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Abstract 30 

Maternal antibodies serve as a temporary form of inherited immunity, providing humoral 31 

protection to vulnerable neonates. Whereas IgG is actively transferred up a concentration gradient via the 32 

neonatal Fc Receptor (FcRn), maternal IgA and IgM are typically excluded from fetal circulation. Further, 33 

not all IgG molecules exhibit the same transfer efficiency, being influenced by subclass, Fab and Fc 34 

domain glycosylation, antigen-specificity, and the temporal dynamics of maternal antibody responses. 35 

Here, we investigate the phenotypes and functions of maternal and cord blood antibodies induced by 36 

SARS-CoV-2 infection and compare them to those induced by mRNA vaccination, focusing on breadth of 37 

antigen recognition and antiviral functions including neutralization and effector function. While cord blood 38 

coronavirus-specific antibody functional breadth and potency appeared to be more compromised than 39 

binding breadth and potency in both groups, vaccination induced substantially greater function and 40 

breadth in cord blood than did natural infection. These functional phenotypes were associated with 41 

speciation of the maternal serum repertoires, as some IgG subpopulations were enriched while others 42 

were relatively depleted. Relevant to the continued protection of vulnerable populations in the context of a 43 

diversifying pathogen, greater breadth was observed for antibody effector functions than for 44 

neutralization, and these activities were associated with greater affinity for antigen. This work provides 45 

insights into the functional breadth of maternal-fetal antibody responses in the context of novel mRNA 46 

vaccines and a recently emerged pathogen that is likely to be a public health burden for the foreseeable 47 

future.  48 
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Introduction: 49 

The current COVID-19 pandemic continues to infect and cause severe disease in many 50 

individuals. While the global death rate has declined, it is estimated that even in a relatively well-51 

vaccinated population like the United States, 3,000 deaths per month are attributable to Severe Acute 52 

Respiratory Syndrome coronavirus-2 (SARS-CoV-2), the virus responsible for COVID-191. The virus’ 53 

sequence has diverged over time into numerous variants with differing degrees of susceptibility to 54 

antibodies induced by exposure to prior variants. Notable variants, including Alpha (B.1.1.7), Beta 55 

(B.1.351), Gamma (P.1), Delta (1.617.2), and Omicron (B.1.1.529) have shown the ability, albeit at 56 

varying levels, to evade neutralizing antibody responses2-11. Across each of these waves of prevalent viral 57 

variants, certain populations of individuals remain at greater risk than others for severe COVID-19 58 

following infection. Fortunately, while initial vaccine clinical trials did not include pregnant participants, 59 

recent data has shown that following vaccination, pregnant women achieve robust antibody responses 60 

that are comparable to non-pregnant individuals, while maintaining similar safety profiles, and that 61 

vaccination is highly effective in preventing severe disease and death in birthing women12-22.  62 

Further, because mammals have evolved to transmit maternal humoral immunity to the 63 

fetus/neonate in the form of antibodies transferred across the placenta and via breastmilk, maternal 64 

vaccination has the multifaceted goal of not only protecting the mother but also of generating a sufficiently 65 

robust antibody response to protect the fetus in utero as well as the neonate during early life23. Indeed, 66 

whether induced by infection or vaccination, the “inheritance” of maternal antibody is a crucial component 67 

of neonatal immunity early in life against infectious diseases24,25. While not especially susceptible to 68 

COVID-19 morbidity and mortality, neonates and children remain at risk of long term post-acute sequelae 69 

of COVID-19 (PASC)26. Although rare, these complications can be severe including multisystem 70 

inflammatory syndrome in children (MIS-C)27. Additionally, while both maternal infection and maternal 71 

vaccination are known to influence maternal and neonatal infection risk, at least for some variants28-30, 72 

they induce maternal antibody responses with a number of differing attributes, providing an opportunity to 73 

evaluate transfer biases and their impacts. 74 

Transport of IgG across the placenta is mediated by binding to the neonatal Fc receptor (FcRn) 75 

expressed on syncytiotrophoblast cells31-34. Intriguingly, these antibodies do not bind to FcRn on the cell 76 

surface, but rather are rescued from degradation following fluid phase uptake, internalization, and 77 

acidification of endosomal compartments by a pH-dependent protonation of the Fc domain, which results 78 

in increased affinity to FcRn35. As FcRn is then sorted and cycled back to the cell surface, it salvages 79 

bound IgG, releasing it at the neutral pH of the extracellular environment. The efficiency of this rescue 80 

and transfer across the otherwise highly selective barrier between generations is associated with many 81 

factors, including maternal IgG levels over time, IgG subclass and allotype, post-translational 82 

modifications on both antigen-binding and Fc domains, and antigen-specificity36-43. While some of these 83 

factors are thought to drive these differences by directly altering FcRn binding affinity or kinetics, the 84 

mechanism(s) whereby other factors relate to transfer phenotypes remains incompletely understood44-46. 85 
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Studies have started to look at the transfer of antibodies following maternal mRNA vaccination against 86 

SARS-CoV-238,47-49; however, a more thorough analysis of the phenotypes and activity of the transferred 87 

antibodies could provide insight into both protection of neonates from COVID-19 as well as to other 88 

infectious diseases by informing on attributes and activities of maternal immune responses that might 89 

provide for the best defense of vulnerable neonates. 90 

Previous analysis of vaccinated pregnant women has revealed generation of neutralizing SARS-91 

CoV-2 specific antibodies as well as antibodies capable of eliciting Fc-mediated effector functions in 92 

mothers50-52. These same antibody attributes are typically present in cord blood at delivery51. In other 93 

contexts, however, they are not always present at the levels expected based on antibody titers, indicating 94 

that while generally well-correlated with maternal serum antibodies at the time of delivery, relative activity 95 

of antibodies in cord blood are distinct. Studies reporting differences in quantity and quality of transferred 96 

antibodies have cited numerous factors including maternal antibody levels, FcRn expression level, IgG 97 

glycosylation, IgG subclass, and antigen-specificity, among others, as potential explanations36-43. While it 98 

is well understood that vaccination- and natural infection-induced antibody responses differ in terms of 99 

mucosal compartmentalization, induced isotype balances, and epitope-specificities, what remains less 100 

well studied is the breadth of the antibody functional response in mothers as it compares to matched cord 101 

blood to SARS-CoV-2 variants of concern (VOC) following these exposures53-58. These factors are 102 

important as the virus continues to diversify, population-level uptake of updated and booster vaccinations 103 

decline59, and efforts continue toward a universal vaccine60. Overall, understanding the breadth of the 104 

antibody functional response in vaccinated and convalescent mothers with corresponding matched cord 105 

blood samples can provide new insights into how neonates may benefit from maternal antibodies, in the 106 

context of compromised or lost neutralization activity associated with viral variation over time and the 107 

absence of pathogen-specific IgA and IgM. These insights into the maternal and inherited antibody 108 

repertoires have implications for how vaccines can be most effectively developed as new variants 109 

continue to emerge for SARS-CoV-2 as well as for other infectious agents posing risks to neonates and 110 

infants. 111 

 112 

 113 

Results 114 

Distinct antibody responses among cord blood samples from vaccinated and convalescent 115 

mothers to SARS-CoV-2 variants 116 

To explore antibody profiles to SARS-CoV-2 variants, maternal and matched cord blood serum 117 

samples were collected from vaccinated (n=50, Hadassah Medical Center, Israel) and convalescent 118 

maternal study participants (n=38, CHU St. Pierre, Belgium) after immunization against or infection by 119 

