
Causal associations between plasma proteins and prostate cancer: a 1 

Proteome-Wide Mendelian Randomization  2 

Chen Lin
1 #，Rong Zhuona

1#，Gu Yanlun
1,2，Chen Yuke

3
, Yu Wei

3，Zhou Ying
1*，3 

Pang Xiaocong
1* 

4 

1 
Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng 5 

District, 100034 Beijing, China 6 

1,2 
School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian 7 

District, 100191 Beijing, China 8 

3 
Department of Urology Surgery, Peking University Third Hospital, Xueyuan Road 9 

38, Haidian District, 100191 Beijing, China 10 

*Corresponding author. 11 

#Contributed equally. 12 

Abstract 13 

Background: 14 

Due to the limitations in specificity of current diagnostic methods for prostate cancer 15 

(PCa), more reliable biomarkers are needed to explore for improving early detection. 16 

Plasma proteins represent a promising source of biomarkers, therefore understanding 17 

the causal relationships between specific plasma proteins and PCa could be 18 

conductive to identify novel biomarkers and therapeutic targets for PCa prevention 19 

and treatment. 20 

Methods: 21 

We performed a meta-analysis of two independent genome-wide association studies 22 
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(GWASs) including 94,397 individuals with PCa and 192,372 controls. A mendelian 23 

randomization (MR) supplemented by colocalization analysis was conducted, using 24 

cis-acting variants on 4,907 plasma proteins from deCODE Genetics (N=35,559) and 25 

2,940 plasma proteins from UK Biobank Pharma Proteomics Project (UKB-PPP) 26 

(N=54,219). Then, the biological pathway analysis and druggability evaluation of the 27 

risk proteins were further performed. 28 

Results: 29 

Five possible susceptibility loci (JAZF1, PDILM5, WDPCP, EEFSEC, and TNS3) for 30 

PCa were identified through the meta-analysis of GWASs. Among 3,722 plasma 31 

proteins, 193 proteins were associated with PCa risk, of which 20 high-risk proteins, 32 

including KLK3, were validated in both the deCODE and UKB-PPP cohorts. 33 

Functional annotation of these genes encoding proteins confirmed enrichment of 34 

immune response, inflammatory response, cell-cell interaction and so on. Genetic 35 

colocalization and druggable genome analyses also identified several potential drug 36 

targets for PCa, such as HSPB1, RRM2B and PSCA. 37 

Conclusions: 38 

We identified novel variants as well as several protein biomarkers linked to PCa risk 39 

and indicated pathways associated with PCa, which offered new insights into PCa 40 

etiology and contributed to development of novel biomarkers for early detection and 41 

potential therapeutic interventions. 42 
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Introduction 50 

Prostate cancer (PCa) is the second most common malignancy with an estimation of 51 

1.5 million new cases in 2022, which is account for 14% of total cancer diagnosed in 52 

men worldwide(Ferlay J, 2024). Even more worrying is that the number of new cases 53 

of PCa are projected to 2.9 million by 2040(James et al., 2024). Despite 54 

advancements in medical technology, early detection of PCa remains a significant 55 

challenge due to the limitations in specificity of current diagnostic methods, such as 56 

prostate-specific antigen (PSA) testing(Carter et al., 2013; Draisma et al., 2009; 57 

Oesterling, 1991). Therefore, there is an urgent need for more accurate and reliable 58 

biomarkers that can improve early detection and prognostic evaluations of PCa. 59 

Plasma proteins have key roles in the development and progression of PCa, such as 60 

interleukin (IL)-6(Deichaite et al., 2022), insulin-like growth factor (IGF)-1 and IGF-61 

binding protein (IGFBP)-1(Cao et al., 2015). However, observational studies 62 

exploring the association between plasma proteins and PCa risk are often limited by 63 

confounding factors and selection bias, making it challenging to establish a clear 64 

causal relationship.  65 

To overcome these limitations, Mendelian randomization (MR) offers a robust 66 

methodological approach. This approach utilizes the principle of random assortment 67 

of genes from parents to offspring, using genetic variation as an instrumental variable, 68 

which mimics the randomization process in a controlled trial, thereby minimizing the 69 

impact of reverse causality(Davies, Holmes, & Smith, 2018). With the recent 70 

development of proteomics technology, several large-scale proteomic studies have 71 
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identified over 18,000 protein quantitative trait loci (pQTLs) covering more than 4800 72 

proteins(Ferkingstad et al., 2021; Pietzner et al., 2021). By using MR, researchers can 73 

gain a deeper comprehension of whether particular plasma proteins hold a causal 74 

nexus with PCa, thereby potentially unraveling novel biomarkers and targets for the 75 

prevention and treatment of PCa. 76 

In this study, we performed a meta-analysis of two genome-wide association studies 77 

