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Abstract 

The blood-cerebrospinal fluid barrier (BCB) builds an integral interface between the central 

nervous system and the periphery and appears to be impaired in a substantial proportion of 

individuals with schizophrenia-spectrum disorders (SSD). Even though a disruption of the 

BCB is associated with higher symptom severity, factors linked to BCB disruption in SSDs 

have been minimally investigated.   

To address this gap, 57 inpatients with SSD underwent cerebrospinal fluid (CSF) and blood 

analyses as well as comprehensive clinical assessments. In a subgroup of 28 participants 

structural magnetic resonance imaging (MRI) was performed. We developed a BCB 

dysfunction score, employing principal component analysis of CSF/serum albumin, 

CSF/serum IgG ratios and total protein levels in CSF, with higher values indicating stronger 

abnormalities. We calculated multiple regression models to explore the associations between 

BCB integrity and cardiometabolic, inflammatory, brain morphometric, and clinical measures 

respectively. 

BCB dysfunction score was negatively associated with high-density lipoprotein cholesterol 

and positively associated with total cholesterol, low-density lipoprotein cholesterol, and 

triglycerides. Furthermore, we observed a trend towards a positive association between BCB 

dysfunction score and treatment resistance that did not survive multiple testing correction. 

We did not find significant associations between the BCB composite score and any other 

assessed cardiometabolic, inflammatory or cerebroventricular measures.  

These findings suggest that BCB integrity is associated with dyslipidemia in SSD, 

highlighting the interplay between cardiometabolic risk factors and brain health in SSD. 

Addressing cardiometabolic health in individuals with SSD might thus have implications 
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beyond physical health, potentially influencing the integrity of the BCB and, consequently, 

clinical trajectories. 

 

Key Words: schizophrenia, CNS barriers, cardiovascular system, inflammation, ventricular 

system 

 

1. Introduction 

Schizophrenia-spectrum disorders (SSD) are among the leading causes of morbidity 

worldwide due to high rates of treatment resistance as well as cognitive and functional 

impairment1. Compared to the general population, life expectancy is reduced by ~15 years2 

not only due to high rates of suicide, but also due to high prevalence of somatic comorbidities 

such as cardiovascular diseases3,4. Of note, data from drug-naïve first episode schizophrenia 

(SCZ) patients4,5, as well as genetic studies6,7, indicate that metabolic disturbances are not 

just sequelae of unhealthy lifestyle factors and adverse drug reactions, but potentially 

contribute to SSD pathophysiology. 

Metabolic syndrome (MetS) is defined as the occurrence of at least three of interrelated 

cardiometabolic risk factors including central obesity, hypertension, hyperglycemia, and 

dyslipidemia8. It is highly prevalent in SSD9 and high-quality meta-analytic evidence suggests 

a link between MetS and cognitive impairment in people with SCZ10,11. Furthermore, a study 

from the ENIGMA Working Group demonstrated that body-mass-index (BMI) (as a proxy for 

obesity) was additively associated with structural alterations in many of the same brain 

regions affected in schizophrenia, including changes in cortical thickness12. Despite the 

limitations of the cross-sectional nature of this data, they suggest a complex relationship 

between metabolic disturbances, brain structure, and cognitive functions in individuals with 

SSD. 
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Even though the exact pathophysiology of SSD remains elusive, recent research has 

highlighted the role of immune system dysfunction as a contributing factor in a subset of 

individuals with SSD13,14. Converging evidence from genetic15, as well as, large-scale 

epidemiological studies16,17 point to the role of immune dysregulation in SSD18. Furthermore, 

preliminary evidence from multimodal studies combining neuroimaging data with peripheral 

inflammatory markers suggests a link between peripheral low-grade inflammation and 

structural, as well as, functional cerebral changes, which potentially increase the risk for 

more pronounced psychopathology14.  

