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Abstract 

A key component of Mendel’s work is what we now refer to as pleiotropy - when 

variation in one gene gives rise to variation in multiple phenotypes.  

This study focuses on aiding genetic discovery in depression by revisiting the 

depressed phenotype and developing a quantitative trait in a large mixed family and 

population study, using analyses built upon the theory which underpins Mendel’s 

pleiotropic observations - the relationship between phenotypic variation and genetic 

variation. 

Measures of genetic covariation were used to evaluate and rank ten measures of 

mood, personality, and cognitive ability as endophenotypes for depression. The 

highest-ranking traits were subjected to principal component analysis, and the first 

principal component used to create multivariate measures of depression.  

Four traits fulfilled most endophenotype criteria, however, only two traits 

(neuroticism and the general health questionnaire) consistently ranked highest 

across all measures of covariation. As such, three composite traits were derived 

incorporating two, three, or four traits.  

Composite traits were compared to the binary classification of depression and to 

their constituent univariate traits in terms of their coheritability, their ability to 

identify risk loci in a genome-wide association analysis, and phenotypic variance 

explained by polygenic profile scores for depression. 

Association analyses of binary depression, univariate traits, and composite traits 

yielded no genome-wide significant results. However, composite traits were more 

heritable and more highly correlated with depression than their constituent traits, 

suggesting that analysing candidate endophenotypes in combination captures more 

of the heritable component of depression and may in part be limited by sample size 

in the current study. 
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Introduction 

If I were to ask you, “How do ornamental flowers relate to depression?”, you’d be 

forgiven for thinking that perhaps a floral gift in a bid to bring cheer was what I had 

in mind. Whilst flowers will always be graciously received by Hall and colleagues, that 

is not what I am referring to here. I am, in fact, referring to celebrated geneticist 

Gregor Mendel and his experiments in plant hybridization. The link being the 

concept of pleiotropy. 

The term pleiotropy (or “pleiotropie”, derived from the Greek meaning “more ways”) 

was coined in 1910 by German geneticist Ludwig Plate, who defined it as a 

phenomenon in which a single locus affects two or more distinct phenotypic traits. 

Forty-four years prior to this neologism, Mendel described what would later go on to 

be called pleiotropy. In experimenting with the artificial fertilization of ornamental 

pea plants to obtain new colour variations, he noted that three of the seven 

characteristics measured (seed coat colour, flower petal colour, and axial spots) 

consistently co-segregated. Mendel therefore considered these traits correlated and 

under the control of a single “factor” or gene as we would say today (Mendel, 1866; 

Stearns, 2010). 

Perhaps it seems an unusual choice, linking a paper which explores the genetic basis 

of depression to the founder of Mendelian genetics. For if there is one thing 

depression is not - it is Mendelian. However, neither were the traits observed in 

Mendel’s pleiotropic peas! This is because Mendel’s experiments dealt with binary 

traits. The peas were yellow or green, wrinkled or round. This dichotomization 

obscured a more nuanced phenotypic truth, which was uncovered in a repeat of the 

hybridization experiments by biometrician Raphael Weldon. Weldon noted that the 

peas were not unambiguously yellow and green but sat on a continuum of colour 

from pure yellow, through various intermediate yellow-green shades, to pure green 

(Weldon, 1902).  

Weldon drew three primary conclusions from this experiment, namely that variation, 

ancestry, and environment are important. We lose valuable information about the 

genetic architecture of a trait if we categorize a quantitative phenotype as a binary, if 

we focus only on parent-offspring phenotypic resemblance without considering 

more detailed pedigrees and deeper ancestries, and if we ignore the environmental 

context (both exogenous and endogenous) within which a genetic factor resides and 

interacts (Radick, 2016). 

