplexing and multiplet detection with

patient hashtag oligos was performed using the Cumulus pipeline (36). Filtered gene expression

matrices and CITE-Seq matrices were then analyzed using the Seurat V5 package in R.

Multiplets and cell barcodes without corresponding gene expression, CITE-seq, and

demultiplexing data were removed. Genes present in less than 10 cells were removed.

Sequencing data from each method was split into two datasets and analyzed independently. For

each set, RNA expression data was normalized, scaled, and integrated between sequencing

batches using the top 2,000 most variable genes. Scaled CITE-seq data was integrated by

finding multimodal neighbors using the first 50 principal components of RNA and CITE-seq data.

Clustering and substate identification. Clustering was performed using the resulting

weighted-nearest-neighbors graph, and the Clustree package (38) was used to determine

clustering resolution. Cell types were assigned to clusters using top marker genes for each

cluster (determined by Wilcoxon rank-sum test, Bonferroni-corrected p-value < 0.05, ranked by

fold-change), and cell substates were assigned using top marker genes obtained by subsetting

and re-clustering cells from each cell type at a higher resolution. Classification of cell types and

substates was cross-referenced using the annotated Azimuth reference dataset (25). Clusters

were defined as low quality if over 20% of cells in the cluster were cells with mitochondrial

genes representing 10% or more of total genes detected in that cell. Low quality clusters were

removed from further analysis as part of an extended quality control. After method-independent

cell substate assignment, the Ficoll and Cryo-PRO datasets were combined and a UMAP was

generated using the weighted-nearest-neighbors graph for the purpose of data visualization.

Differential gene expression. To assess differential gene expression between

methods, scRNA-seq data was first pseudo-bulked by sample (generating 32 “bulk” RNA-seq

samples from each method) to minimize p-value inflation (39), and FindMarkers with the

DESeq2 package was used to detect differentially expressed genes. The same process

occurred for differential gene expression at the cell type level, although cells were first

pseudo-bulked by cell type in addition to sample.
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Top marker genes for each cell substate were calculated in Seurat using the

FindMarkers function, and genes with an expression log2 fold-change > 0.25, genes expressed

in over 25% of cells in the cluster; and a Bonferroni-corrected p-value < 0.05 were included.

Cell type and substate abundance. PBMC cell type proportions were calculated as a

fraction of all major cell types identified (monocytes, B cells, T cells, NK cells, and dendritic

cells). Cell substate proportions were calculated as a fraction of the cell type in question. Cell

clusters defined as low quality, or belonging to a class of cells other than PBMCs (i.e., platelets

and hematopoietic stem and progenitor cells), were not included in proportion calculations.

Samples with fewer than 1,000 total cells were not included in correlation calculations, in Figure

4 or in Supplemental Figures 4 and 6 due to effects of low sample sizes. When possible, the

Ficoll:Cryo-PRO comparisons were made using samples processed at the same site in which

they were collected. In the case of Subject 17, one sample yielded less than 1,000 cells, so the

Ficoll:CrypPRO samples processed at the alternative site were used in calculations instead. R

values were calculated for the scatterplots of cell types and substates shown using a Pearson

correlation.

Figure generation. Figure 1 was created in BioRender (40). Subsequent figures were

generated using the ggplot2 package, the ScCustomize package (41), and the Seurat package

in R (25).
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FIGURE & TABLE LEGENDS

Figure 1. Overview of sample processing methods; Ficoll and Cryo-PRO. Cryo-PRO is

designed to expedite sample processing at the site of collection by incorporating a whole blood

cryopreservation step (and subsequent red cell depletion step) to replace standard Ficoll

processing. Blue bars represent processing done at site of enrollment; purple bars represent

processing done at centralized laboratory and include steps up to single-cell droplet formation.

Figure 2. Processing time and quality metrics by cryopreservation method. (a) “Hands-on” time

spent by operators at clinical sites to process patient samples from initiation of processing after

blood draw to placing the sample in a freezer for storage. (b) Percent of CD45+ CD235a- CD15-

cells staining DAPI negative on flow cytometry as an indicator of cell membrane integrity and

cell viability. (c) Violin plots of RNA sequencing quality metrics by method (left to right): unique

genes per cell, unique molecular identifiers (UMIs) of RNA transcripts per cell, percent of

transcripts represented by mitochondrial genes per cell. (d) Violin plots of CITE-seq quality

metrics by method: unique surface protein features (left panel) and UMIs (right panel) per cell

(detected via CITE-seq). PRO denotes Cryo-PRO.

Figure 3. Comparison of gene and protein profiling by method. (a) Two-dimensional uniform

manifold approximation and projection (UMAP) of cells by processing method; Ficoll (left) and

Cryo-PRO (right). Dotted outlines represent major PBMC lineages. Cell substates were

identified by clustering cells of each method independently; substate identities were then

projected onto a shared set of UMAP axes (see Methods). (b) Dot plots of key marker genes

and percent mitochondrial reads (percent.mt) for cell substates identified in scRNA-seq analysis

by method (top: Ficoll, bottom: Cryo-PRO). (c) Dot plots of key surface marker proteins

(detected using CITE-seq) for each cell substate. For both (b) and (c), color represents scaled
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relative expression (blue = higher expression), and size represents the proportion of cells in

each substate where the feature was detected. (d) Volcano plot showing genes differentially

up-regulated (positive log2FC) or down-regulated (negative log2FC) in Ficoll compared to

Cryo-PRO using pseudobulk expression data from all cells (see Methods). Genes with adjusted

p-values of less than 0.05 are shown in red; those with p < 0.05 and abs(log2FC) > 1 are

labeled.