(GWAS) on PCa (PRACTICAL and FinnGen) for a total sample size of 94,397 cases 78 

and 192,372 controls. Based on GWAS summary statistics data from deCODE and 79 

UKB-PPP cohorts, we further performed a protein-wide MR (PW-MR) study, 80 

supplemented by colocalization analysis, to explore the casual relationship between 81 

plasma proteins and PCa risk. Moreover, we indicated biological processes and 82 

pathways associated with PCa, and evaluated the druggability of risk proteins. We 83 

aimed to identify novel plasma proteins biomarkers for PCa, which could address the 84 

limitations of current diagnostic methods and offer new insights into the biological 85 

mechanisms of PCa and potential therapeutic targets for intervention. 86 
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Results 87 

Meta-analysis of the Genome-Wide Association Studies for Prostate Cancer 88 

We conducted a meta-analysis combing two GWAS studies with a collective sample 89 

size of 94,397 individuals with PCa and 192,372 controls, aiming to identify genetic 90 

variants linked to PCa. The associations and assessment of SNPs heterogeneity that 91 

passed the genome-wide P-value threshold at these loci with PCa were presented in 92 

Supplementary Table 1. We found 5 genetic risk loci contained at least one SNP 93 

passing the genome-wide significance threshold of P ≤ 5×10
−8

: JAZF1, PDILM5, 94 

WDPCP, EEFSEC, and TNS3 (Figure 1). Among them, PDLIM5, WDPCP, EEFSEC 95 

and TNS3 were promising candidates as novel susceptibility loci associated with PCa. 96 

Supplementary Figure 1 displayed the associated quantile-quantile plot. The 97 

LocusZoom plots of the top SNPs at JAZF1, PDILM5, WDPCP, EEFSEC and TNS3, 98 

along with their genomic location, GWAS P values and recombination rate with 99 

neighboring SNPs were visualized in Supplementary Figure 2. In summary, this 100 

GWAS meta-analysis discovered genetic variations in one recognized PC-associated 101 

loci and four potential novel loci, providing a reliable dataset for MR analyses.  102 

Cross-phenotype Analysis of Prostate Cancer 103 

We used the iCPAGdb to conduct the cross-phenotype genetic association analyses 104 

with PCa genome-wide significant SNPs (P ≤ 5×10
−8

). The iCPAGdb offered an 105 

improved algorithm for identifying cross-phenotype associations by using pre-106 

computed ancestry-specific LD databases and integrating genetic data from 3793 107 

traits in the NHGRI-EBI GWAS catalog(L. Wang et al., 2020). After adjusting for 108 
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Bonferroni’s correction, the cross-phenotype analysis indicated that 117 traits showed 109 

significant association with PCa (Supplementary Table 2). As shown in Figure 2, the 110 

top 10 enrichments were for prostate specific antigen measurement (P=7.16×10
-43

), 111 

body height (P=2.18×10
-30

), BMI-adjusted waist-hip ratio (P=1.32×10
-26

), high 112 

density lipoprotein cholesterol measurement (P=2.38×10
-22

), systolic blood pressure 113 

(P=2.93×10
-22

), balding measurement (P=3.01×10
-22

), leukocyte count (P=3.46×10
-

114 

21
), blood protein measurement (P=4.95×10

-21
), body mass index (P=1.71×10

-20
) and 115 

heel bone mineral density (P=2.02×10
-19

).  116 

Proteome-Wide Mendelian Randomization Studies of Prostate Cancer 117 

The genetic association summary statistics of 35,559 Icelanders from deCODE 118 

Genetics and 54,219 Europeans from the UKB-PPP were utilized to investigate the 119 

relationship between PCa and plasma proteins. Our genetic instrument selection 120 

strategy enabled us to examine 1778 and 1944 proteins from deCODE and UKB-PPP 121 

(Supplementary Table 3A and B). Using the Wald ratio or IVW method, a total of 193 122 

unique plasma proteins were significantly associated with PCa after multiple tests 123 

with a 5% FDR correction. This analysis yielded 137 proteins in UKB-PPP more than 124 

76 proteins in deCODE (Figure 3A). The results of Heterogeneity test based on Q 125 

statistics showed little evidence of heterogeneity. Furthermore, no significant 126 

intercept was detected, implying that there was no directional pleiotropy observed. 127 

After FDR correction, 20 proteins were detected in both data sets and the identified 128 

associations were consistent (Figure 3B). Genetic prediction indicated that 11 of these 129 

