```
1 # Pseudo code for k-Nearest Neighbors Surrogate model
 2
3
4
5
   # No guarantee of executability.
   # Training of the main and surrogate models with the case data
 8
   # Main model
10
   main_model.fit(X_train, y_train)
13
14
   # Surrogate model
15
   surrogate_model.fit(X_train, y_train)
17
   # Prediction and explanation by the main and surrogate models with user's input
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
   max_n_neighbors = 10
   # Main model
   y_pred = main_model.predict(X_in)
   # Surrogate model
   ndcg_k2_list = list()
   for j in range(max_n_neighbors):
    k = j + 1
       y_pred_k = surrogate_model.predict(X_in, k)
ndcg_k2 = ndcg(y_pred, y_pred_k)
35
36
37
38
39
40
       ndcg_k2_list.append(ndcg_k2)
   k\_closest = argmax(ndcg\_k2\_list) + 1
   ndcg_k2\_closest = ndcg_k2\_list[k\_closest - 1]
   (neigh_dist, neigh_ind) = surrogate_model.kneighbors(X_in, k_closest)
   meta_data_list = surrogate_model.search_meda_data(neigh_ind)
   46
   # Evaluation of the main and surrogate models with the case data
47
48 n_tests = 6000
49
   max_n_neighbors = 10
50
51
   for i in range(n_tests):
52
53
54
55
56
57
58
59
60
       X_in = X_test[i]
       y_true = y_test[i]
       # Main model
       ndcg_nn = ndcg(y_true, y_pred)
       # Surrogate model
61
62
63
       ndcg_k1_list = list()
ndcg_k2_list = list()
       for j in range (0, max_n_neighbors):
64
            \bar{k} = i + \bar{1}
65
66
67
            y_pred_k = surrogate_model.predict(X_in, k)
            ndcg_k1 = ndcg(y_true, y_pred_k)
ndcg_k2 = ndcg(y_pred, y_pred_k)
            ndcg_k1_list.append(ndcg_k1)
ndcg_k2_list.append(ndcg_k2)
68
69
70
71
72
73
       k_closest = argmax(ndcg_k2_list) + 1
ndcg_k1_closest = ndcg_k1_list[k_closest - 1]
ndcg_k2_closest = ndcg_k2_list[k_closest - 1]
```