Moving from peas to people - in studies of disease, people are categorized in a 

binary manner as being either with or without illness. Whilst this is effective for 

Mendelian traits with dominant inheritance patterns, for polygenic traits like 

depression we run into the same classification problems as were uncovered by 

Weldon. The phenotypic reality is that people are not simply ill or well, but on a 

spectrum of illness, with the genetic liability for disease most likely being quantitative 

in distribution also (Yang et al., 2010; Tenesa and Haley, 2013). By classifying a 
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quantitative liability as a binary trait we lose substantial information on trait variation, 

resulting in a reduction in statistical power to detect genetic effects. This is 

particularly problematic in a trait like depression where genetic discovery is already 

limited by the trait’s modest heritability (Sullivan et al., 2000; Fernandez-Pujals et al., 

2015; Howard et al., 2019), as heritability is the upper bound of what we can hope to 

interrogate as geneticists (Tenesa and Haley, 2013).  

The purpose of the current study is to use information from measures of mood, 

personality, and cognitive ability which are genetically correlated with a diagnosis of 

depression to derive a quantitative depression phenotype that maximizes the 

variance and heritability, with a view to improving the statistical power to identify 

genetic risk variants. 

For this, we used data from the Generation Scotland cohort (Smith et al., 2006; Smith, 

Campbell, et al., 2013). This sample is well-suited for such an analysis as it has 

detailed phenotype information on ten well-validated quantitative measures and a 

structured clinical diagnosis of depression in the same individuals, in addition to 

being a substantial sample size (N~24,000) including a mixture of different familial 

relationships and unrelated population members.  

We selected quantitative traits to take forward for multivariate analysis by using the 

endophenotype criteria outlined by Gottesman and Gould. These criteria state that 

traits should be heritable, genetically and phenotypically correlated with the trait of 

interest, state independent, co-segregating with illness in families, and observed at a 

higher rate in unaffected relatives than in unrelated controls (Gottesman and Gould, 

2003). 

Univariate and multivariate traits were evaluated using the endophenotype ranking 

value (or absolute coheritability) (Glahn et al., 2012), and phenotypic variance 

explained by polygenic risk scores for depression. Given the latter method uses only 

common trait-associated variants, selecting quantitative traits for further genetic 

analysis based on this method may prove advantageous for gene-discovery in 

genome-wide association analysis.  

Whether our quantitative measures of depression had improved statistical power 

relative to the binary case/control classification was assessed by performing a 

genome-wide association analysis of each trait and establishing whether quantitative 

traits had an increased number of extreme test statistics (P≤1E-05) or identified any 

genomic regions of interest beyond those seen in binary depression.  
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Materials and Methods 

Sample description  

Analyses were conducted using data from the Generation Scotland: The Scottish 

Family Health Study cohort (GS), and UK Biobank (UKB) under UKB data application 

number 4844. GS received ethical approval from the NHS Tayside Committee on 

Medical Research Ethics (REC Reference Numbers: 05/S1401/89 and 10/S1402/20). 

UKB received ethical approval from the Research Ethics Committee (REC Reference 

Number: 11/NW/0382). 

 

Generation Scotland: The Scottish Family Health Study 

GS is a family- and population-based study consisting of 23,690 adult participants 

recruited via general medical practices across Scotland. Participants were not 

ascertained on the basis of having any particular disorder. The recruitment protocol 

and sample characteristics are described in detail elsewhere(Smith et al., 2006; Smith, 

Campbell, et al., 2013).  

Depression phenotype 

A diagnosis of depression (MDD) was made using the structured clinical interview for 

DSM-IV disorders (SCID), (First et al., 1997). After exclusion criteria and phenotypic 

refinement, as described in Hall et al (Hall et al., 2018) there were 2,603 depression 

cases and 16,122 controls. 

Candidate endophenotypes 

Ten measures of mood, personality, and cognition were tested for adherence to 

endophenotype characteristics to take forward for multivariate analysis.  

Current levels of MDD and psychological distress were assessed with the 28-item 

General Health Questionnaire (GHQ), using the Likert scoring method (Goldberg and 

Hillier, 1979). Participants were screened for symptoms of bipolar spectrum disorders 

using the Mood Disorder Questionnaire (MDQ) (Hirschfeld et al., 2000; Hirschfeld, 

2002), and schizotypal features using the schizotypal personality questionnaire-brief 

(SPQ), (Raine and Benishay, 1995). The personality traits of neuroticism (EPQN) and 

extraversion (EPQE) were assessed using the relevant sections of the Eysenck 

Personality Questionnaire (Eysenck et al., 1985; Eysenck and Eysenck, 1994). Verbal 

declarative memory was assessed using immediate (LM1) and delayed (LM2D) recall 

with the Wechsler logical memory test (Wechsler, 1997a). Executive function was 

assessed using the letter-based phonemic verbal fluency (VF) test (Raven et al., 1998).  