SARS-CoV-2 in the third trimester early in the pandemic (Supplemental Table 1). These samples were 120 

profiled for antibody magnitude, specificity, and Fc domain characteristics of SARS-CoV-specific IgM, IgA, 121 

and IgG across a panel of variants and pertussis and tetanus toxoids as control or comparator 122 
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specificities that are also relevant to neonatal health (Supplemental Table 2). We first explored the 123 

antibody binding responses to SARS-CoV-2 Wuhan and VOC in maternal and cord blood as a 124 

representation of antibody profiles in neonates born to vaccinated and convalescent mothers. Antibody 125 

profiles differed in association with both maternal exposure history and sample type, as shown from the 126 

distinct clustering by Uniform Manifold Approximation (UMAP) (Figure 1A). Responses among maternal 127 

blood samples clustered closely together, while those in cord samples formed a distinct cluster. Within 128 

each of these sample type groups, vaccinated and convalescent subjects formed distinct sub-clusters.  129 

Among individual features of the antibody response that were assessed, higher levels of variant-130 

specific IgM but lower levels of variant-specific IgG antibodies were observed in maternal blood from 131 

convalescent as compared to vaccinated subjects (Figure 1B). Intriguingly, despite the expectation that 132 

IgA and IgM would be absent from cord blood samples, some of these responses were nonetheless also 133 

elevated in cord blood samples from neonates whose mothers were convalescent (Figure 1B). Given 134 

these surprising results, responses measured in each sample were compared with blood samples from 135 

naïve subjects across each isotype for SARS-CoV-2 variants and control antigens (Figure 1C). In 136 

general, IgM and IgA reactivity toward all of the antigens tested were considerably lower in cord blood 137 

than even serum samples from SARS-CoV-2 naïve subjects, consistent with the presence of natural or 138 

cross-reactive IgM and IgA antibodies with some ability to bind all of the antigens tested, and the 139 

expected lack of IgA and IgM in cord blood. However, levels were not the same in cord blood samples 140 

from vaccinated as compared to convalescent dyads for a specific subset of SARS-CoV-2 antigens, 141 

including beta, delta, and omicron variants. Elevated IgM and IgA responses to these three antigens in 142 

cord blood of convalescent mothers were sufficient to lead to greater activity in both breadth-potency 143 

curves (Figure 1D), as well as breadth scores (Figure 1E). Similar elevations were also observed for IgM 144 

binding to the receptor binding domain (RBD) for gamma, delta, and omicron and for IgA binding to 145 

omicron (Supplemental Figure 1). Neither of the control antigens tested showed this pattern, suggesting 146 

that this signal is not the result of transfer of small quantities of these isotypes stemming from maternal 147 

infection. An explanation for this phenotype was not readily apparent, though some combination of 148 

specific mutations, distinct mutations in specific positions, conformationally-distinct epitopes, post-149 

translational modifications, or other factors may contribute to these unique binding profiles.  150 

In contrast to IgM and IgA responses, the breadth of IgG responses was elevated in association 151 

with vaccination as compared to infection for maternal blood, as previously reported for this cohort. This 152 

elevation was also apparent in cord blood (Figure 1D-E). For both exposure histories, IgG binding 153 

breadth was comparable between maternal and cord blood (Figure 1C-E). The breadth of RBD-specific 154 

IgG also exhibited the same consistency between maternal and cord blood within each group 155 

(Supplemental Figure 1), further demonstrating the efficiency of placental transfer even when 156 

seroconversion does not occur until during the third trimester. In sum, greater coverage of diverse 157 

variants is expected in infants whose mothers were immunized rather than infected based on their 158 

elevated IgG responses.  159 
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 160 

IgG subclass and FcγR breadth of antibodies in cord blood to SARS-CoV-2 variants differs 161 

between vaccination and natural infection 162 

Given the stark differences in IgG binding breadth associated with exposure history, we explored 163 

the breadth of IgG subclasses and Fcγ Receptor (FcγR) binding of spike- (S), RBD-, and control antigen-164 

specific antibodies in cord blood samples (Figure 2, Supplemental Figures 2-3). IgG1 and IgG3 165 

responses exhibited the greatest breadth, followed by IgG2; IgG4 responses were uncommon (Figure 166 

2A, left; Supplemental Figure 2). Comparing between exposure histories, while breadth scores for all 167 

subclasses were higher following maternal vaccination than infection, this difference was only statistically 168 

significant for IgG3 (Figure 2B, top). FcγR binding antibody breadth-potency curves were similar among 169 

the receptors tested (Figure 2A, right), and like IgG3, breadth scores were significantly increased in cord 170 

blood following maternal vaccination as compared to infection (Figure 2B, bottom). Given the varying 171 

roles of these subclasses and FcγR to antibody effector functions, these differences may be relevant for 172 

the in vivo antiviral activity of cord blood antibodies. 173 

 174 

Biases in the specificity and subclasses of well-transferred IgG 175 

We next explored IgG transfer ratios (cord/maternal responses) to evaluate the extent to which 176 

antibody sub-populations were differentially transferred to cord blood when mothers were exposed to 177 

spike by natural infection or vaccination. Whereas total IgG specific for tetanus and pertussis control 178 

antigens was enriched in cord blood (Figure 2C-D), there was less total IgG specific for SARS-CoV-2 S 179 

protein present in cord blood than maternal blood for both Wuhan and the most distant VOC, Omicron 180 

(Figure 2C). Indeed, for dyads exposed to SARS by either vaccination or natural infection, median levels 181 

of total IgG binding to S were decreased in cord as compared to maternal blood (Figure 2D). Among the 182 

