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Methods 

Whole Exome Sequencing, Alignment and Variant Calling 

After sequencing, FastQC was used to assess the quality of sequences and to determine the 

adapter contamination and read quality. Unligated adapters and low quality sequences were 

removed using FastX Toolkit (Updated Aug 4th 2017: https://github.com/agordon/fastx_toolkit) 

(1) and Trimmomatic (v 0.33: Updated Mar. 10th, 2015: 

https://github.com/timflutre/trimmomatic) (2) . Cleaned fastq files were then aligned to the 

hg19 reference genome using BWA 0.7.17 (3) and variants were called using the GATK best 

practices for variant calling and quality control (4).  Briefly, after alignment, duplicate reads 

were removed using Samtools version 1.4 (5) and the GATK v4 (6) was used for base 

recalibration, indel realignment and then variant calling using the Global Haplotyper (6).  This 

created raw Variant Call Format (VCF) files.  The variants called per sample were then checked 

for their transition-transversion ratio which was approximately 2.5.  

 

Annotation and Variant Prioritization 

https://github.com/agordon/fastx_toolkit
https://github.com/timflutre/trimmomatic


VCF files were annotated using ANNOVAR (7), integrating allele frequencies, from gnomAD 

v2.1.1 (8), The Greater Middle Eastern Variome Server (9)  and ExAC (10) , as well as functional 

pathogenicity scores from Polyphen2 (11) , SIFT (12)  and MutationTaster (13) , 

MutationAssessor (14), FATHMM (15) , and CADD (16). Variants were assessed, firstly, if they 

passed the quality metrics as set by the Convolutional Neural Network scoring algorithm by 

GATK (6).  Briefly, variants were compared against known variants from dbSNP and a 

convolutional neural network was trained to filter out poor variant calls based on several 

metrics  (6) and minor allele frequency (MAF) in gnomAD (https://gnomad.broadinstitute.org/) 

of equal to or lower than 1 x 10-3 for autosomal recessive, or 1 x 10-5 for autosomal 

dominant/de novo, with a preference for variants that had no homozygotes in the gnomAD 

non-Neuro Cohort.  For autosomal recessive variants, as the MAF used was on the conservative 

side, reanalysis was also performed using less stringent values (1 x 10-3, 1 x 10-2), to see if any 

variants in known ASD/ID genes were missed under the stringent analysis. Variants were then 

split into either homozygote or heterozygote categories and then prioritized by the functional 

impact of mutation type. For example, LoF variants would carry more weight than missense 

variants leading to assessing stopgain, frameshift, splicing, and missense variants, in that order. 

The LoF mutations were given highest priority as it was assumed that LoF variants will disrupt 

protein function more severely and, depending on the position within the transcript, cause 

nonsense mediated mRNA decay (NMD). The variants were then assessed for their functional 

pathogenicity score, where variants that met at least two functional prediction scores between 

Polyphen2 (11), and MutationTaster (13) and CADD (16) were further investigated.  Special 

attention was given to splicing with functional annotation scores being used for splicing events 

https://gnomad.broadinstitute.org/


with the addition of FATHMM (15) and dbscSNV (17). Due to the large number of missense 

variants for autosomal dominant/de novo inheritance, stricter criteria were used where a 

variant would only be considered if it was predicted as pathogenic by all software used 

including Polyphen2 (11) , MutationTaster (13), MutationAssessor (14), FATHMM (15), 

CADD(16) and M-CAP(18). The overall prioritization method is outlined in Figure 1. Variants 

were also analyzed to determine if they are in genes associated with any previous studies 

reporting an association with ASD or ID. Variants in genes in pathways such as neuron growth 

and guidance were also considered as a higher priority. Finally, variants were Sanger-

sequenced, and segregation checked with both parents for validation. 

 A second round of annotation was performed independently, on the same vcf file as 

above, using VarSeqTM (Golden Helix Inc.; Bozeman, MT), with similar filtering steps.  

Splice site annotation 

Standard annotation software has been noted to be suboptimal for splicing variants and cryptic 

splice sites (19).  To improve detection of splicing variants, particularly in neurodevelopmental 

disorders, SpliceAI was used to identify splicing variants or cryptic splice sites (20). All VCF files 

were run through the standard SpliceAI algorithm as per documentation and filtered for 

variants with a SpliceAI score greater than 0.5. Once variants were extracted, they were 

annotated with ANNOVAR (21) to add additional metadata for biological interpretation.  

Variants were then binned into heterozygous, X-linked and homozygous and filtered by 

gnomAD v2.1.1 (22) allele frequency (MAF < 0.01).  Variants that survived filtering were then 



investigated for appropriate inheritance patterns (i.e. de novo for heterozygous variants and 

both parents contributing one allele for homozygous variants).  