Impairments of the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier 

(BCB) are common findings in SSD19,20. While both barriers share similar functions, the BBB 

is spread throughout the brain whereas the BCB is mainly formed by epithelial cells of the 

choroid plexus (ChP) and the arachnoid membrane facing the CSF21,22. Of note, CSF/serum 

ratios of proteins such as albumin and immunoglobulin G (IgG) are technically an indirect 

measure of BCB and not BBB integrity21,22. Some of the functions of both interfaces include 

ensuring a stable milieu18, which is crucial for intact neural signaling in the brain, as well as 

transport of nutrients, oxygen, and waste products18. BCB and BBB also act as central 

immunological nodes, building the interface between central and peripheral immune system 

and coordinating access of leukocytes to the central nervous system (CNS)18,23. Hence, a 

barrier disturbance is likely to be associated with disruption of brain homeostasis and 

functioning with potential relevance for SSD (psycho)pathology18. In line with those findings, 

there is growing evidence suggesting increased ChP volumes24, variability25, altered ChP 

epithelia26, and associated upregulation of immune genes in the ChP27 of individuals with 

SSD. Despite the anatomical and functional relevance of the ChP for BCB23 and the growing 

evidence for alterations of both ChP24 and BCB19 in SSD, the relationship between those two 

has never been studied before.  

Even though the exact cause of BCB disruption in SSD is not known, one of the hypotheses 

states that it occurs following a primary inflammatory insult18. Once disrupted, this might 

render the brain susceptible to peripheral immune effectors with the potential to disturb brain 
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function18. Since blood vessels and especially endothelial cells are an integral building unit of 

the BCB, it is likely that vascular dysfunction, as a result of high cardiometabolic burden 

(e.g., hypertension, diabetes, obesity and dyslipidemia), might also be of relevance.  

To address these questions, in our study we 1) explored the associations between BCB 

integrity and different disease characteristics (duration of illness, duration of antipsychotic 

treatment, first episode psychosis status) and clinical factors (global functioning, treatment 

resistance, positive, negative, and general symptoms, cognitive impairment). Next, we 2) 

studied the links between BCB integrity and peripheral inflammatory markers as well as 3) 

cardiometabolic risk factors. Lastly, in a subgroup of participants with SSD we 4) investigated 

the associations between BCB integrity and volumes of cerebroventricular regions, such as 

choroid plexus and lateral ventricles.  

 

2. Methods 

2.1. Participants  

This study was conducted in the context of the IMPACT study, an ongoing add-on study to 

the Munich Mental Health Biobank (project number 18-716)28, and approved by the ethics 

committee of the Faculty of Medicine, LMU University Hospital Munich (project number 21-

1139). 

The recruitment of study participants was conducted at the Department of Psychiatry and 

Psychotherapy, LMU University Hospital, LMU Munich, Germany, between July 26, 2018, 

and April 24, 2023. Only inpatients (N=57) were included. All study participants provided 

written informed consent and were between 18 and 65 years old. Included patients had a 

primary diagnosis of schizophrenia, schizoaffective disorder, delusional disorder, or brief 

psychotic disorder, collectively referred to as SSD throughout the manuscript.  

Exclusion criteria were as follows: concurrent clinically relevant neurological disorders, such 

as multiple sclerosis and epilepsy, history of encephalitis, meningitis, stroke, traumatic brain 
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injury or cerebral surgery, current pregnancy or lactation, rheumatic disorders, inflammatory 

bowel disease, active malignancy, and acute or chronic infection. 

 

2.2. Clinical assessments 

The clinical characterization was performed by trained study personnel as previously 

described by our working group29,30. The German version 7.0.2 of Mini International 

Neuropsychiatric Interview (M.I.N.I.)31, based on DSM-5 criteria, was conducted with all study 

participants to confirm the diagnosis. Symptom severity was assessed with the Positive and 

Negative Syndrome Scale (PANSS)32 and global functioning with the Global Assessment of 

Functioning (GAF)33 scale. The assessments were performed within four weeks around the 

lumbar puncture. Information regarding medication, duration of illness (DUI), BMI, blood 

pressure, heart rate, concomitant somatic conditions, and current smoking status was 

collected based on self-report and by examining medical reports. Current treatment or history 

of clozapine use was used as a proxy for treatment resistance, as previously suggested34. 