IgG subclasses, IgG1 was better transferred than IgG2, which was in turn better transferred than IgG3. 183 

This pattern or relative differences was consistent across specificities and groups (Figure 2C-D, 184 

Supplemental Figure 4). However, the absolute magnitudes differed: transfer efficiency of pertussis and 185 

tetanus-specific IgG1, IgG2, and IgG3 was greater than that of SARS-CoV-2-specific subclasses, and 186 

transfer efficiency in vaccinated dyads tended to be greater than that observed in convalescent dyads. 187 

 188 

mRNA vaccination shows increased antibody Fc effector functions and transfer of functional 189 

antibodies compared to natural infection  190 

Given these biases in SARS-CoV-2 specific IgG phenotypes between maternal and cord blood 191 

samples, we next defined the ability of antibodies in cord blood from vaccinated and convalescent dyads 192 

to elicit Fc-mediated effector functions in in vitro assays. For each sample, we measured phagocytosis 193 

(ADCP), antibody dependent cellular cytotoxicity (ADCC), and complement deposition (ADCD) at three 194 
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serum concentrations (Figure 3A, compared to maternal levels and for RBD in Supplemental Figures 5-195 

6). For cord blood samples from vaccinated dyads, functional activity was well conserved across variants, 196 

whereas for the convalescent dyad cord blood samples, there was low activity against the Wuhan strain, 197 

and considerable reduction apparent in functional activity to most VOC across all effector functions. In 198 

contrast to SARS-CoV-2-specific responses, both vaccinated and convalescent cord blood samples 199 

showed robust functional activity to both tetanus and pertussis control antigens across all three functional 200 

assays (Figure 3A). Unlike SARS CoV-2-specificities, levels of activity were similar for the control 201 

antigens in cord blood drawn after maternal infection as after maternal vaccination.   202 

In vaccinated dyads, functional breadth scores were similar between maternal and cord blood 203 

samples for both spike (Figure 3A) and RBD antigens (Supplemental Figure 6), suggesting that Fc 204 

mediated effector functions induced by vaccination and transferred in utero can be quite broad. However, 205 

like the IgG binding responses, functional breadth was greater in cord blood from vaccinated than 206 

convalescent dyads (Figure 3A, inset). For ADCP, ADCC, and ADCD, vaccinated maternal-cord pairs 207 

showed transfer ratios that tended be around one, with slightly higher values for closer VOC, and lower 208 

values for more distant VOC (Figure 3B-C, Supplemental Figure 7). Convalescent dyads showed a 209 

significantly different profile, with transfer ratios of around one for the Wuhan spike, but a significant 210 

reduction in transfer ratio of functional antibodies against VOC. Thus, the decreased magnitude of 211 

antibody responses in convalescent mothers is further compounded by decreased transfer efficiency, 212 

leaving neonates with considerably lower antibody effector activity against VOC. Again, in contrast to 213 

observations for SARS-CoV-2 antigens, control antigens typically exhibited functional transfer ratios 214 

greater than or equal to one in both groups (Figure 3B-C).   215 

 216 

Effector functions may contribute to protection of neonates in the absence of neutralization  217 

Although loss of neutralization has been reported elsewhere for the Omicron variant61, this loss 218 

was confirmed for the participants in this study. Neutralization tests against the Wuhan and Omicron 219 

variants were performed for a subset of subjects (Figure 3D). Further, cord blood samples exhibited 220 

lower neutralization activity than did maternal blood against the Wuhan strain, consistent with prior 221 

reports62. Neutralization activity was greater for vaccinated as compared to convalescent dyads, and 222 

limited neutralization was observed against the Omicron variant. The transfer efficiency of neutralizing 223 

antibodies was poorer than that of antibodies with effector function; it was also lower in convalescent than 224 

vaccinated dyads (Figure 3E). Collectively, these results suggest that effector function has the potential 225 

to contribute to protection of neonates in cases where neutralization activity is lost or insufficient. 226 

 227 

Antibody functions are differentially mediated by immunoglobulin isotype 228 

With prior data showing differences in immunoglobulin (Ig) isotype binding in cord as compared to 229 

maternal blood and functional and transfer efficiency differences associated with maternal exposure 230 
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history, we next explored the role each isotype played in eliciting effector functions (Figure 4). Serum 231 

from maternal and cord blood was depleted of IgM, IgA, or IgG and tested for each effector function 232 

following confirmation of the efficiency (Figure 4A) and specificity (Supplemental Figures 8-9) of 233 

depletion. Functional responses for maternal and cord blood samples from vaccinated dyads were 234 

completely dependent on IgG, as depleted samples showed a near complete loss of functional activity 235 

(Figure 4B-D). In contrast, despite the presence of these additional isotypes, depletion of IgM or IgA from 236 

vaccinated dyads had no effect on these effector functions. Maternal and cord blood samples from 237 

convalescent dyads also showed dependence on IgG for ADCP and ADCC function (Figure 4B-C), but 238 

exhibited a unique profile for ADCD. For the maternal convalescent group, ADCD activity was significantly 239 

reduced by IgG depletion, but the magnitude of this reduction was relatively smaller than for other sample 240 

types, accounting for only about 10-25% of ADCD activity, the majority of which could instead be 241 

attributed to IgM (Figure 4D). Collectively, this data showed that ADCD activity was variably induced by 242 

IgM or IgG isotypes, depending on antigen exposure history.  243 

 244 

Functional responses to endemic and emergent pathogenic coronaviruses 245 

Lastly, induction of immunity beyond SARS-CoV-2 VOC, to other sarbeco- and further CoV 246 

families is clinically desirable. The breadth of recognition of SARS-CoV-1 and endemic CoV spike 247 

proteins are known to vary in association with SARS-CoV-2 spike exposure history63,64. The differences in 248 

antibody functional breadth among vaccinated and convalescent dyads across CoV-2 variants led us to 249 

explore to what extent this breadth encompasses more distant CoV. We tested binding and effector 250 

functions of antibody responses specific for endemic beta CoV HKU1, and OC43, and alpha CoV NL63, 251 

and 229E, along with emergent pathogenic SARS-CoV-1 and MERS (Middle Eastern Respiratory 252 

Syndrome)-CoV. Among the endemic CoV, which have long circulated in the human population, the beta 253 

CoV HKU1 and OC43 are more closely related to SARS-CoV-2 than the alpha CoV NL63 and 229E, 254 

providing an opportunity to look at the response to a panel of circulating viruses that differ in their degree 255 

of similarity. Likewise, we explored binding and functional responses to SARS-CoV-1 and MERS-CoV to 256 

examine what breadth may exist for these viruses to which the dyads evaluated here are presumed 257 

naïve.  258 

Levels of IgM, IgA, and IgG specific to SARS-CoV-1 but not MERS S protein were elevated in 259 

maternal samples from both convalescent and vaccinated dyads as compared to naive subjects (Figure 260 