20 proteins were positively associated with the risk of PCa as well as remaining 9 130 
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proteins were negatively associated, suggesting that these 9 proteins maybe protective 131 

factors against PCa (Supplementary Table 4). A PhenoGram depicted the 132 

chromosomal location of the 193 unique identified proteins in deCODE and UKB-133 

PPP studies (Figure 3C).  134 

Colocalization analysis 135 

We performed colocalization analyses of proteins significantly expressed in deCODE 136 

and UKB-PPP studies with PCa. It was observed that 4 proteins in deCODE study and 137 

7 proteins in UKB-PPP were colocalized with PCa associations with high support of 138 

evidence (PPH4 ≥ 0.8) (Table 1), suggesting that these 10 plasma proteins might serve 139 

as potential targets for treating PCa. Among them, SERPINA3 showed strong 140 

colocalization evidence in both decode (PPH4=0.952) and UKB-PPP (PPH4=0.951) 141 

studies. This analysis identified 1 causal variant in deCODE (rs61976125) and 1 142 

causal variant in Fenland (rs6575449) (Figure 4).  143 
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Table 1. Analysis of Mendelian randomization and colocalization of significant proteins with PCa. 144 

GWAS Outcomes Proteins Mendelian randomization Colocalization 

Analysis PH4 OR (95%CI) P value P value after FDR adjustment 

deCODE Prostate Cancer MSMB 0.86(0.84,0.88) 1.56E-27 2.82E-24 0.999 

POGLUT3 0.89(0.83,0.96) 1.16E-03 2.44E-02 0.998 

PRSS3 0.93(0.91,0.94) 1.00E-18 6.03E-16 0.956 

SERPINA3 1.11(1.06,1.15) 7.18E-08 1.05E-05 0.952 

UKB-PPP Prostate Cancer USP28 0.47(0.40,0.56) 7.27E-17 2.89E-14 0.999 

KLK3 9.70(4.94,19.03) 3.83E-11 6.91E-09 0.999 

IGFBP3 1.07(1.05,1.09) 2.04E-11 4.49E-09 0.997 

CASP10 1.22(1.11,1.34) 4.73E-05 1.54E-03 0.988 

HDGF 0.96(0.95,0.97) 2.61E-17 1.29E-14 0.966 

SERPINA3 1.10(1.07,1.13) 1.64E-10 2.32E-08 0.951 

C5 1.19(1.11,1.27) 5.32E-07 4.06E-05 0.883 

OR, odds ratio; CI, confidence interval; FDR, false discovery rate. 145 
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Gene-Based Association and Pathway Analyses 146 

We used the GENE2FUNC tool available in FUMA to explore the biological 147 

significance, functional implications and tissue-specific expression of the genes 148 

identified from our GWAS. These genes appeared to be significantly enriched in 149 

inflammatory and immune pathways (such as defense, immune and inflammatory 150 

response), as well as cell interaction and signaling pathways (such as interaction 151 

between organism and cell adhesion) (Figure 5A). The KEGG pathway enrichment 152 

analysis revealed several pathways that were significantly enriched, such as cytokine-153 

cytokine receptor interaction, p53 signaling pathway, JAK-STAT signaling pathway, 154 

pathways in cancer and apoptosis (Figure 5B). These analyses indicated potential 155 

biological processes and mechanisms associated with PCa. The 193 unique genes 156 

were predominantly expressed in the lymphocytes, blood, liver and prostate 157 

(Supplementary Figure 3).  158 

Druggability of identified proteins 159 

Exploring new therapeutic opportunities for PCa based on genetic information is 160 

crucial for developing targeted treatments. In our study, we examined the druggability 161 

of genes and proteins identified in MR analyses using OpenTargets databases. We 162 

investigated 128 unique drugs targeting 45 identified proteins (Supplementary Table 163 

5). Among these, three drugs (APATORSEN, TRIAPINE and MK-4721) currently in 164 

clinical trials were intended for PCa treatment, with each targeting HSPB1, RRM2B 165 

and PSCA, respectively. Notably, the effects of these drugs on their respective protein 166 

targets align with the directions indicated by our MR results, suggesting a consistency 167 
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between genetic evidence and therapeutic potential. In addition, several other 168 

identified targets, such as RET, FGFR3, NCAM1, TYMP, TNFRSF10B, MMP3, 169 

TACSTD2 and NOTCH2, were implicated in various cancers and present potential 170 

therapeutic avenues.   171 
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Discussion 172 