Processing speed was measured using the Wechsler digit symbol substitution task 

(DSC) (Wechsler, 1997b). Acquired verbal knowledge and vocabulary were assessed 

using the Mill Hill Vocabulary Scale (MHV) (Raven et al., 1998). Summary statistics of 

candidate endophenotypes are shown in Table 1. 
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Phenotype N 
Max. 

Score 
Range Mean (sd) 

DSC 19,765 133 0-133 72.2 (17.2) 

EPQE 19,866 12 0-12 7.8 (3.5) 

EPQN 19,874 12 0-12 3.9 (3.2) 

GHQ 19,693 84 0-84 16.0 (8.9) 

LM1 19,855 25 0-25 16.1 (3.9) 

LM2D 19,751 25 0-25 14.9 (4.3) 

MDQ 10,357 13 0-13 2.5 (3.2) 

MHV 19,646 44 0-44 30.1 (4.7) 

SPQ 10,845 22 0-22 3.9 (3.7) 

VF 19,760 - 0-97 39.7 (11.7) 

Table 1. Summary statistics for mood, personality, and cognitive traits. N: number of 

individuals with data for each phenotype; Max. Score: maximum theoretical score for 

each phenotype; Range: range of scores obtained for each phenotype; Mean (sd): mean 

and standard deviation for each phenotype. 

 

Impossible values, as dictated by each trait’s maximum theoretical score (Smith, 

Campbell, et al., 2013), were set to missing. Phenotypes were transformed to improve 

normality using the Box-Cox power transformation for linear models (Box and Cox, 

1964), implemented in the MASS package (Venables and Ripley. B. D., 2002) in R (R 

Development Core Team, 2016). To simplify the interpretation of effect sizes the 

transformed traits were standardized to have a mean of zero and a unit standard 

deviation using Y=(X-μ)/σ. 

Genetic data 

Autosomal genotype data were available for 19,994 individuals in GS. Quality control 

(QC) procedures are described in detail in Hall et al (Hall et al., 2018). In brief, QC 

exclusion thresholds of �≥�3% individual missingness, SNP call rate of ≤98%, Hardy 

Weinberg Equilibrium (HWE) P-value of �≤1E-06, and minor allele frequency (MAF) 

of ≤�1% were employed. At the time of analysis, imputed genetic data was not 

available, resulting in 561,125 SNPs for use in analysis. 

UKB 

UKB is a health research resource of ~500,000 middle-aged participants (aged 40 to 

73 years) recruited from the UK that aims to improve the prevention, diagnosis, and 

treatment of a wide range of illnesses. The recruitment protocol and sample 

characteristics are described in detail elsewhere (Sudlow et al., 2015). 

Depression phenotype 

Current and previous depressive symptoms were assessed by items relating to the 

lifetime experience of minor and major depression, items from the Patient Health 
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Questionnaire and items on help-seeking for mental health. Case status was defined 

as either ‘probable single lifetime episode of major depression’ or ‘probable 

recurrent major depression (moderate and severe)’. Individuals with probable bipolar 

disorder or mild depressive/manic symptoms were excluded. In the current study, we 

employ a “strict” definition of MDD where cases (N=35,960) were defined as single, 

moderate, or recurrent MDD, and controls (N=91,879) were defined as an absence of 

putative MDD. A detailed description of the UKB putative depression phenotype is 

given in Smith et al (Smith, Nicholl, et al., 2013).  

Genetic data 

Autosomal genotype data was available for all individuals with our MDD phenotype, 

all of whom had European ancestry. We excluded participants who were also in GS, 

their relatives, and relatives of remaining UKB participants (≤3rd degree), were 

identified by a kinship coefficient ≥0.0442 using the KING toolset (Manichaikul et al., 

2010). The genotyping and imputation process is described in detail elsewhere (UK 

Biobank, 2015). The analyses presented here were restricted to autosomal variants 

with an imputation INFO score�≥�0.9, MAF�≥�0.5%, and array genotype 

missingness < 0.02. 