5A). However, different dilutional profiles were observed for these CoV-1 S-specific IgG responses: while 261 

infection and vaccination resulted in similar levels of binding antibody detection when serum was tested at 262 

a 1:2,500 dilution, when diluted further to 1:5,000, this signal was lost for convalescent subjects while 263 

being maintained for vaccinated subjects. As described previously for SARS-CoV-2 antigens, the testing 264 

of cord blood samples made clear the detection of low levels of IgM and IgA that react to SARS-CoV-1 265 

and MERS S in even naïve subjects (Figure 5A). Similarly, IgM and IgA responses to endemic CoV could 266 
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be detected in maternal blood by virtue of their absence from cord blood (Figure 5B). Whereas 267 

vaccination to CoV-2 induced elevated IgG responses to CoV-1 as compared to natural infection when 268 

diluted serum samples were tested, the opposite pattern was observed for OC43: infection induced a 269 

greater degree of OC43-specific IgG detected at a 1:5,000 dilution, while similar levels were observed 270 

when samples were tested at a higher concentration.  271 

Despite the presence of binding antibodies to diverse CoV in both convalescent and vaccinated 272 

dyads, antibody effector functions were more limited (Supplemental Figure 10). Effector functions were 273 

observed in both maternal and cord blood samples of vaccinated but not convalescent dyads for CoV-1 274 

spike (Figure 5C), consistent with the binding profiles of dilute serum. These effector functions were 275 

present at similar levels in maternal and cord blood, and were lost following IgG depletion (Supplemental 276 

Figure 11).  277 

Among endemic CoV, vaccinated dyads exhibited only ADCP activity against only stabilized 278 

OC43 S2P (Supplemental Figure 10), and activity was similar between maternal and cord blood 279 

samples. In contrast, convalescent dyads exhibited a diversity of effector functions directed to OC43 S 280 

(Figure 5D). Consistent with IgG binding across endemic CoV S sub-domains (Figure 5E), this activity 281 

extended to the OC43 S2 domain (Figure 5F), but not to conformationally-stabilized OC43 S2P 282 

(Supplemental Figure 10). Again, despite the presence of IgM and IgA specific for endemic CoV (Figure 283 

5B,E), IgG depletion essentially eliminated all observed activity (Supplemental Figure 11).  284 

Due to the distinctions in Fc effector functions and the surprisingly differential dilution-285 

dependence of IgG binding profiles observed for CoV-1 S and OC43 S2 among vaccinated and 286 

convalescent samples, we explored if there may be differences in IgG affinity between these groups using 287 

biolayer interferometry (BLI) on a subset of samples. Indeed, whereas the total level of binding IgG 288 

antibodies was similar to OC43 S2 for vaccinated and convalescent dyads, affinities were distinct among 289 

the groups (Figure 5G-I). Convalescent dyad samples (n=5) showed binding profiles consistent with 290 

higher affinity (multiple orders of magnitude) than the vaccinated dyads, exhibiting the slow on- and slow 291 

off-rate profile typical of high affinity interactions. Consistent with functional data, these affinities were 292 

lower in convalescent cord than in maternal blood, suggesting a possible explanation for the decreased 293 

ADCP, ADCC, and ADCD activity observed in cord blood samples. In contrast, IgG from vaccinated 294 

dyads exhibited lower magnitudes and the fast on-, fast off-rate profile commonly seen in low affinity 295 

interactions. This latter profile was consistent with that observed in naïve individuals, suggesting that 296 

infection induces either recall of pre-existing and/or induction of novel cross-reactive antibodies with high 297 

affinity, whereas vaccination does not. Using the same method, we explored whether these affinity 298 

differences were specific to OC43 S2 by measuring affinities across a panel of antigens (Figure 5 H-I). 299 

Across antigens and serum IgG samples, affinities tended to be marginally lower in cord blood than 300 

corresponding maternal samples. Greater differences were observed between vaccinated and 301 

convalescent IgG samples. The median affinity of vaccine-elicited IgG binding to Wuhan S exceeded that 302 

of IgG induced by natural infection. Relative to Wuhan S, affinity to the Omicron variant was reduced in 303 
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both dyad groups, however, the reduction was greater for convalescent than vaccinated dyads (Figure 5 304 

H). This pattern held with respect to CoV-1 S as well, against which affinity was further decreased.  In 305 

contrast to emergent CoV, but like the OC43 S2 domain, affinity for OC43 S was greater in convalescent 306 

dyads. Vaccinated dyads demonstrated similar affinities for OC43 as were observed in the SARS-CoV-2 307 

naïve subjects. Thus, these affinities corresponded well with effector function profiles: higher effector 308 

function and IgG affinity for SARS-CoV-2 antigens were observed in vaccinated dyads, whereas higher 309 

effector function and IgG affinity for endemic CoV OC43 antigens were observed in convalescent dyads. 310 

These results link effector function to antigen binding affinity as qualitative measures of a polyclonal 311 

antibody response that can be distinct from response quantity or magnitude. 312 

 313 

Discussion 314 

The distinct antibody responses to SARS-CoV-2 VOC, endemic, and emergent coronavirus 315 

antigens in maternal and cord blood samples from vaccinated and convalescent dyads captured in this 316 

study likely result from an array of contributing factors, including antigen conformations, maternal 317 

antibody transfer dynamics, affinity differences, and antigen exposure history, among others. A deeper 318 

understanding of these factors in the context of pregnancy has the potential to help inform future 319 

development of maternal vaccines targeted to contribute to the protection of neonates, particularly as the 320 

virus continues to diverge in response to immune pressure mediated by humoral and cellular immunity in 321 

the population. Despite the neutralization resistance of VOC, vaccines remain highly effective in 322 

preventing severe disease, suggesting the relevance of multiple potential mechanisms including antibody 323 

Fc effector functions.  324 

To this end, studying the antibody repertoire of neonates can mimic a passive transfer experiment 325 

and has the potential to elucidate some of these mechanisms. Given the persistence and importance of 326 