In this study, we conducted a comprehensive meta-analysis of two GWAS for PCa, 173 

identifying significant genetic loci associated with PCa risk. The combined sample 174 

size of 94,397 cases and 192,372 controls revealed one known (JAZF1) and four 175 

potential novel (PDLIM5, WDPCP, EEFSEC and TNS3) susceptibility loci of PCa. 176 

JAZF1 (Juxtaposed with another zinc finger gene 1) is a transcriptional repressor of 177 

testicular nuclear receptor 4 (TR4) (Nakajima, Fujino, Nakanishi, Kim, & Jetten, 178 

2004). Several GWAS studies have implicated that JAZF1 is highly associated with 179 

type 2 diabetes and PCa risk(Frayling, Colhoun, & Florez, 2008; Machiela et al., 180 

2012; Saxena, Voight, Zeggini, Scott, & Genetics, 2008; Thomas et al., 2008). JAZF1 181 

may influence the risk of PCa through its role in metabolic regulation(Rosario et al., 182 

2023) and cellular proliferation(Sung et al., 2018).  183 

PDLIM5 (PDZ and LIM domain 5) is a member of the enigma subfamily and features 184 

a N-terminal PDZ domain and three C-terminal LIM domains(X. J. Wang & Su, 185 

2010). A study implicated that downregulating the expression of PDLIM5 could 186 

ultimately impede the progression of PCa(Xie et al., 2020). WDPCP, a PCP effector, 187 

can regulate PCP by directly modulating the actin cytoskeleton(Cui et al., 2013). 188 

Disruption of PCP signaling can cause abnormal cell behavior and tissue structure, 189 

leading to the development of cancer(Humphries & Mlodzik, 2018). EEFSEC 190 

(eukaryotic elongation factor, selenocysteine-tRNA specific) was identified as a 191 

genome-wide significant loci in recent chronic obstructive pulmonary disease 192 

GWAS(Hobbs et al., 2017; Wain et al., 2017). TNS3 (Tensin 3) is involved in cell 193 
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migration, invasion and adhesion processes(Chen et al., 2017; Martuszewska et al., 194 

2009; Zheng et al., 2021; Zuidema et al., 2022), which are critical in cancer 195 

metastasis. To certain whether these 4 genes causative factors for PCa, genetic 196 

association studies with a larger sample size will be needed.  197 

In the cross-phenotype Analysis of PCa, we found that prostate specific antigen (PSA) 198 

measurement, BMI-adjusted waist-hip ratio (WHR), high density lipoprotein 199 

cholesterol (HDL) measurement, systolic blood pressure, balding measurement and 200 

other traits were significantly associated with PCa. These findings highlighted the 201 

multifactorial nature of PCa and underscored the importance of considering a broad 202 

range of physiological and biochemical factors in understanding its etiology and 203 

progression.  204 

PSA measurement, a protein secreted by both normal and malignant prostate epithelial 205 

cells, has long been a cornerstone in the early detection and monitoring of 206 

PCa(Oesterling, 1991). However, the specificity and sensitivity of PSA as a diagnostic 207 

tool have been questioned due to its elevation in benign conditions such as prostatitis 208 

and benign prostatic hyperplasia, leading to unnecessary biopsies(Carter et al., 2013) 209 

and substantial overdiagnosis(Draisma et al., 2009). Therefore, supplementary 210 

biomarkers are urgently needed to improve diagnostic accuracy.  211 

Obesity has emerged as a significant risk factor in cancer development(Petrelli et al., 212 

2021), such as aggressive PCa(Moyad, 2015). The significant association between 213 

BMI-adjusted WHR and PCa suggested that central obesity may play a critical role in 214 

the development of PCa(Perez-Cornago, Dunneram, Watts, Key, & Travis, 2022). 215 
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Central adiposity, primarily referring to visceral adipose tissue, can influence 216 

hormone levels and inflammatory processes, thereby contributing to 217 

carcinogenesis(Doyle, Donohoe, Lysaght, & Reynolds, 2012). HDL cholesterol is 218 

known for its atherosclerotic protective effects(Rohatgi, Westerterp, von Eckardstein, 219 

Remaley, & Rye, 2021), mainly due to the ability to promote the reverse transport of 220 

cholesterol from peripheral cells to the liver for excretion(Cuchel & Rader, 2006), and 221 

to exert antioxidant and anti‐inflammatory activities. Through similar mechanisms, 222 

HDL may influence the development and progression of tumors, by directly 223 

interacting with cancer cells or by modifying the tumor microenvironment(Ossoli, 224 