Statistical analyses 

Genome-wide Association Analysis (GWAA) 

GWAA of MDD, univariate and multivariate endophenotypes using GS data were 

conducted using mixed linear model-based association (MLMA) analysis (Yang et al., 

2014) implemented in GCTA (v1.25.) (Yang et al., 2011). Age, age2, and sex were fitted 

as fixed effects. Two genomic relationship matrices (GRMs), created using the mixed 

linear model with candidate marker excluded approach (Yang et al., 2014), were fitted 

as random effects to account for the enrichment of familial relationships in GS 

(Zaitlen et al., 2013). The first GRM included pairwise relationship coefficients for all 

individuals. The second GRM had off-diagonal elements�<�0.05 set to 0.  

As MLMA operates on a linear scale, for the binary MDD analysis betas and their 

corresponding standard errors were transformed to odds ratios and 95% confidence 

intervals on the liability scale using a Taylor transformation expansion series (Cortes 

et al., 2013; Visscher et al., 2014). 

GWAA of MDD using UKB data was conducted using logistic regression, 

implemented in PLINK v1.9 (Chang et al., 2015). Age, age2, sex, assessment centre, 

genotyping array, batch, and the first 15 PCs fitted as fixed effects.  

Polygenic Risk Score Analysis (PRS) 

Polygenic risk scores for MDD were created PLINK, in accordance with methods 

described by Purcell et al (Purcell et al., 2009). MDD GWAA summary statistics from 

the Psychiatric Genomics Consortium (Sullivan et al., 2013) were used to provide 

marker weights and evidence of association for SNPs. PRS were generated at five p-
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value thresholds (PT�<�0.01,�<�0.05,�<�0.1,�<�0.5 and all SNPs). SNPs common 

to PGC and GS datasets were extracted from GS and subjected to clump-based 

linkage disequilibrium (LD) pruning, using an LD R2 cut off of 0.25, 300kb sliding 

window and variance inflation factor of 2. PRS were then standardized using Y=(X-

μ)/σ. Variance in trait value explained by polygenic profile score (R2) was estimated 

by multiplying the profile score by its corresponding regression coefficient and 

estimating its variance. This value was then divided by the variance of the observed 

phenotype to yield a coefficient of determination between 0 and 1 (Nakagawa and 

Schielzeth, 2013), and multiplied by 100 to convert R2 to percentage variance 

explained. 

Testing endophenotype criteria in GS 

Only phenotype data from genotyped individuals (n=19,994) was used in these 

analyses. Where required, to reduce confounding caused by familial relationships, 

individuals were grouped by affection status into cases (n=2,659), unaffected first-

degree relatives (n=2,106), and unrelated controls (n=11,898).  

To ensure that common environment was adequately modelled (given the mixed 

population and family study design of GS), models incorporating shared parent-

offspring, sibling, and spousal environmental components as additional random 

effects were tested using a stepwise likelihood ratio test (LRT) approach. Further 

details of how environmental components were constructed are provided in the 

Supplementary Methods of Hall et al (Hall et al., 2018).  

All mixed linear model analyses conducted in ASReml-R fitted age, age2, and sex as 

fixed effects, and an inverted additive relationship matrix using pedigree kinship 

information, common household, and sibling environment as random effects. Any 

additional model specifications are outlined in the relevant analyses’ descriptions. 

Associated with illness in the population 

The effect of affection status on mean trait scores was calculated using the Wald 

Conditional F-test (Kenward and Roger, 1997), implemented in ASReml-R (Butler et 

al., 2007). Standardized traits were fitted as the dependent variable, and affection 

status was fitted as a fixed effect factor with unrelated controls as the reference 

group. A conservative Bonferroni corrected P-value threshold of 3.85E-03 was used 

to indicate statistical significance. Traits were deemed significantly associated with 

MDD in the population if the mean trait difference between cases and unrelated 

controls survived multiple testing correction. 