IgG in serum, the selective transfer of maternal IgG makes good biological sense, while the additional 327 

passive transfer of maternal IgA present in breastmilk can provide added and more contemporaneous 328 

protection at mucosal sites after birth. The evolutionary basis for the preferential transfer of IgGs with 329 

certain phenotypes and activities is less clear. Whereas levels of the cytolytic IgG1 subclass in cord blood 330 

typically exceed maternal blood, IgG3, arguably the most functionally active subclass, is less well 331 

transferred. Transfer of IgG2, relatively inert in terms of effector function is typically also lower, while IgG4 332 

levels appear to be either low enough or sufficiently variable in transfer efficiency that a global trend is 333 

less clear65. Additionally, while the importance of FcRn in transfer is clear, these patterns don’t precisely 334 

recapitulate the serum half-life or in vitro binding affinities of the IgG subclasses66-68. Further, differences 335 

in the efficiency of transfer of antibodies with different pathogen- or antigen-specificities24,69 , as well as 336 

with variable glycosylation70-72, particularly in the variable region70, are also associated with differences in 337 

transfer efficiency. However, the means by which these attributes may contribute rather than simply 338 

correlate with other, mechanistically relevant factors is unclear. The longitudinal profile of maternal 339 
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responses and total serum IgG levels clearly each play a role73-75, but samples are typically only tested at 340 

a snapshot in time, often at delivery, as opposed to characterized with more continuous kinetic profiling. 341 

Recent work has raised the possibility that additional processes or transporters, including FcγR, may play 342 

a role44,46.  343 

Here, by comparing the SARS-CoV-2 spike-specific antibodies with those that recognize non- 344 

sarbecovirus antigens, we assessed some of these factors. The generally poorer transfer of total and 345 

each individual IgG subclass for SARS-reactive antibodies as compared to antigens that mothers were 346 

presumed to be seropositive against before pregnancy suggests the importance of their more recent 347 

induction and the contribution of the length of time over which maternal antibodies can be transferred in 348 

the levels observed in neonates. In contrast, the general consistency between well and poorly transferred 349 

subclasses, independent of specificity, points to this factor as generalizable. The relative efficiency of 350 

SARS-CoV-2-specific antibody transfer between dyads with a history of vaccination as compared to 351 

infection also differed somewhat, with generally improved transfer observed in vaccinated dyads, 352 

consistent with a possible influence of inflammation associated with maternal infection.  353 

Antibody functions were also variably well transferred between exposure history groups. ADCP, 354 

ADCC, and ADCD activities against pertussis and tetanus antigens were generally elevated in cord blood, 355 

while Wuhan SARS-CoV-2 spike-specific antibody effector functions were typically similar in vaccinated 356 

and slightly reduced in convalescent cord as compared to maternal blood. For variants, however, this 357 

decrease was dramatic in the context of natural infection, and some activities were essentially 358 

undetectable in convalescent cord blood. The reduction in the breadth of antibody function paralleled the 359 

reduced breadth of antibody binding and activity observed in natural infection overall, but the magnitude 360 

of functional loss suggests that non-linearity, or threshold effects are at play in these activities. As has 361 

been reported elsewhere, this pattern was also apparent in neutralization activity, which was greatly 362 

reduced in cord blood. As compared to effector functions, broad neutralization activity was relatively 363 

sparse, even in maternal blood. Among convalescent participants, even dyads with high Wuhan strain 364 

neutralizing titers (>1:200) in maternal serum typically exhibited undetectable activity in cord blood. The 365 

poorer neutralization activity of antibodies in cord blood than maternal serum is likely at least partly 366 

attributable to the loss of contributions from IgM and IgA. Among other possible contributing factors, this 367 

study identified differences in the affinity for antigen as potentially playing a role in defining breadth 368 

across effector functions. Vaccination led to higher affinity antibodies against emergent coronaviruses 369 

whereas natural infection induced higher affinity antibodies towards endemic coronaviruses. In turn, these 370 

affinity profiles were consistent with antibody effector function breadth and potency profiles. Relative to 371 

IgG1, the poorer transfer of IgG3, which can exhibit both greater effector function and greater apparent 372 

affinity for antigen associated with its greater flexibility and hinge length, may also account for some of the 373 

differences observed between maternal and cord blood and between vaccination and infection.  374 

Consistent with prior reports76, differences were observed in the relative levels of responses and 375 

effector functions of SARS-CoV-2- and the endemic CoV OC43-specific antibodies that are associated 376 
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with spike stabilization and differences in cross-reactivity of antibodies directed to different sub-domains. 377 

However, this study associates these functional distinctions with antibody affinity for antigen, finding that 378 

polyclonal IgG pools with higher affinity antibodies exhibit greater effector function. While this study 379 

cannot address the relative importance of one antibody function over another, neutralization activity was 380 

considerably more limited than binding and effector functions, with less than one in ten dyads exhibiting 381 

detectable neutralization of the Omicron strain. Low levels of binding antibodies to other emergent and 382 

endemic CoV could be detected, and some were present at levels and with characteristics, such as high 383 

affinity, sufficient to induce effector functions. Domain-level mapping of responses directed to endemic 384 

CoV implicated the highly conserved S2 domain in these exceptionally broad responses, particularly in 385 

association with natural infection, and prior work has suggested that they result from cross-reactive 386 

clones76,77. As VOC continue to emerge, and antigen-experienced populations benefit from mucosal 387 

antibody and T cell responses, the relative importance of serum antibody neutralization titers, which have 388 

served as a robust correlate of protection in early efficacy trials78-82, may vary. Indeed, the mechanistic 389 

relevance of neutralization, at least as typically tested in vitro, has been challenged by observations that 390 

non-neutralizing and even antibodies that increase viral infectivity in vitro can provide protection in vivo 391 
83,84. To this end, the broad recognition and function of antibodies raised by vaccination and natural 392 

infection support the feasibility of “universal” COVID-19 vaccine development efforts. 393 

Some limitations this study have already been alluded to. Maternal antibodies were sampled only 394 

at the time of delivery, so their dynamic profile is not known. Further, the impact of timing of maternal 395 

seropositivity could not be meaningfully evaluated given the relatively narrow window during gestational 396 

ages at which exposure occurred. While study participants were enrolled at a similar timepoints in the 397 

pandemic, they were drawn from geographically distinct populations. With the exception of neutralization, 398 

antibody functions were evaluated in simplified rather than more ideally biologically authentic assays, and 399 

cell lines rather than neonatal effector cells were employed to characterize activity in cord blood. 400 

Sufficient sample volumes were not available to support evaluation of all specificities and activities in all 401 

assays. The mechanisms whereby binding and functional assays show different transfer efficiencies are 402 

likely to relate at least in part to differences in IgG subclass transfer, but further study would be needed to 403 

more clearly resolve the roles of each antibody attribute to the efficiency of transfer and to each function. 404 