Wolska, Remaley, & Gomaraschi, 2022). Higher HDL levels might confer a 225 

protective effect against PCa by influencing cancer cells proliferation, possibly 226 

through mechanisms involving antioxidant(Ruscica et al., 2018) and anti-227 

inflammatory properties.  228 

Results from previous studies of the association between hypertension and PCa 229 

development have been inconsistent(Christakoudi et al., 2020; Liang et al., 2016; 230 

Seretis et al., 2019). One MR analysis suggested that elevated systolic blood pressure 231 

might be linked to an increased risk of PCa, potentially due to systemic 232 

inflammation(Stikbakke et al., 2022), which contributed to a pro-tumorigenic 233 

environment by promoting cellular proliferation, DNA damage, and resistance to 234 

apoptosis(Mantovani, Allavena, Sica, & Balkwill, 2008). However, the precise 235 

relationship between systolic blood pressure and PCa remains unclear. More research 236 

is needed to elucidate the exact biological pathways involved and to determine 237 
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whether managing hypertension could serve as a preventive strategy for PCa.  238 

The underlying mechanism for the link between androgenic alopecia and an increased 239 

risk of PCa may involve androgen metabolism, as both conditions are influenced by 240 

dihydrotestosterone (DHT) levels. Elevated DHT can promote the miniaturization of 241 

hair follicle leading to balding(Kaufman, 1996), as well as stimulate prostate cell 242 

proliferation(Tong et al., 2022), contributing to the development of PCa. While these 243 

associations highlight a potential shared hormonal pathway, further studies are needed 244 

to confirm the causality. Overall, our cross-phenotype analysis provided a 245 

comprehensive view of the diverse factors associated with PCa and enhanced our 246 

understanding of the disease's multifaceted nature. Future researches should focus on 247 

elucidating the underlying mechanisms of these associations and exploring their 248 

potential for integration into clinical practice.  249 

We performed a PW-MR study supplemented by colocalization analysis to explore the 250 

casual association of 3,722 plasma proteins with the risk of PCa. MR analysis 251 

identified a total of 193 unique proteins significantly associated with PCa, of which 252 

10 proteins had a strong support of colocalization. Microseminoprotein-beta 253 

(MSMB), also known as PSP94 or beta-inhibin, as an immunoglobulin superfamily 254 

protein and one of the most abundant proteins secreted by prostate epithelial cells has 255 

the strongest correlation(Byrne et al., 2019). We predicted that men with lower blood 256 

levels of MSMB have higher risk of PCa, based on two European ancestry cancer 257 

GWAS studies. These results were consistent with another published prospective 258 

study(Haiman et al., 2013), supporting a potential protective role of MSMB in the 259 
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development of PCa. One previous publication reported that the decreased expression 260 

of MSMB was both in the tumor (especially in more advanced tumor) and adjacent 261 

benign prostate tissue(Bergström, Järemo, Nilsson, Adamo, & Bergh, 2018), which is 262 

not in conflict as it may be related to aggressiveness of prostate tumors. Although the 263 

mechanism of action of MSMB in PCa is unclear, it has been shown to control 264 

prostate cell growth by regulating apoptosis(Garde et al., 1999). In addition to our 265 

study, several other studies also supported the potential of MSMB as a serum marker 266 

for the early detection of PCa(Nam et al., 2006; Reeves, Dulude, Panchal, Daigneault, 267 

& Ramnani, 2006). Consequently, further research is essential to explore the 268 

functional role and possible clinical utility of MSMB in PCa.  269 

Serine protease inhibitor A3 (SERPINA3), an inhibitors of serine proteases that 270 

promotes tumor development by regulating the transcription of some oncogenes and 271 

its elevation was associated with a worse prognosis in some cancers(De Mezer et al., 272 

2023). SERPINA3 was up-regulated in PCa cells and enhanced cells migration and 273 

invasion(Z. S. Xing, Li, Liu, Zhang, & Bai, 2021), which was consistent with our 274 

prediction of it as a risk factor in this MR Study. A study identified that the enhanced 275 

expression of SERPINA3 stimulated the bone environment, therefore it may be served 276 

as a diagnostic biomarker to predict PCa with bone metastasis phenotype and 277 

survival(Ito et al., 2023).  278 

Protease serine 3 (PRSS3), also named mesotrypsin, is reported to be aberrantly 279 

expressed in various types of tumors and participates in the progression and 280 

development of cancers. For example, PRSS3 was identified to be downregulated in 281 
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lung cancer(Zhou, Li, & Luo, 2023) but upregulated in pancreatic cancer(Jiang et al., 282 

2010; C. J. Xing et al., 2019), suggesting it may have different roles depending on the 283 

cellular or disease ways. A study of vivo and vitro experiments has demonstrated that 284 