More extreme in unaffected relatives than in the general population 

This endophenotype criteria is an extension of that described in the section above, 

with the additional requirement that differences in trait mean between unaffected 

first-degree relatives and unrelated controls also had to survive multiple testing 

correction and be in the same direction as cases. 
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State independence 

It was not possible to explicitly test state independence, as repeated measures were 

not available in GS at the time of analysis, and the majority of cases (~80%) were 

currently depressed at the time of assessment. This introduces collinearity between 

case/control status and current depression. Therefore, whether the endophenotype 

was more extreme in unaffected relatives than the general population was used as a 

proxy measure of state independence (Glahn and Blangero, 2011).  

Heritability of endophenotypes 

Heritability estimates for candidate endophenotypes were estimated using pedigree 

data and genomic data. Pedigree-based estimates were derived used restricted 

maximum likelihood methods, implemented in ASReml-R (Butler et al., 2007). As this 

analysis used theoretical relationships, principal components were not fitted to adjust 

for population stratification. 

Genetic and phenotypic correlation 

Bivariate analyses were conducted in ASReml-R. Genetic correlations (rg) between 

traits and MDD were calculated using rg=covA/√(VAi*VAj) where covA is the additive 

covariance, VAi is the additive variance of the quantitative trait and VAj is the additive 

variance of MDD. The significance of rg was calculated by generating a null model 

assuming no covariance between traits, comparing the alternative and null models 

using an LRT, the output of which was assessed against a mixed 0.5(χ2)+0.5(0) 

distribution (Visscher, 2006). Similarly, phenotypic correlations (rp) between traits and 

MDD were calculated using rp=covP/√(VPi*VPj). However, as ASReml-R does not 

provide a test statistic for phenotypic correlations, the significance of rp was 

estimated from the ratio of the phenotypic covariance component to its standard 

error compared to zero using a Z-test. 

Multivariate analysis 

Three multivariate endophenotypes were derived incorporating the two, three, or 

four traits which ranked most highly across endophenotype criteria. The two-trait 

measure (“SoS” - sum of Z-scores) was constructed by summing the two 

standardized variables, as the contributing trait weights cannot be estimated via PCA 

for fewer than three traits, so this method assigns equal weight to each trait. 

Composite traits incorporating three (Gen3) or four (Gen4) endophenotypes were 

generated by performing spectral decomposition of the genetic correlation matrix 

(using ASReml rg estimates) using the eigen function in R to compute eigenvalues 

and eigenvectors. The loading for the first principal component of each trait was then 

extracted, multiplied by its corresponding standardized trait value, and the resulting 

values summed together across traits to create the composite trait. This is visualized 

in Figure 1. 
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Figure 1. The process by which composite traits using genetic correlations were derived, 

using Gen3 as an example.  

 

Composite traits were then subjected to the same set of analyses as univariate traits 

to assess their performance as endophenotypes, relative to their constituent 

univariate traits.  

Testing performance of endophenotypes 

Using coheritability 

Coheritability (hij) between traits and MDD was calculated using the Endophenotype 

Ranking Value (Glahn et al., 2012), defined as:  hij= |√hi
2√hj

2rg| where hi
2 is the 

estimated heritability of the quantitative trait, hj
2 is the estimated heritability for 

MDD, and rg is the genetic correlation between trait and MDD.  

Using variance explained by MDD PRS  

Traits which had a significant association with MDD PRS surviving a conservative 

Bonferroni correction (P<7.14E-04) were proposed to be candidate endophenotypes 

for MDD. Variance explained by PRS was used to rank traits.  

Using GWAA 

The number of test statistics with more extreme associated p-values (P<1E-05) in 

GWAA of each trait will be used as a metric of whether quantitative candidate 

endophenotypes have improved power to identify genetic risk variants relative to the 

binary classification of MDD.  