Further, evidence of threshold effects was observed in several assays, but it remains unclear whether the 405 

thresholds observed in the in vitro assays employed here are consistent those that might exist in vivo. 406 

Lastly, while the relevance of antibody binding and effector functions tested in depth here to protection 407 

from disease has been suggested in many prior studies85, insights into the infection resilience of either 408 

mothers or neonates in this study is lacking, and therefore relationships between these measures and 409 

disease cannot be addressed here.  410 

Overall, while numerous studies have shown the reduction in neutralization following viral 411 

diversification over time, vaccines remain highly effective at preventing severe disease and death, 412 

pointing to the contributions of other immune mechanisms. This study addresses the passive transfer and 413 
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inter-generational inheritance of functionally potent antibodies, and the relative ability of IgG antibodies to 414 

drive broad recognition and effector activity that may contribute to protection from COVID-19. While 415 

SARS-CoV-2-specific neutralizing activity was typically lost and antibody binding breadth and effector 416 

function were typically reduced in cord as compared to maternal blood, effector functions were 417 

substantially greater and broader following maternal vaccination than infection in both mothers and 418 

infants. The biases in levels, isotypes, subclasses, affinity for antigen, neutralization and effector function 419 

breadth and potency that associate with antigen exposure history have implications for protecting diverse 420 

populations from ever-diversifying viral variants.  421 

 422 

Methods 423 

Human Subjects 424 
Vaccinated participants (Israel), screened for lack of anti-N SARS-CoV-2 antibody responses, received 425 
two doses of mRNA-encoded stabilized spike BNT162b2 (n=50) vaccine. Convalescent participants 426 
(Belgium), had infection status defined by RT-PCR (n=38). While Wuhan was the dominant strain in 427 
circulation at the time of sample collection, viruses were not typed. Naïve serum was obtained from a 428 
commercial vendor (BioIVT) prior to approval of vaccines and was screened for anti-N SARS-CoV-2 429 
antibody responses to exclude donors with previous infection. Characteristics for each study group are 430 
described in Supplemental Table 1. While pregnant subjects completed their vaccination series in the 431 
third trimester, and most convalescent subjects reported symptoms or tested positive in their third 432 
trimester, elapsed time since most recent SARS-CoV-2 antigen exposure differed between cohorts, as 433 
did time to delivery following diagnosis or receipt of the second vaccine dose. Study participants provided 434 
informed written consent and studies were reviewed and approved by IRBs at individual collection sites 435 
and Dartmouth. 436 

Fc Array 437 
Antigens were purchased from commercial sources or transiently expressed in Expi293 or HEK293 cells 438 
and purified via affinity chromatography (Supplemental Table 2). Fc receptors were expressed and 439 
purified as described previously86. Antigen-specific antibodies were characterized using the Fc array 440 
assay85,87. Briefly, antigens were covalently coupled to MagPlex microspheres (Luminex Corporation). 441 
Experimental controls included pooled human polyclonal serum IgG (IVIG), S309 an antibody from a 442 
SARS-CoV patient that cross-reacts SARS-CoV and SARS-CoV-2, and VRC01, an HIV specific 443 
antibody88,89. Serum dilutions for profiling varied from 1:250 to 1:5000 depending on detection reagent. 444 
Unless otherwise noted, concentrations tested were as listed in Supplemental Table 2. Antigen-specific 445 
antibodies were detected by R-phycoerythrin-conjugated secondary reagents specific to human 446 
immunoglobulin isotypes and subclasses and by Fc receptor tetramers90,91. Median fluorescent intensity 447 
data was acquired on a FlexMap 3D array reader (Luminex Corporation). Samples were run in technical 448 
duplicate. 449 

Neutralization 450 
SARS-CoV-2 neutralizing antibodies (nAb) were quantified as previously reported85,92 for a subset of 451 
maternal and matched cord blood serum samples (23 vaccinated, 26 convalescent, selected based on 452 
having the highest binding antibody levels from among dyads with sufficient serum volumes available). 453 
Briefly, serial dilutions of heat-inactivated serum (1/50 to 1/25,600 in EMEM supplemented with 2 mM L-454 
glutamine, 100 U/ml-100ug/mL of Pencillin-Streptomycin and 2% fetal bovine serum) were incubated for 1 455 
hr at 37C and 7% CO2 with 3xTCID100 of Wuhan strain (2019-nCoV-Italy-INMI1, 008 V-03893) and 456 
Omicron strain BA.1 (B1.1.529, VLD20211207). A volume of 100 L of sample-virus mixture was added 457 
to 100 L of Vero cells (18,000 cells/well) in a 96 well plate and cultured for five days at 37C and 7% 458 
CO2. Cytopathic effects of viral growth were scored microscopically and the Reed-Muench method was 459 
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used to calculate the nAb titer that reduced the number of infected cells by 50% (NT50), which was used 460 
as a proxy for the nAb concentration in the sample. An internal reference standard composed of a pool of 461 
serum from naturally infected and vaccinated adults was included in each nAb assay run, which was 462 
calibrated against the Internationals Standard 21/234 (NIBSC), in accordance with WHO guidance. 463 

Antibody-Dependent Cellular Phagocytosis (ADCP) 464 
Characterization of the phagocytic activity of serum antibodies was performed as described 465 
previously85,93. Briefly, 1 M yellow-green fluorescent beads (Thermo Fisher, F8813) were covalently 466 
conjugated to antigen. Beads were then incubated with serum samples for 4 hr with THP-1 cells (ATCC 467 
TIB-202) at 37°C in 5% CO2. Afterwards, cells were fixed and analyzed by flow cytometry using a 468 
MACSQuant Analyzer (Miltenyi Biotec) to define the percentage of cells that phagocytosed one or more 469 
fluorescent beads and the MFI of this population, the product of which was defined as the phagocytic 470 
score (arbitrary units). Controls included wells with no added antibody were used to determine the level of 471 
antibody-independent phagocytosis, S309 and VRC01 antibodies, and concentrated pooled polyclonal 472 
serum IgG (Sigma Aldrich I4506); samples were tested in three biological replicates.  473 