To assess the cognitive performance of the participants, the Montreal Cognitive Assessment 

(MoCA)35 and the Trail-Making-Test (TMT, part A and B) were performed in a subgroup of 

participants.  

 

2.3. Blood and cerebrospinal fluid analyses 

In line with recommendations from the German schizophrenia guideline19,36, lumbar puncture 

was offered to all patients with first- (FEP) or multi-episode psychosis (MEP), who had not 

yet received CSF analysis in the past as part of the diagnostic work-up to exclude concurrent 

somatic etiologies. Paired CSF and serum samples were analyzed as part of the clinical 

routine diagnostics by the Institute of Laboratory Medicine, LMU Munich.  

Most of the study participants underwent a basic blood test, including full blood (N = 54) and 

serum (N = 52 – 56, depending on the variable assessed) analyses, within 3 weeks from the 
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lumbar puncture as part of the clinical routine in our clinic. This was done during the morning 

hours under fasting conditions. The full blood analysis included a complete blood count, and 

the serum analysis included assessment of C-reactive protein (CRP), triglycerides, total 

cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) 

cholesterol, glycated hemoglobin (HbA1c), albumin, immunoglobulin G (IgG) levels, and the 

presence of oligoclonal bands (OCBs). To compute CSF/serum albumin and IgG ratios, 

serum and CSF were collected and assessed at the same timepoint. The neutrophil-to-

lymphocyte ratio (NLR) and monocyte-to-lymphocyte ratio (MLR) were calculated by dividing 

the absolute number of neutrophils and monocytes each by the absolute number of 

lymphocytes per individual37. Further information is provided in the supplementary methods 

section.  

 

2.4. Magnetic resonance imaging 

A subset of 28 participants underwent brain magnetic resonance imaging (MRI) using a 

Siemens Magnetom Prisma 3T scanner (Siemens Healthineers AG, Erlangen, Germany) 

equipped with a 32-channel head coil. Regional brain volumes, including the lateral 

ventricles, third and fourth ventricles were quantified in cubic millimeters using FreeSurfer 

software (version 7.3.2; https://surfer.nmr.mgh.harvard.edu)38. We utilized the FreeSurfer 

atlas to obtain the volumes of the ventricles. Additionally, the choroid plexus (ChP) in the 

lateral ventricles was manually segmented on the 3D-T1 images by one of the first authors 

(IJ), who was trained by a neuroimaging expert (DK). We employed ITK-SNAP software, 

version 4.2.0 (http://www.itksnap.org). The rater was blinded regarding clinical and imaging 

data and followed a previously published protocol for ChP segmentation39. The ChP as well 

as the ventricle measures were adjusted for total intracranial volume using the proportions 

method40. Structural MRI data quality control was performed as previously described by our 

working group41. Further information is provided in the supplementary methods section.  
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2.5. Assessment of BCB dysfunction 

To quantify the integrity of the BCB, we computed a principal component analysis (PCA) 

including the CSF/serum albumin ratio, CSF/serum IgG ratio, and total protein levels in CSF 

as variables of interest (Fig. S1). All three measures have been associated with BCB 

disruption and regarded as biomarkers for BCB functioning42,43. The variables were scaled, 

using the “scale” function in R, to increase comparability, given their differing scales. PCA 

reduces the dimensionality of data that are correlated44. Instead of analysing all three 

measures individually PCA summarizes the information represented by those measures in 

one BCB composite score, which mirrors the integrity of the BCB (the higher the BCB 

composite score, the lower the BCB integrity and the higher the degree of BCB dysfunction) 

better than any of those measures alone.  

 

2.6. Statistical analyses  

The R language (v4.2.1, R Core Team, 2021) in RStudio environment (RStudio Team, 

2020)45 was used for all statistical analyses and visualizations. The following statistical tests 

were used to compare differences in demographic and clinical variables between SSD and 

HC: Fisher's exact test for categorical variables, Welch's t test for normally distributed and 

Wilcoxon rank-sum test for non-normally distributed continuous variables. Shapiro–Wilk test 

was used to assess normality within groups46.  