PRSS3 played an important role in PCa metastasis(Hockla et al., 2012). Despite these 285 

findings, further studies are necessary to fully understand the functions and 286 

mechanisms of PRSS3 in human PCa.  287 

KLK3 (Kallikrein Related Peptidase 3), also known as PSA, is a serine protease 288 

predominantly expressed in the prostate gland. One potential mechanism through 289 

which KLK3 may influence PCa development involved its proteolytic activity, which 290 

can degrade extracellular matrix components and facilitate tumor invasion and 291 

metastasis(Avgeris, Mavridis, & Scorilas, 2012; Lawrence, Lai, & Clements, 2010; 292 

Mavridis, Avgeris, & Scorilas, 2014). Additionally, the androgen regulation of KLK3 293 

expression correlated with the androgen receptor signaling pathway, a critical driver 294 

of PCa progression, particularly in castration-resistant prostate cancer (CRPC)(Lilja, 295 

Ulmert, & Vickers, 2008). Despite these insights, the precise biological pathways 296 

through which KLK3 contributes to PCa progression remain incompletely understood. 297 

Further research is needed to illustrate the direct and indirect effects of KLK3 on PCa 298 

cells and the tumor microenvironment.  299 

Lastly, the druggability evaluation identified 45 protein biomarkers that have been 300 

targeted by 128 drugs. Among these, three drugs targeting HSPB1, RRM2B and 301 

PSCA, respectively, are currently in clinical trials for potential use in PCa treatment. 302 

HSPB1, also known as human HSP27, is a small heat-shock protein that functions as 303 
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a molecular chaperone, protecting cells against stress-induced damage and 304 

apoptosis(Okuno, Adachi, Kozawa, Shimizu, & Yasuda, 2016). It was overexpressed 305 

in various cancers(Sheng et al., 2017; Shi et al., 2019), including PCa(Shiota et al., 306 

2013; Vasiljevic et al., 2013), and was associated with tumor progression, metastasis 307 

and resistance to therapy. Evidences in vitro and in vivo suggested that inhibiting 308 

HSP27 inhibits tumor growth and sensitivity to cytotoxic chemotherapy(Hadaschik et 309 

al., 2008; Kamada et al., 2007). APATORSEN is an antisense oligonucleotide 310 

designed to inhibit HSPB1 expression(Jansen & Zangemeister-Wittke, 2002), which 311 

is still in clinical trials.  312 

RRM2B is a subunit of ribonucleotide reductase, an enzyme critical for DNA 313 

synthesis and repair(Okumura et al., 2005). Its expression was upregulated in 314 

response to DNA damage and was involved in maintaining genomic stability(Aye, Li, 315 

Long, & Weiss, 2015; Foskolou et al., 2017). Elevated levels and distinct mutation 316 

signatures of RRM2B have been linked to poor prognosis in several cancers(Iqbal et 317 

al., 2021). PSCA is a cell surface glycoprotein highly expressed in high-grade PCa(Gu 318 

et al., 2000; Zhigang & Wenlv, 2004) and other solid tumors(Teng et al., 2022), and 319 

was involved in cell proliferation, adhesion and survival(Li et al., 2017).  320 

This study possessed several strengths, including the use of the largest collection of 321 

plasma protein data (coving more than 4800 proteins), large sample sizes of GWAS 322 

studies, a mutual validation across two independent outcome datasets and the use of 323 

colocalization analysis to support the MR results. Additionally, our assessment of the 324 

human blood proteome relied on two technologies (SOMAmer and Olink), which 325 
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were valuable for identifying plasma proteins associated with diseases traits such as 326 

PCa.  327 

Some limitations of our analysis should be acknowledged. Firstly, this investigation 328 

was only confined to Europeans, restricting the applicability of our findings to other 329 

populations. It is crucial for future studies to identify risk proteins in more diverse 330 

populations, especially African ancestry who face a higher risk of PCa. Moreover, our 331 

study concentrated on the proteins available in the MR analysis, which likely led to 332 

the omission of other potential therapeutic targets. Lastly, we utilized proteomic data 333 

from Icelanders whose genetic backgrounds may differ from other European 334 

populations, which might introduce bias. However, this potential bias might be 335 

minimal, as we found that 20 proteins showing significance (P<0.05) in both the 336 

deCODE and UKB-PPP studies had consistent associations with PCa.  337 

In conclusion, we conducted a large-scale PW-MR study using the MR and 338 

colocalization analysis to investigate the genetic associations of up to 3,722 unique 339 

proteins with PCa. We revealed the complex genetic architecture of PCa and 340 

identified many new plasma proteins with strong causal associations to PCa. These 341 

findings highlighted the potential biomarkers for early detection and therapeutic 342 

targets, providing a foundation for future research and potential clinical applications.  343 
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Methods 344 