To assess whether quantitative traits provided additional biological insight relative to 

binary MDD, SNPs with P≤1E-05 which overlapped with a known gene were further 

explored using the GeneCards database (www.genecards.org) to assess the gene(s)’ 

function and known disease associations. GeneCards draws its gene-disease 

associations from multiple external sources, including: OMIM, ClinVar, Orphanet, 

UniProtKB/Swiss-Prot, Genetic Testing Registry, miR2Disease, LncRNADisease, the 

University of Copenhagen DISEASES database and Novoseek.  
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Replication in UKBiobank 

To assess whether univariate and multivariate endophenotypes had a genetic 

correlation with MDD status in an independent sample, GWAA summary statistics of 

endophenotypes were assessed against GWAA summary statistics of MDD in UKB 

using the “rg” function LD Score regression (Bulik-Sullivan, Finucane, et al., 2015b). 

Prior to bivariate analysis, GWAA summary statistics were reformatted using the 

“munge” function (Bulik-Sullivan et al., 2015) with pre-computed LD scores estimated 

from the European-ancestry samples in the 1000 Genomes Project (Altshuler et al., 

2012). 

 

Results 

Selecting endophenotypes for use in multivariate analysis 

Effect of affection status on trait mean 

Six out of ten traits demonstrated a significant effect of case status on mean trait 

score. Four traits demonstrated an increased trait value in cases: EPQN (Z=36.74, 

p=3.85e-285), GHQ (Z=34.85, p=2.47e-255), MDQ (Z=19.08, p=2.33e-78), and SPQ 

(18.47, p=7.69e-74). Two traits demonstrated a decreased trait value in cases: EPQE 

(Z=-10.32, p=1.01e-24), and DSC (Z=-10.28, p=1.38e-23). Of these six traits, five 

traits (EPQN, GHQ, SPQ, DSC and MDQ) were also more extreme in both unaffected 

relatives and cases, although arguably, MDQ showed only nominal significance in 

unaffected relatives. The direction of effect size was consistent between unaffected 

relatives and case status. More detailed summary statistics are shown in 

Supplementary Table 1. 

Heritability of endophenotypes 

All traits were moderately heritable, with heritability estimates (h2) ranging from 

h2(se) = 0.43(0.03) for DSC to h2(se) = 0.11(0.03) for GHQ. Traits with the highest 

heritability were measures of cognitive ability, followed by personality traits and 

measures of mood. The observed heritability of MDD was estimated as 

h2(se)=0.17(0.02) which, as would be expected, is markedly lower than the estimate 

on the liability scale of h2(se) = 0.44(0.04) (Fernandez-Pujals et al., 2015). Heritability 

estimates using pedigree-data are shown in Supplementary Table 2. 

Genetic and phenotypic correlation with MDD 

Four traits had a strong (rg>0.5) and highly significant (p<1E-10) genetic correlation 

with MDD - MDQ, GHQ, SPQ, and EPQN. Whilst all of these traits also had a 

moderate (rp>0.19) phenotypic correlation with MDD, this was only statistically 

significant for two of the traits - GHQ and EPQN. Two traits, DSC and EPQE, had a 

moderate genetic correlation with MDD, although EPQE did not survive multiple 

testing correction and both traits had low, non-significant phenotypic correlations. 
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The remaining four traits, LM1, LM2D, MHV and VF, had low, non-significant genetic 

and phenotypic correlations with MDD. Results are shown in Supplementary Table 3. 

Two traits, GHQ and EPQN, fulfilled all endophenotype criteria. A further three traits, 

DSC, MDQ and SPQ, fulfilled all endophenotype criteria except sharing a statistically 

significant phenotypic correlation with MDD. A summary of how well selected 

quantitative traits fulfilled endophenotype criteria is shown in Table 2. 

 

Trait 
Assoc with 

illness in pop 

More extreme 

in 1st deg rel 

State 

indep 
Heritable rg rp 

DSC Y Y Y Y Y N 

EPQE Y N N Y N N 

EPQN Y Y Y Y Y Y 

GHQ Y Y Y Y Y Y 

LM1 N N N Y N N 

LM2D N N N Y N N 

MDQ Y Y Y Y Y N 

MHV N N N Y N N 

SPQ Y Y Y Y Y N 

VF N N N Y N N 

SoS Y Y Y Y Y Y 

Gen3 Y Y Y Y Y Y 

Gen4 Y Y Y Y Y Y 

Table 2. Summary of how well selected quantitative traits fulfilled endophenotype 

criteria. Assoc with illness in pop: the trait is associated with MDD in the population; 

More extreme in 1st deg rel: the trait is more extreme in first degree relatives; State 

indep: the trait is state independent; Heritable: the trait is heritable; rg: the trait is 

genetically correlated with MDD; rp: the trait is phenotypically correlated with MDD; 

Y/N: Yes/No. Traits which fulfil most or all of these criteria are highlighted in bold. 