To investigate the relationships between BCB composite score (predictor variable) and 

measures of psychopathology, cognition, or cerebroventricular measures as outcome 

variables we computed multiple linear regressions, controlling for age and sex as covariates. 

In the linear regression models including cognition measures we additionally controlled for 

years of education as a covariate. To investigate the association between BCB composite 

score (predictor variable) and treatment resistance (outcome variable), we computed a 

logistic regression controlling for age, sex, smoking status, and BMI as covariates. To study 

the relationships between cardiometabolic risk factors (e.g., total cholesterol, HbA1c) or 
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inflammatory measures (e.g., CRP) as predictor variables and BCB composite score as 

outcome variable, we conducted multiple linear regressions controlling for age, sex, BMI and 

smoker status, as previously suggested47,48.  

The threshold for statistical significance was set at p value < 0.05. Results from the 

descriptive statistics are shown as mean ± standard deviation (SD). We employed the 

Benjamini-Hochberg method49 for multiple testing correction within every group of sub-

analyses. False discovery rate (FDR) adjusted p values were reported as q values.  

 

3. Results 

3.1. Cohort characteristics 

The study cohort consisted of 57 individuals with SSD who were inpatients at the Department 

of Psychiatry and Psychotherapy, LMU university hospital, Munich, and underwent a lumbar 

puncture for diagnostic reasons. The cohort included 42 (74%) male and 15 (26%) female 

participants with an average age of 34.32 ± 11.97 years. Nearly half of the participants 

included (27/55; 49%) were active smokers. Thirty-eight individuals were diagnosed with 

schizophrenia (67%) and 13 with brief psychotic disorder (22%), five with schizoaffective 

disorder (9%), and one with delusional disorder (2%). Thirty-five (61%) of the participants 

had a first episode of psychosis at the time of inclusion. The mean duration of illness was 

60.24 months (SD = 94.20) and the mean duration of antipsychotic treatment at the time of 

inclusion was 47.88 months (SD = 95.89). Forty-seven participants were assessed with the 

PANSS and averaged a total score of 62.87 ± 13.09. The average GAF score of the 

participants was 46.87 ± 11.42. Forty- one individuals performed the cognitive tests scoring 

an average of 25.93 ± 3.65 in the MoCA. They required an average of 33.39 ± 14.83 seconds 

to complete the TMT-A and 94.38 ± 65.15 seconds for the TMT-B. One of the 41 participants 

did not complete the TMT-B (Table 1).  
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3.2. Cerebrospinal fluid and blood characteristics 

Mean number of white blood cells was 0.88 ± 1.09/µl and no participant demonstrated a CSF 

pleocytosis. Oligoclonal IgG bands were present in 5/57 (8.8%) participants and none of 

these cases were of intrathecal origin (Table St1). Mean CSF protein level was 42.42 ± 18.55 

mg/dl, mean CSF/serum albumin ratio (Qalb) was 6.53 ± 3.36 and mean CSF/serum IgG ratio 

was 3.18 ± 1.66. The age-adjusted Qalb was elevated in 24/57 (42.1%) participants and 

neuronal autoantibodies were not detected in CSF or blood in any of the participants. 

Following our PCA, the first principal component (PC1) explained 98.5% of the data variance 

(Fig. S1), so it was used to create a composite score that mirrors the BCB integrity (referred 

to as BCB composite score throughout the manuscript). Higher values of BCB composite 

score indicate higher level of disruption and lower BCB integrity.  

In our cohort the mean numbers of neutrophiles, monocytes, and lymphocytes (N = 56) were 

4.27 ± 1.82 thou./µl, 0.53 ± 0.17 thou./µl, and 1.86 ± 0.57 thou./µl, respectively. Mean 

neutrophil-to-lymphocyte ratio (NLR) was 2.43 ± 1.03, mean monocyte-to-lymphocyte ratio 