Copy Number Variant (CNV) analysis 

In addition to microarray CNV analysis, for WES data we performed CNV analysis using CLAMMS 

(23), XHMM (24) and CoNIFER (25). The analysis of exome sequencing data for CNVs has 

drawbacks due to the capture technology used. A majority of these methods employ a read-

based exome calling strategy after normalizing for the depth of sequencing across different 

regions. CLAMMS was used because it offered the ability to create subsets of the samples and 

construct more specific references through principal component analysis (PCA) of sequencing 

metrics. All softwares used were run according to standard procedures described in their 

respective documentation. Filtering was done for quality metrics outlined in the 

documentation. Once CNVs were called they were also filtered against the gnomAD structural 

variation call set (26) and the Database of Genomic Variants (DGV: 

http://dgv.tcag.ca/dgv/app/home). CNVs that overlapped more than 50% with gnomAD or DGV 

SVs were filtered out. Once the final call set after filtration was created, CNVs were then binned 

into homozygous, heterozygous or X-linked variants and further validated with qPCR to check 

whether they followed expected inheritance patterns for their respective zygosity. For instance, 

homozygous CNVs in the proband would have to have both parents that were heterozygous, 

and heterozygous proband variants would have to be de novo. X-linked variants were also 

further validated in males, as they lack a second copy of the X chromosome and are thus more 



likely to be damaging. CNV validations were also performed for family members, to confirm the 

inheritance pattern of candidate variants. 

Conversion of LoH (Affymetrix CytoScanHD) to Σroh (Illumina CoreExome/PLINK) 

Trio Σroh LoH 

IABB2 0.077844 0.093851 

IABB3 0.043444 0.056334 

IABB4 0.032037 0.043235 

IABB5 0.098961 0.111812 

 

 

 

Figure S1 Additional violin plots (supplementary to Figure 1) with data points shown, 

comparing consanguinity coefficient Froh, for A: different categories of variant identified: All 

biallelic variants (N=27 observatons), variants in known AR genes (N=10 observations), variants 

in novel candidate genes (N=17 observations), all X-linked (XL) variants plus de novo autosomal 
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dominant (AD) variants (N=18 observations), variants in known XL and AD genes (N=11 

observations), and variants in novel candidate XL and AD genes (N=7 observations). Unpaired t 

test (2-tailed) for comparison of means showed comparison for i) all biallelic versus all de novo 

autosomal plus X-linked to be extremely significant (p<0.0001, t=5.8309, d.f.=51), ii) known AR 

versus AD genes to be very significant (p=0.0045, t=3.1642, d.f.=22), iii) novel candidate AR 

versus AD genes to be extremely significant (p<0.0001, t=5.4795, d.f.=26). No significant 

difference in mean Froh was seen for comparisons between known and novel candidate AR 

genes, or between known and novel AD plus XL genes; B: different cohorts, categorized by last 

name of principal investigator for each collection (Agha, N=3, Ansar, N=52, Heidari, N=2, Al 

Ayadhi, N=13, Bozorgmehr, N=10, Sasanfar, N=24 observations). While Froh distribution was 

similar for most cohorts, the Iranian cohort from Sasanfar had a significantly lower mean than 

most other cohorts; C: grouped by country of origin (Pakistan, N=55, Iran, N= 36, Saudi 

Arabia=13 observations).  Comparison of mean Froh was non-significant for Pakistan versus Iran 

and versus Saudi Arabia, but significant for Iran versus Saudi Arabia, but non-significant after 

correction for multiple testing (p=0.0206, t=2.396, d.f.=36). Plots were prepared using R 

software using ggplot2, and show mean, standard deviation, and outliers marked by “X”. D: all 

biallelic compared with all XL plus all de novo (DN) AD, grouped by country of origin. 
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Additional Discussion Points 

Calcyphosine–related genes 

We identified a biallelic nonsynonymous mutation in calcyphosine-like protein gene, CAPSL. 

Biallelic mutations have previously been reported for ID in both of the calcyphosine–related 

genes, CAPS (Harripaul et al, 2018) and CAPS2 (Anazi et al, 2017). Other than being calcium-

binding EF-hand domain proteins, remarkably little is currently known about the role of 

calcyphosine. Given the possible involvement of all three calcyphosine-related genes in 

neurodevelopmental disorders, further investigation into this biological pathway is clearly 

warranted. 

 

Animal models 

For some of the autosomal recessive candidate genes, there is additional support from 

animal models. Rasal2 (MGI:2443881) and Vps16 (MGI:2136772) knockout mice have 

behavioral/neurological and nervous system phenotypes (http://www.informatics.jax.org/; 

Supplementary File 1).  Note that VPS16 encodes a vesicle-mediated trafficking protein similar 

to VPS13B, the Cohen syndrome gene. Homozygous knockout of Ephb1 results in impaired 

contextual and cued conditioning, as well as abnormal freezing behaviour, and homozygous 

knockout of Slc36a1 results in embryonic growth retardation, decreased freezing behaviour, 

and preweaning lethality (www.mousephenotypes.org; Supplementary File 1). Biallelic 

knockout of Dagla results in decreased brain size, hypoactivity, abnormal behaviour, and 

decreased thigmotaxis (Supplementary File 1). In general, there is a high rate of 



neurodevelopmental phenotypes in knockout mice available for the genes with biallelic variants 

(~70%), and in biallelic or hemizygous knockouts for the X-linked genes (~58%). However, it is a 

remarkably contrasting story for the de novo/dominant variants, for which there is little or no 

support by way of neurodevelopmental or behavioural phenotypes in heterozygous mouse 

models (0%). Moreover, where there are biallelic knockout mouse models for genes from the 

de novo/dominant set, the phenotypes described are mainly unrelated to the CNS and 

behaviour (<10%; Supplementary File 1). This would suggest that the autosomal biallelic (and X-

linked) mutations among our cohort are much more likely to be etiopathologically relevant to 

ASD. 
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