Composite traits are highlighted in italics. 

Although DSC is a possible candidate and generally survived multiple testing 

correction, there was a notable drop in strength of association between DSC and 

MDD relative to other high-ranking traits. Therefore, only EPQN, GHQ, MDQ and SPQ 

were taken forward for multivariate analysis. 

Multivariate endophenotypes 

Three composite traits were derived, incorporating information from two (“SoS”), 

three (“Gen3”) and four (“Gen4”) candidate endophenotypes. Composite traits were 

assessed to ensure they also fulfilled endophenotype criteria, and to compare their 

criteria values against those from their constituent univariate traits. Univariate and 

composite traits were then ranked using coheritability and compared to binary MDD 
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in terms of variance explained by MDD PRS and the number of SNPs with a GWAA p-

value of <1E-05. 

Effect of affection status on trait mean 

All composite traits were significantly more extreme in both unaffected relatives and 

cases, with the direction of effect size remaining consistent between unaffected 

relatives and case status. Two traits demonstrated an increased trait value in cases: 

SoS (Z=41.72, p<3.85e-285) and Gen3 (Z=31.30, p=2.90e-203), whilst Gen4 

demonstrated a decreased trait value in cases: Gen4 (Z=-30.16, p=2.77e-190).  

Relative to single quantitative traits, only SoS performed better than all of its 

constituent traits (GHQ and EPQN). Gen3 and Gen4 demonstrated more extreme 

absolute values than MDQ and SPQ, but not GHQ and EPQN. More detailed 

summary statistics are shown in Supplementary Table 1. 

Heritability of endophenotypes 

All composite traits were moderately heritable. Both Gen3 and Gen4 had a 

heritability estimate of h2 (se) = 0.30 (0.05), higher than the heritability estimates for 

any of their constituent single traits: EPQN = 0.24 (0.03), MDQ = 0.21 (0.05), SPQ = 

0.19 (0.04), and GHQ = 0.11 (0.03). The heritability of SoS = 0.23 (0.03) sat between 

its constituent traits, albeit much closer to the heritability of EPQN than GHQ. 

Heritability estimates are shown in Supplementary Table 2. 

Genetic and phenotypic correlation with MDD 

All composite traits had high, statistically significant genetic correlations (rg) with 

MDD, and moderate phenotypic correlations which all survived multiple testing 

correction. The genetic correlation of SoS with MDD, rg (se) = 0.73 (0.11), sat between 

the values observed for its constituent traits, EPQN (rg = 0.54) and GHQ (rg = 0.84). 

However, the phenotypic correlation value, rp (se) = 0.30 (0.007), exceeded 

constituent traits EPQN (rp = 0.26) and GHQ (rp = 0.25). The genetic correlation 

estimates for Gen3, rg (se) = 0.90 (0.11) and Gen4, rg (se) = -0.90 (0.11) exceeded all 

their constituent traits except MDQ, rg=0.92 (0.18). The phenotypic correlation 

estimates for Gen3, rp (se) = 0.32 (0.009) and Gen4, rp (se) = -0.31 (0.009) were more 

extreme than single quantitative traits. Results are shown in Supplementary Table 3. 

In summary, all composite traits fulfilled all endophenotype criteria, in some 

instances to a more extreme extent than their constituent traits. Interestingly, given 

the traits were generated using information from matrices of genetic correlation 

values, phenotypic correlation estimates with MDD were particularly affected. This is 

also interesting as two of the composite traits (Gen3 and Gen4) included univariate 

traits (MDQ and SPQ) which did not demonstrate a significant phenotypic correlation 

with MDD themselves.  
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Ranking candidate endophenotypes 

Endophenotypes were ranked using three methods (coheritability, variance explained 

by MDD PRS, and biological insights from GWAA) to try and achieve a holistic 

overview as to whether genetically correlated univariate and composite traits could 

yield biological insight beyond that of a binary classification of MDD. Although the 

focus of this paper is on the multivariate traits and the traits used to create them, all 

ten univariate traits and three composite traits are considered in the ranking process 

and presented here for completeness. 