(MLR) was 0.30 ± 0.10 and mean CRP: 0.18 ± 0.26 mg/dl. An elevated CRP level (> 0.5 

mg/dl) was found in 5/56 (8.9 %) participants. Mean total cholesterol was 178.20 ± 32.64 

mg/dl, mean high-density lipoprotein (HDL) cholesterol was 53.24 ± 16.48 mg/dl, mean low-

density lipoprotein (LDL) cholesterol was 109.10 ± 37.74 mg/dl. Those parameters were 

abnormal in 14/55 (25.5%), 27/55 (49.1%), and 19/55 (34.5%) participants respectively 

(Table St2). Mean triglyceride level was 118.50 ± 82.99 mg/dl, mean glycated hemoglobin 

(HbA1c) was 5.34 ± 0.51 %. They were elevated in 14/55 (25.5%) and 3/54 (5.6%) 

participants respectively. 

 

3.3. Association between blood-cerebrospinal fluid barrier integrity and clinical 

phenotype 

First, we investigated whether there was an association between psychopathology or level of 

functioning and BCB integrity. We found no significant associations of BCB composite score 
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with PANSS positive, negative, general, and total scores or GAF scores (Fig. 1B, 1C, Fig. 

S2, Table S2). However, there was a nominally significant association between current or 

past treatment with clozapine and higher BCB composite score (Fig. 1A), which did not 

survive correction for multiple testing (estimate [95% CI] = 0.668 [0.158, 1.177]; p = 0.031; q 

= 0.186). After correcting for age, sex, and years of education, we found no significant 

associations between TMT A, TMT B, MoCA scores and BCB composite score (Fig 1D, Fig. 

S2, Table S3). Furthermore, there was no significant association between BCB composite 

score and duration of illness, duration of antipsychotic treatment, or first episode psychosis 

status (Fig. S3, Table S1).  

 

3.4. Relationship between cardiometabolic factors and blood-cerebrospinal fluid 

barrier integrity 

Subsequently, we explored the relationships between cardiometabolic risk factors and the 

blood-cerebrospinal fluid barrier composite score in SSD participants. We found significant 

positive associations between total cholesterol (estimate [95% CI] = 0.026 [0.014, 0.038]; q = 

0.003), LDL cholesterol (estimate [95% CI] = 0.023 [0.013, 0.033];  q = 0.001), triglycerides 

(estimate [95% CI] = 0.013 [0.008, 0.017];  q = 0.00006) on the one hand, and BCB 

composite score on the other as well as a significant negative association between HDL 

cholesterol (estimate [95% CI] = -0.045 [-0.067, -0.022];  q = 0.004) and BCB composite 

score (Figure 2, Table S4), after controlling for the covariables age, sex, BMI, and smoking 

status. We did not find a significant association between other cardiovascular factors such as 

systolic blood pressure or HbA1c, and BCB composite score (Figure S4, Table S4).  

 

3.5. Relationship between peripheral inflammation and blood-cerebrospinal fluid 

barrier integrity 

Next, we investigated a possible association between peripheral inflammatory factors and 

BCB integrity. We did not find significant relationship between absolute neutrophil, monocyte 
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and lymphocyte counts and the BCB composite score respectively. There was also no 

significant association between NLR, MLR, CRP levels and BCB composite score (Fig. 3, 

Fig. S5, Table S5).  

 

3.6. Relationship between blood-cerebrospinal fluid barrier integrity and 

cerebroventricular regions 

Due to the functional relationship between the BCB and the cerebroventricular regions, 

particularly the choroid plexus, we investigated the association between the level of BCB 

disruption and the volumes of lateral ventricles, 3rd ventricle, 4th ventricle and choroid plexus 

in a subset of participants. We found no significant associations between the BCB composite 

score and the volumes of the 3rd ventricle, the 4th ventricle, the left and right lateral ventricle 

or the left and right choroid plexus (Fig. 4, S6, Table S6).  

 

4. Discussion  

In our study we found significant associations between higher total cholesterol, LDL 

cholesterol, triglycerides and disrupted BCB integrity as well as a significant association 

between lower HDL cholesterol and disrupted BCB integrity in individuals with SSD. We did 

not find significant associations between BCB composite score and measures of 

psychopathology or disease characteristics, despite a trend towards higher degree of BCB 

disruption in individuals with history of clozapine treatment. Additionally, there was no 

significant relationship between BCB disruption and peripheral immune markers or 

volumetric measures of cerebroventricular regions, respectively.  