Figure 4. Trends in cell type and substate proportion by patient between method and

processing center. (a) Scatter plot of cell type proportion from Ficoll and Cryo-PRO. Each point

represents the proportion of one cell type from one patient sample, as measured by each

method. Each cell type is represented by a different color and trendline. Proportion is the

number of cells of one cell type divided by the total number of PBMCs from that patient sample.

Patient-paired Ficoll:Cryo-PRO samples are plotted to assess correlation by method for each

patient. Pearson’s correlations (R) are shown for all correlations (*p < 0.05, ** p < 0.01, ***p <

0.001). (b-d) Scatter plots of cell substate proportion from Ficoll and Cryo-PRO. Each point

represents the proportion of one cell substate from one patient sample, as measured by each

method. Each cell substate is represented by a different color and trendline. Proportion is the

number of cells of one cell substate divided by the total number of cells from its cell type from

that patient sample. Patient-paired Ficoll:Cryo-PRO samples are plotted to assess correlation in

method for each patient. (e-f) Scatter plots of cell type proportion from different processing sites.

Each point represents the proportion of one cell type from one patient sample, processed at

each site. Each cell type is represented by a different color and trendline. Proportion is the

number of cells of one cell type divided by the total number of PBMCs from that patient sample.

The patient-paired Ficoll:Ficoll samples and Cryo-PRO:Cryo-PRO samples from the two

different enrollment sites are plotted to assess variation in technical duplicates for each patient.

Supplemental Figure 1. Number of singlet cells sequenced per method. Starting blood sample

volume was variable in Ficoll samples and was 1 mL in Cryo-PRO samples.

Supplemental Figure 2. Per-sample violin plots showing UMIs of RNA transcripts (a), unique

genes (b), percentage of mitochondrial transcripts (c), unique surface protein features detected

via CITE-seq (d), and UMIs of surface protein features detected via CITE-seq (e) per cell.

Batches represent samples that were thawed, processed and sequenced together. Ficoll and

Cryo-PRO samples from the same patient are plotted next to each other. For patients where

parallel processing occurred at both clinical sites (bottom rows), the samples processed at the
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opposite site of enrollment are shown in lighter shades. A total of 137 different surface proteins

were queried in the CITE-seq analysis. PRO denotes Cryo-PRO.

Supplemental Figure 3. (a) Dot plots of marker gene expression by each monocyte substate.

Color represents scaled relative expression (blue = higher expression). Size represents the

proportion of cells in each substate where the feature was detected. (b) Volcano plots showing

genes differentially up-regulated (positive Log2FC) or down-regulated (negative Log2FC) in Ficoll

compared to Cryo-PRO after pseudobulk analysis. Genes with adjusted p-values of less than

0.05 are shown in red; those with p < 0.05 and abs(log2FC) > 1 are labeled. Plots are shown for

differential gene expression among all cells (top left) and for each major cell type (subsequent

plots).

Supplemental Figure 4. Scatter plot of dendritic cell substate proportion from Ficoll and

Cryo-PRO. Each point represents the proportion of one cell substate from one patient sample,

as measured by each method. Each cell substate is represented by a different color and

trendline. Proportion is the number of cells of one cell substate divided by the total number of

dendritic cells from that patient sample. Patient-paired Ficoll:Cryo-PRO samples are plotted to

assess correlation in method for each patient. Pearson’s correlations (R) are shown for all

correlations (*p < 0.05, ** p < 0.01, ***p < 0.001).

Supplemental Figure 5. Cell substate proportions for technical duplicate samples processed at

single centers (a) and technical duplicate samples processed at both centers (b). Samples from

the same patient processed using different methods are shown next to each other; in (b), the

corresponding pair of technical duplicates are shown subsequently. PRO denotes Cryo-PRO.

Supplemental Figure 6. Scatter plots of cell substate proportions from different processing

sites. Each cell substate is represented by a different color and trendline. Proportion is the

number of cells of one cell substate divided by the total number of cells from its cell type from

that patient sample. The patient-paired Ficoll:Ficoll samples and Cryo-PRO:Cryo-PRO samples

from the two different enrollment sites are plotted to assess correlation of technical duplicates

for each patient. Pearson’s correlations (R, *p < 0.05, ** p < 0.01, ***p < 0.001) are shown for all

correlations.

Supplemental Table 1. Top marker genes by cell cluster and method. (a) Top 30 marker genes

(ordered by highest average log2FC) for each cell type by method. (b) Shared top marker genes
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for each cell type (genes in (a) appearing across both methods). (c) Top 30 marker genes

(ordered by highest average log2FC) for each cell substate by method. (d) Shared top marker

genes for each cell substate (genes in (c) appearing across both methods). Marker genes were

excluded from the list if expressed in fewer than 25% of cells in that cluster (see Methods).

Supplemental Table 2. Differential gene expression by method. List of genes that were

significantly (adjusted p value < 0.05) differentially expressed between methods for cell types

and across all cells. Positive average log2FC indicates that the gene was enriched in Ficoll cells;

negative average log2FC indicates that the gene was enriched in Cryo-PRO cells. Calculations

were performed on pseudo-bulked samples (see Methods).
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