Data sources for plasma proteins 345 

We selected cis-SNPs associated with plasma proteins as instrumental variables from 346 

two large-scale GWASs in the deCODE Genetics(Ferkingstad et al., 2021) and UKB-347 

PPP(Sun et al., 2023). Cis-SNPs were defined as SNPs within a vicinity of ±1 Mb 348 

around the gene encoding the protein. From these SNPs, only those with a minor 349 

allele frequency of ≥ 1% that were genome-wide significance (p < 5×10
-8

) and 350 

considered independent (linkage disequilibrium r
2 

< 0.1 in 1000G) were retained. 351 

deCODE Genetics conducted proteomic profiling on blood plasma samples from 352 

35,559 Icelanders using the SomaScan platform and collected data on 4907 353 

aptamers(Ferkingstad et al., 2021). For the two-sample MR analysis, we selected cis-354 

SNPs as instrumental variables for 1778 proteins. Likewise, cis-SNPs for 1944 355 

plasma proteins were obtained from the UKB-PPP where 2940 proteins were 356 

measured among 54,219 Europeans using the Olink platform(Sun et al., 2023). The 357 

proteins with positive MR results were included in the colocalization analysis.  358 

Data sources for Prostate Cancer 359 

GWAS summary statistics for PCa were obtained from the PRACTICAL 360 

consortium(Schumacher et al., 2018) and FinnGen study. The PRACTICAL (Prostate 361 

Cancer Association Group to Investigate Cancer Associated Alterations in the 362 

Genome) consortium included 79,198 cases and 61,106 controls. We used the data on 363 

PCa from the FinnGen study R10 in this analysis, which comprised 15,199 cases and 364 

131,266 controls. All participants of these two cohorts were of European ancestry. In 365 
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the MR analysis, we treated the PRACTICAL consortium as the discovery study and 366 

the FinnGen R10 study as the replication. To increase the effectiveness, we performed 367 

a fixed-effect GWAS meta-analysis of the two GWASs using the METAL package. 368 

The quantile-quantile plot was generated using the “qqman” package in R software. 369 

The R package “gassocplot” was used to plot regional association plots for the top 370 

SNP at each of the genome-wide significant loci identified.  371 

Cross-phenotype analysis 372 

Through the interactive Cross-Phenotype Analysis of GWAS database (iCPAGdb)(L. 373 

Wang et al., 2020), a new platform for cross-phenotype analysis, we explored the 374 

genetic correlation between PCa and other traits. We analyzed the genetic correlations 375 

between PCa and 3793 traits using data from the National Human Genome Research 376 

Institute-European Bioinformatics Institute (NHGRI-EBI) GWAS catalog(L. Wang et 377 

al., 2020). Through the use of ancestry LD-specific association data, iCPAGdb 378 

performs cross-phenotype enrichment analyses. iCPAGdb reveals signals of pairwise 379 

traits and shared signals by analyzing traits associations with LD proxy SNPs. The 380 

output data will show results from Fisher’s exact test with adjustment for 5% false 381 

discovery rate (FDR) and also Bonferroni’s, Jaccard’s, Sorensen’s, and Chao-382 

Sorensen similarity indexes. 383 

MR analysis  384 

We conducted a MR analysis with plasma proteins as the exposure variable and PC as 385 

the outcome variable. We utilized the R package “TwoSampleMR” in R software 386 

(4.3.3) for the MR analysis. When only one SNP was available for a particular 387 
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protein, we applied the Wald ratio test. Inverse-variance weighted (IVW) was used as 388 

the main analysis method for two or more SNPs available. Considering multiple 389 

testing, we employed the 5% False Discovery Rate (FDR) method for P-value 390 

correction. P<0.05 was considered statistically significant. MR-Egger and weighted 391 

median methods were used as supplementary analysis methods. Cochran’s Q statistic 392 

test using the MR-Egger method was used to determine the heterogeneity between the 393 

genetic variants. We also performed MR-Egger regression intercept to detect and 394 

adjust the directional horizontal pleiotropy(Hemani, Bowden, & Smith, 2018), P<0.05 395 

was considered as the presence of directional pleiotropy and thus removed from the 396 

further analyses.  397 

Colocalization analysis 398 

The “coloc” package was used to perform Bayesian colocalization analysis to 399 

investigate if the associations between plasma proteins and PCa were driven by 400 

linkage disequilibrium (LD) (Giambartolomei et al., 2014). For proteins with positive 401 