BCB disruption is a common finding in SSD19, but data on its relevance regarding 

psychopathology and disease course remains scarce. Even though some previous studies 

have investigated the link between abnormal CSF/serum albumin ratio (a proxy for BCB 

impairment) and different measures of symptomatology such as cognitive deficits50, positive, 

negative or general symptoms, no significant associations could be found across both sexes. 
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Interestingly, Oviedo-Salcedo, Wagner et al. found a trend towards associations between 

elevated CSF protein, CSF/serum albumin ratio and history of treatment with clozapine (a 

proxy for TRS), that did not reach statistical significance51. Despite the weak evidence, it 

aligns with our results indicating higher degree of BCB disruption in individuals with history of 

clozapine treatment. This data must be regarded as preliminary and interpreted cautiously 

(not only due to lack of significance after multiple comparison correction, but also due to the 

low number of individuals with history of clozapine treatment (N = 7). A recent individual 

participant data meta-analysis from our working group43 demonstrated that male individuals 

with SSD and elevated CSF/serum albumin ratio have significantly higher PANSS positive 

scores than male individuals with SSD and CSF/serum albumin ratio within the reference 

range. Of note, clozapine is usually prescribed to patients with treatment-resistant positive 

symptoms, which aligns well with these data. Overall, the results from our study and others 

suggest that BCB impairment might be associated with higher degree of symptom severity 

and even treatment resistance but should be interpreted carefully in light of the discussed 

limitations. 

Dyslipidemia occurs in a substantial proportion of individuals with SSD9. To the best of our 

knowledge, this is the first study to show a significant relationship between blood lipid levels 

and BCB integrity in SSD. In line with our findings, a previous study found that subjects with 

Alzheimer’s disease and elevated CSF/serum albumin ratio (a proxy for BCB impairment) 

had significantly higher mean plasma triglycerides and lower mean HDL cholesterol than 

individuals without BCB impairment52. Preclinical evidence also points to interactions 

between CNS barriers and peripheral lipids53. For example, LDLr-knock-out mice, fed a high 

cholesterol diet, were more susceptible to blood-brain barrier damage and cognitive 

deficits54.  In two other studies dietary-fat-induced blood-brain barrier dysfunction was 

restored via treatment with statins55,56 or ibuprofen56. It has been suggested that lipids affect 

structure and permeability of CNS barriers via altering the brain endothelial cells53. Indeed, 

the effects of dyslipidemia on blood vessels and particularly its contribution to atherosclerosis 

is well-studied57. Although we could not investigate the directionality or possible mechanisms 
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of the association between blood lipid levels and BCB disruption, it is possible that 

dyslipidemia in individuals with SSD damages the endothelial cells of the vessels, forming 

the BCB, thus affecting its integrity. A previous study investigating the impact of 

hypercholesterolemia on choroid plexus epithelial cells in rabbits could demonstrate that 

cholesterol insults from the circulation induce dysfunction of choroid plexus epithelial cells58. 

This is particularly interesting since the choroid plexus epithelial cells are an integral building 

unit of the BCB21.  

Previous studies in rats and humans have suggested that hypertension can disrupt the BCB 

or blood-brain barrier (BBB) integrity59,60 and hyperglycemia can exacerbate BBB 

disruption61, potentially through inflammatory pathways62. In our study, we did not find 

significant associations between systolic blood pressure, glycated hemoglobin and BCB 

composite score respectively, despite observing a trend towards positive associations. 

However, even though prevalence of cardiovascular diseases is increased in individuals with 

SSD, most of our participants did not have overt diabetes or hypertension. Thus, follow-up 

studies in cohorts that include more patients with cardiovascular comorbidities are needed. 

Furthermore, we only included systolic blood pressure from a single measurement, which 

could vary substantially and be influenced by multiple factors.  