Surrogate Reporter Cell Assay of Antibody-Dependent Cellular Cytotoxicity (ADCC) 474 
A CD16 activation reporter assay system was used as a surrogate for ADCC85,94. First, high binding 96-475 
well plates were coated overnight at 4⁰C with 1 g/mL of spike or RBD antigen. Following incubation, 476 
plates were washed (PBS + 0.1% Tween20) and blocked (PBS + 2.5% BSA) at room temperature (RT) 477 
for 1 hr. Following plate washing, 100,000 CD16- (FcRIIIa) expressing Jurkat Lucia NFAT (Invivogen, 478 
jktl-nfat-cd16) cells, cultured according to manufacturer’s instructions, and dilute serum samples were 479 
added to each well in cell culture media lacking antibiotics in a 200 L volume. After 24 hrs of culture, 25 480 
L of supernatant from each well was transferred into a white 96 well plate to which 75 L of quantiluc 481 
substrate was added. After 10 min, luciferase signal was determined by reading plates on a SpectraMax 482 
plate reader (Molecular Devices). Assay controls included cell stimulation cocktail (Thermo Fischer 483 
Scientific, 00-4970-93) and ionomycin, buffers alone, spike-specific S309 and HIV-specific VRC01 484 
monoclonal antibodies, and concentrated pooled polyclonal serum IgG (Sigma Aldrich I4506). Samples 485 
were run in three biological replicates. In a prior study, this assay correlated well with killing activity 486 
against a spike-expressing cell line85. 487 

Antibody-Dependent Complement Deposition (ADCD) 488 
Antibody-dependent complement deposition (ADCD) experiments were performed essentially as 489 
previously described85,95. Serum samples were heat inactivated for 30 min at 56C, prior to incubation for 490 
2 hr at RT with assay microspheres. Human complement serum (Sigma, S1764) diluted 1:100 in gel 491 
veronal buffer (Sigma-Aldrich, GVB++, G6514) was mixed with samples and microspheres at RT with 492 
shaking for 1 hr. After washing, samples were incubated with murine anti-C3b (Cedarlane #CL7636AP) at 493 
RT for 1 hr followed by staining with anti-mouse IgG1-PE secondary Ab (Southern Biotech #1070-09) at 494 
RT for 30 min. A final wash was performed and samples were resuspended into Luminex sheath fluid and 495 
MFI acquired on a FlexMap 3D reader. Assay controls included heat-inactivated complement, buffers 496 
alone, spike-specific S309 and HIV-specific VRC01 monoclonal antibodies, and concentrated pooled 497 
polyclonal serum IgG (Sigma Aldrich I4506). Samples were run in three biological replicates. 498 

Antibody depletion 499 
Antibody depletion experiments were performed on a subset of samples (n=15). Depletions were 500 
performed using Ig capture select resins following manufacturer’s instructions (Thermo Fisher) to deplete 501 
IgM, IgA, or IgG. Depleted samples along with a mock control were tested in the multiplex assay to 502 
measure depletion efficiency. Mock depletion samples followed the same protocol as the manufacturer’s 503 
instructions with the exception being that an irrelevant column matrix (Ni-NTA Thermo Fisher) was used. 504 
 505 
Octet Analysis 506 
Serum was purified for IgG using Melon Gel Purification kit (Thermo Fisher) following the manufacturer’s 507 
instructions. Binding affinities were determined using biolayer interferometry (BLI) on the Forte Bio Octet 508 
system, essentially as previously described96. Antigens were biotinylated with LC-LC no weigh biotin 509 
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(Thermo Fisher, A39257). After 30 min of reaction time, excess biotin was removed with Zeba desalting 510 
columns (Thermo Fisher, 89882). To determine binding kinetics, biotinylated antigens were captured on 511 
streptavidin Sax-2.0 tips (Forte Bio, 18-5136) and then incubated in dilute IgG. Briefly, biosensors were 512 
first equilibrated in PBST (0.05% Tween-PBS) for 180s and activated by dipping into 10 mM glycine (pH 513 
1.7) for 20s and PBST 20s for three cycles. Biosensors were then loaded with biotinylated antigen at 514 
1mg/ml in PBST for 300s, and dipped into PBST for 300s to reach baseline, prior to a 300s association 515 
phase in which they were dipped into IgG, and a 300s dissociation phase in which they were dipped into 516 
PBST. Assessments were performed across 3-fold serial dilutions of IgG ranging from 10 mM to 0.013 517 
mM. Sample traces of a single concentration (10mM) were plotted for representative results. Tips were 518 
regenerated for 20s for each condition in 10mM glycine pH 1.7. Data was aligned and corrected between 519 
steps as needed, and signal observed in reference sample wells, comprised of tips loaded with antigen 520 
but not dipped into IgG, was subtracted. For kinetic analysis, a 1:1 association and dissociation model 521 
was selected in Forte Bio data analysis 7.0 software in order to determine KD. 522 
 523 
Data Analysis and Statistical Quantification 524 
UMAP plots were generated in Python (version 3.11) using the umap-learn package (version0.4). 525 
Volcano plots were generated in R (version 4.3) using ggplot2. Statistical analysis was performed in 526 
GraphPad Prism (version 9.7). Statistical test are described in the respective figure legends. Breadth-527 
potency curves were defined as the proportion of antigen-specificities exhibiting a signal above a given 528 
intensity. Curves were generated using the LOWESS curve fit method in Prism for each respective 529 
subject group. Breadth scores were calculated by taking the geometric mean across antigen specificities 530 
for each subject. The sample size for each figure includes all subjects from their respective groups unless 531 
otherwise noted.  532 

 533 
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Figure 1: Antibody isotype, magnitude, and breadth across SARS-CoV-2 VOC in maternal and cord 

blood samples following vaccination or natural infection. A. Coronavirus-specific antibody response 

features after dimensional reduction in maternal (filled) and cord (open) samples among convalescent (n 

= 38) (blue) or vaccinated (n = 50) (green) individuals. B. Volcano plot presenting the fold-change (x-axis) 

and statistical significance (Mann Whitney test, y-axis) of differences between convalescent and 

vaccinated participants. Antibody isotype is indicated by shape, with RBD and whole spike indicated in 

hollow and filled symbols, respectively. SARS-CoV-2 variant is indicated by color. C. Median Fluorescent 

Intensity (MFI) of IgG responses to spike of SARS CoV-2 VOCs as defined by multiplex assay for IgM 

(top), IgA (middle), and IgG (bottom). Responses among SARS-CoV-2 naïve subjects (n = 38) are shown 

in black. Bar indicates the median response. D. Breadth-potency curves represent the fraction of subjects 

with a response exceeding a given level for IgG antibody responses across the panel of VOC. Population 

means are shown with a thick line, and individual subjects illustrated in thin lines. E. IgG breadth scores 

for each subject. Bar indicates the median. Statistical significance was defined by ANOVA Kruskal–Wallis 

test with Dunn’s correction and α=0.05 (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).  
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Figure 2: Vaccination and infection elicit distinct IgG subclass and Fc receptor breadth in cord 

blood. A. Breadth–potency curves representing the fraction of subjects with a response exceeding a 

given level for each IgG subclass (left) and for binding to FcR (right) across the panel of VOC in cord 

blood samples following maternal vaccination or infection. Population mean is shown with a thick line, and 

individual subjects are illustrated in thin lines. B. IgG subclass (top) and FcR binding (bottom) breadth 

scores for each cord blood samples following maternal vaccination (filled) or infection (hollow). Statistical 

significance was defined by ANOVA Kruskal–Wallis test with Dunn’s correction and α=0.05 (**p<0.01, 

***p<0.001, ****p<0.0001). C. Transfer ratio (cord/maternal levels) of antigen-specific (SARS: Wuhan and 

Omicron Spike; Control: Pertussis and Tetanus) IgG subclasses in vaccinated (green) and convalescent 

(blue) dyads. D. Median transfer ratios of each SARS-CoV-2 spike VOC as compared to control antigens 

by subclass. Bars indicate median. 