MR results, the Bayesian method assessed the support for the following five exclusive 402 

hypotheses: 1) no association with either trait; 2) association with trait 1 only; 3) 403 

association with trait 2 only; 4) both traits are associated, but distinct causal variants 404 

were for two traits; and 5) both traits are associated, and the same shares causal 405 

variant for both traits(Foley et al., 2021). The posterior probability is provided for 406 

each hypothesis (H0, H1, H2, H3, and H4). In this analysis, we set prior probabilities 407 

of the SNP being associated with trait 1 only (p1) at 1 × 10
−4

; the probability of the 408 

SNP being associated with trait 2 only (p2) at 1 × 10
−4

; and the probability of the SNP 409 
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being associated with both traits (p12) at 1 × 10
−5

. Two signals were considered to 410 

have strong evidence of colocalization if the posterior probability for shared causal 411 

variants (PH4) was ≥0.8. The analysis was performed in R software (4.3.3).  412 

Biological pathway analysis 413 

The GENE2FUNC tool in FUMA(Watanabe, Taskesen, van Bochoven, & Posthuma, 414 

2017) web application programming interface version 1.5.2 were used to investigate 415 

functional annotation and enrichment analysis of the genes coding for the 193 unique 416 

proteins identified by the PW-MR approach. This analysis involved calculating the 417 

log2 fold-change expression for each gene across 54 tissue types from the GTEx 418 

(Genotype-Tissue Expression) database. We conducted gene enrichment analysis to 419 

identify overrepresented biological processes using the Gene Ontology (GO) 420 

database, which helped determine the biological processes most relevant to the genes 421 

identified. To investigate the involvement of the identified genes in functional and 422 

signaling pathways, we used the KEGG (Kyoto Encyclopedia of Genes and Genomes) 423 

pathway database. Enrichment results were considered significant if they passed 5% 424 

FDR P-value threshold. Additionally, only enrichments involving at least two 425 

overlapping genes with the gene sets were considered to ensure robustness and 426 

biological relevance.  427 

Druggability evaluation 428 

The analysis of drug targets for the significant proteins identified in the MR Analysis 429 

was conducted using data from OpenTargets(Ochoa et al., 2023) (v.22.11), which is 430 

publicly accessible. We selected all drugs for which there was evidence for an 431 
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association with the protein of interest. 432 
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Data availability 433 

The GWAS summary statistics of blood pQTLs from deCODE can be found at 434 

https://www.decode.com/summarydata/, and those of the UKB-PPP can be found at 435 

https://www.synapse.org/#!Synapse:syn51365303. Summary statistics of PCa from 436 

the PRACTICAL consortium can be obtained from OpenGWAS 437 

(https://gwas.mrcieu.ac.uk/), and those of the FinnGen study can be obtained from 438 

https://r10.finngen.fi/. The OpenTargets data were downloaded directly from the 439 

OpenTargets website (https://platform.opentargets.org/downloads/data). 440 
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Figure 1. Manhattan plot of PCa GWAS meta-analysis. The genetic regions containing 

top SNPs related to PCa are depicted. The red dashed line signifies the genome-wide 

significance threshold of 5.0×10−8.  

 

 

Figure 2. The top 10 significant cross-phenotype associations with PCa at a 5% FDR. 

The x-axis represents the P value of the correlation. BMI, body mass index.  
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Figure 3. Result of PW-MR on the associations between plasma proteins and the risk 

of PCa. (A) Volcano plot of PCa PW-MR study using deCODE (the left side) and UKB-

PPP (the right side) cohorts. Annotated proteins passed the 5% FDR IVW P-value 

threshold. The blue and red colors represent a negative and positive effect, respectively. 

(B) Venn diagram depicting proteins associated with PCa in deCODE and UKB-PPP. 

(C) PhenoGram of PCa PW-MR study significant associations. The blue dots and the 

green dots represent the deCODE and UKB-PPP specific proteins, respectively. The red 

dot represents both simultaneously.  
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Figure 4. Colocalization plot of SERPINA3 variants associated with PCa in deCODE 

and UKB-PPP. Variants are color-coded based on their linkage disequilibrium (LD) 

with the lead SNP (the variant with the lowest p-value). The lead SNP is highlighted in 

red. Other variants are colored from blue to yellow, indicating decreasing LD with the 

lead SNP. 
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Figure 5. Functional annotation of the genetic architecture of PCa. (A) Biological 

processes and (B) KEGG pathway analysis of the 193 unique proteins identified in 

deCODE and UKB-PPP.  
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