Building on evidence from multiple sclerosis63 and Alzheimer’s research64 as well as on the 

inflammatory hypothesis for schizophrenia1, some authors have suggested that CNS barrier 

disruption arises as a consequence of inflammatory insult and/or subtle immune 

dysregulation65. Even though abnormal inflammatory markers are evident in individuals with 

SSD both in plasma13 and CSF42, a previous study trying to link peripheral inflammation 

(CRP) to BCB impairment failed19. In our current study we also did not find significant 

associations between peripheral leukocytes, CRP and BCB integrity, confirming previous 

evidence. It is possible that markers of inflammation (non-high-sensitive CRP and immune 

cell counts) used in both studies were not sensitive enough to detect subtle immune 

dysregulation and its link to BCB impairment.  
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Anatomically, the BCB is formed by epithelial cells of the choroid plexus, fenestrated blood 

vessels and the arachnoid membrane facing the CSF22. Interestingly, emerging evidence 

points to morphological alterations of the choroid plexus in psychosis24 and ventricular 

enlargement is a well-known phenomenon in some individuals with SSD66. Thus, these 

cerebroventricular regions and BCB integrity seem to be affected in individuals with SSD; 

however, to the best of our knowledge, the relationship between these variables has never 

been investigated before in any mental disorder. In a recent study of individuals with 

amyotrophic lateral sclerosis the authors showed higher choroid plexus volumes compared 

to healthy controls and found a significant positive correlation between choroid plexus 

volume and CSF/serum albumin ratio (as a proxy for BCB disruption)67. In our study of 

people with SSD, we found no associations between BCB integrity and the choroid plexus or 

any of the ventricles.  

The limitations of our study include its cross-sectional design which does not allow us to 

study disease progression or treatment response/remission, in relation to BCB integrity. 

Furthermore, a relevant part of the study participants was treated with antipsychotics, 

potentially influencing BCB integrity68. It is not clear whether treatment resistance per se or 

clozapine-related side effects such as dyslipidemia drive the observed association between 

history of clozapine treatment and BCB dysfunction. Another important limitation includes the 

fact that blood for immunological and cardiometabolic analyses was taken within a three-

week period around the lumbar puncture. Consequently, we might have missed associations 

between increased BCB permeability and peripheral measures which are not stable over 

time, such as immune cell counts or CRP. Even though this is the first study to investigate 

such an association in people with SSD, the sample size was relatively small (N = 28) and 

subsequent well-powered studies need to address this question.  

Our study adds to the growing body of literature pointing to the relevance of brain-body 

interactions and CNS barrier impairment for the pathophysiology of SSD. Consequently, 

addressing cardiometabolic factors in individuals with SSD might have implications that 

extend beyond physical health and influence the brain as well as the course of the disease.  
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Future investigations with sufficiently powered cohorts, deeper immunometabolic 

phenotyping performed in both blood and CSF, and longitudinal designs might help elucidate 

the aetiology and clinical relevance of BCB disruption in individuals with SSD.  
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Figure Legends 
 
Figure 1. Relationship between blood-cerebrospinal fluid barrier integrity and clinical 
phenotype.  
(A) Comparison of mean blood-cerebrospinal fluid barrier composite score between 
treatment-resistant schizophrenia group (red) and non-treatment-resistant schizophrenia 
group (turquoise) illustrated with box and violin plots. Groups were compared using a logistic 
regression model, controlling for age, sex, and BMI. Nnon-TRS = 48, NTRS = 7. Regression plots 
illustrating associations between blood-cerebrospinal fluid barrier composite score, (A) 
PANSS total score (N = 47), (B) GAF score (N = 47) and (C) MoCA score (N = 35). Multiple 
linear regression models were employed, controlling for covariates. Abbreviations: N, number 
of participants; BCB, blood-cerebrospinal fluid barrier; TRS, treatment-resistant 
schizophrenia; non-TRS, non-treatment-resistant schizophrenia; PANSS, Positive and 
Negative Syndrome Scale; GAF, Global Assessment of Functioning scale; MoCA, Montreal 
Cognitive Assessment scale. 
 