  

102 103 104 105

0.0

0.2

0.4

0.6

0.8

1.0

102 103 104 105

0.0

0.2

0.4

0.6

0.8

1.0

102 103 104 105

0.0

0.2

0.4

0.6

0.8

1.0

V C V C V C V C

102

103

104

105

106

ns ns   ns

5.8x

V C V C V C V C

102

103

104

105

106

           

V
a
c
c
in

a
te

d
C

o
n
v
a
le

s
c
e
n
t

Breadth ScoreBreadth-Potency Curves
A B

102 103 104 105

0.0

0.2

0.4

0.6

0.8

1.0

IgG1
IgG2
IgG3
IgG4

FcγR2A
FcγR2B
FcγR3A
FcγR3B

Wuhan Omicron Pertussis

IgG subclasses FcgR
IgG1        IgG2         IgG3        IgG4

FcγR2A   FcγR2B    FcγR3A   FcγR3B

    6.1x          23x          5.1x          11x

M
F

I

F
ra

c
tio

n

MFI
V = vaccinated
C = convalescent

0

1

2

3

4

T
ra

n
s
fe

r 
R

a
tio

 (
C

/M
)

Tetanus Wuhan Wuhan

IgG IgG1 IgG3

Wuhan

IgG2

SARSSARSSARSSARS

0.5

1

2

T
ra

n
s
fe

r 
R

a
tio

 (
C

/M
)

IgG3IgG2IgG1IgG
C D

control

c
o
n
tr

o
l

S
A

R
S

c
o
n
tr

o
l

S
A

R
S

c
o
n
tr

o
l

S
A

R
S

c
o
n
tr

o
l

S
A

R
S

control control control

Omicron PertussisTetanusOmicron PertussisTetanusOmicron PertussisTetanus

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.12.24313591doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.12.24313591
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

Figure 3: mRNA vaccination results in superior breadth of SARS-CoV-2- specific Ab effector 

function and neutralization in cord blood. A. Ab effector functions in cord blood from vaccinated (top, 

green shading) and convalescent (bottom, blue shading) cord blood for SARS spike variants or pertussis 

and tetanus control (red box) antigens. Phagocytosis, ADCC, and Complement deposition activities were 

assessed at each of three serum dilutions (1:50, 1:100, 1:250). Functional activity is reported in arbitrary 

units (AU), relative light units (RLU), and median fluorescent intensity (MFI). Inset. Functional breadth 

scores across variants in maternal, cord, and naïve subject samples. Statistical significance was defined 

by ANOVA Kruskal–Wallis test with Dunn’s correction and α = 0.05. B-C. Transfer ratios (cord/maternal) of 

Fc effector functions to indicated antigens in vaccinated (green) or convalescent (blue) dyads at the 1:50 

dilution for individual antigens (B) and for the set of SARS and control antigens (C). D. Neutralization 

titers (NT50) observed for a subset of vaccinated (n=23) (green) and convalescent (n=26) (blue) maternal 

and cord samples against Wuhan (black) and Omicron (orange) strains. The limit of detection (LOD) is 

indicated by the horizontal dotted line. E. Transfer ratios of neutralization activity. Bars indicates median. 

Unless otherwise noted, data presented includes samples from 37 naive subjects, and 50 vaccinated and 

38 convalescent dyads.  
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Figure 4: Contributions of each isotype to antibody effector functions in cord and maternal blood. 

Maternal (M) and cord (C) blood samples from vaccinated (green, n=15) and convalescent (n=15) dyads 

depleted of IgM (top), IgA (center), and IgG (bottom) antibodies. A-D. Binding levels (A, left) and effector 

functions (B-D) (right) to Wuhan spike protein were measured on mock and depleted (+) samples for 

each isotype to measure efficiency of each depletion and the impact on antibody activity against Wuhan 

spike antigen. Mock and depleted (+) samples were compared using a paired mixed effect model 

corrected for multiple hypothesis testing using the Benjamini, Krieger, and Yekutieli to control the false 

discovery rate (*q<Q, where Q=0.05). Functional activity is reported in arbitrary units (AU), relative light 

units (RLU), and median fluorescent intensity (MFI). 
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Figure 5. Cross reactivity to emergent and endemic coronavirus. A. Coronavirus-specific antibody 

response features after dimensional reduction in maternal (filled) and cord (open) samples among 

convalescent (n = 38) (blue) or vaccinated (n = 50) (green) individuals. Naive subjects (n=37) are shown 

in black. IgG binding experiments were performed at 1:2500 and 1:5000 dilutions. IgM, IgA, and IgG 

binding responses to SARS-CoV-1 S and MERS S. B. IgM, IgA, and IgG binding responses to endemic 

coronaviruses HKU1, OC43, NL63, and 229E. All antigens are full length spike. C. ADCP, ADCC, and 

ADCD functional responses to SARS-CoV-1 spike. D. ADCP, ADCC, and ADCD responses against OC43 

S. E. IgM, IgA, and IgG antibody binding profiles to endemic coronavirus antigens in other conformations 

(HKU1 S1, OC43S2, OC43S2P, NL62 S1, 229E S1). F. ADCP, ADCC, and ADCD responses against 

OC43 S2 antigen. Functional activity is reported in arbitrary units (AU), relative light units (RLU), and 

median fluorescent intensity (MFI). G. Antibody association and dissociation traces for affinity analysis of 

binding to OC43 S2 for a subset of samples from each group (n=5) at 10 mM. H. Binding of each subject 

to the panel of antigens measured. I. Heatmap antibody affinities (KD M) to each antigen tested. Darker 

red denotes higher affinity binding interaction. 
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