 
Figure 2.  Association between blood-cerebrospinal fluid barrier integrity and serum 
lipids.  
Regression plots illustrating associations between blood-cerebrospinal fluid barrier 
composite score, (A) total cholesterol, (B) LDL cholesterol, (C) HDL cholesterol and (D) 
triglycerides. Multiple linear regression models were employed, controlling for age, sex, 
smoking status, and BMI. N = 53. Abbreviations: N, number of participants; BCB, blood-
cerebrospinal fluid barrier; LDL cholesterol, low-density lipoprotein cholesterol; HDL 
cholesterol, high-density lipoprotein cholesterol; WRR, within reference range. 
 
 
Figure 3. Relationship between blood-cerebrospinal fluid barrier integrity and 
peripheral inflammatory measures. 
Regression plots illustrating associations between blood-cerebrospinal fluid barrier 
composite score, (A) neutrophil count, (B) monocyte count, (C) neutrophil-to-lymphocyte 
ratio and (D) monocyte-to-lymphocyte ratio. Multiple linear regression models were 
employed, controlling for age, sex, smoking status, and BMI. N = 54. Abbreviations: N, 
number of participants; BCB, blood-cerebrospinal fluid barrier; NLR, neutrophil-to-lymphocyte 
ratio; MLR, monocyte-to-lymphocyte ratio.  
 
 
Figure 4. Relationship between blood-cerebrospinal fluid barrier integrity and 
cerebroventricular regions. 
Regression plots illustrating associations between blood-cerebrospinal fluid barrier 
composite score, (A) left choroid plexus volume, (B) right choroid plexus volume, (C) left 
lateral ventricle volume and (D) right lateral ventricle volume. Multiple linear regression 
models were employed, controlling for age and sex. N = 28. Abbreviations: N, number of 
participants; BCB, blood-cerebrospinal fluid barrier; Left ChP, left choroid plexus; Right ChP, 
right choroid plexus; Left Lat Vent, left lateral ventricle; Right Lat Vent, right lateral ventricle.  
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Tables 
 
Table 1. Cohort characteristics. 

 SSD  

Demographic characteristics Mean ± SD N  

Age, years 34.32 ± 11.97 57  

 

BMI 

  

   26.04 ± 4.09         57 
 

Education (years)    14.86 ± 4.10         41  

 
 

n (%) 
 

Sex, male:female   42:15 (74%)         57  

Current smoking, yes:no 

 

 

Clinical characteristics 

   27:28 (49%) 

 

 

Mean ± SD 

 55 

 

 

N 

 

Duration of illness, months 60.24 ± 94.20 56  

 

Duration of antipsychotic treatment, 

months 

  47.88 ± 95.89 56  

PANSS positive symptoms 15.34 ± 4.14 47  

PANSS negative symptoms 15.60 ± 5.75 47  

PANSS general symptoms 31.83 ± 6.56 47  

PANSS total score 62.87 ± 13.09 47  

GAF 46.87 ± 11.42 47  

TMT A time (seconds) 33.39 ± 14.83 41  

TMT B time (seconds) 94.38 ± 65.15 40  

MoCA score 25.93 ± 3.65 41  

Systolic Blood Pressure (mmHg) 121.50 ± 10.55 57  

 n (%)   

First episode psychosis, yes:no 35:22 (61.4%) 57  
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Clozapine lifetime, yes:no 7:48 (12.7%) 55  

Diagnosis (DSM-5) n (%)  

   Schizophrenia 38 (66.7%)    

   Brief psychotic disorder 13 (22.8%)  

   Schizoaffective disorder 5 (8.8%)  

   Delusional disorder  1 (1.7%)  

GAF, global assessment of functioning; MoCA, Montreal Cognitive Assessment; N, number of participants; 
PANSS, Positive and Negative Syndrome Scale; SD, standard deviation; SSD, Schizophrenia Spectrum Disorder; 
TMT, Trail making Test. 
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Figure 3 
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Figure 4 
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Figure S1 
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Figure S2 
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Figure S3 
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Figure S4 

 
 
 
 
Figure S5 

 
 
 
 
Figure S6 
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