Using coheritability 

There was a very strong correlation between coheritability estimates and genetic 

correlation with MDD (r = 0.94, p = 2.41e-06). Results for coheritability estimates are 

presented in Table 3. All composite traits and five univariate traits (MDQ, SPQ, EPQN, 

GHQ, and DSC) remained significant after multiple testing correction. No traits had a 

higher coheritability than MDD on the liability scale (hij = 0.44). Using the observed 

heritability estimate of MDD in the coheritability calculation (hijo) did not change the 

ranking of traits, but the hijo estimates are much closer in value to the observed 

heritability estimate for MDD, h2
obs (se) = 0.17 (0.02). Both Gen3 and Gen4 have a 

coheritability on the observed scale which is higher than the observed heritability 

estimate of MDD. This suggests that Gen3 and Gen4 are better predictors of disease 

liability than the binary definition of MDD.  Furthermore, all composite traits have 

higher coheritability estimates of the liability and observed scale relative to their 

constituent traits.  

Phenotype hij hijo P-value 

MDD 0.44 0.17 - 

Gen3 0.33 0.20 <1E-10 

Gen4 0.33 0.20 <1E-10 

MDQ 0.25 0.15 <1E-10 

SoS 0.23 0.14 <1E-10 

SPQ 0.19 0.12 <1E-10 

EPQN 0.18 0.11 <1E-10 

GHQ 0.15 0.09 <1E-10 

DSC 0.10 0.06 5.93E-05 

EPQE 0.06 0.03 0.008 

LM1 0.03 0.02 0.1 

VF 0.02 0.01 0.26 

LM2D 0.02 0.01 0.25 

MHV 0.02 0.01 0.24 

Table 3. Coheritability estimates for depression, candidate univariate and multivariate 

endophenotypes on the liability scale (hij) and observed scale (hijo) with their associated 

P-value, ordered by liability scale value.   
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Using variance explained by MDD PRS 

Analysis was conducted at using SNPs from five different discovery GWAA P-value 

thresholds (PT). As PT≤0.5 explained the most variance in the discovery PGC MDD 

GWAA (Sullivan et al., 2013), this PT will be summarized here (Figure 2, Table 4). 

Results for all PT are shown in Supplementary Table 4.  

PRS for MDD were positively associated with MDD itself, EPQN, GHQ, MDQ, SPQ, SoS 

and Gen3, and negatively associated with DSC, EPQE, LM1, LM2D, MHV, VF and 

Gen4. Five traits (three univariate and two composite) survived multiple testing 

correction (P≤7.14E-04): GHQ, EPQN, LM2D, SoS, and Gen3. Variance explained by 

MDD PRS for these traits (range 0.09% - 0.24%) was smaller than the variance 

explained in the PGC MDD mega-analysis (0.6%) (Sullivan et al., 2013), but still (with 

the exception of LM2D) 2-3 times greater than the variance explained in GS binary 

MDD (0.08%). Of the composite traits, only SoS (0.24%) outperformed its constituent 

traits (GHQ = 0.19%, EPQN = 0.17%). This suggests that some quantitative traits are 

better capturing the polygenic component of MDD than the case/control 

classification as evidenced by association between score and trait, but predictive 

capacity is negligible.  
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Figure 2. Percentage trait variance explained by MDD PRS at five p-value thresholds 

(PT≤1, PT ≤0.5, PT ≤0.1, PT ≤0.05, PT ≤0.01) in (A) candidate endophenotypes and (B) 

composite traits. The horizontal line denotes the maximum variance explained by MDD 

PRS in the binary MDD phenotype. 
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Trait 
zβ/OR 

(SE/CI) 
Z-Score 

% variance 

explained 
P-value 

SoS 
0.084 

(0.013) 
6.49 0.24 9.00E-11 

GHQ 
0.043 

(0.008) 
5.74 0.19 9.85E-09 

EPQN 
0.041 

(0.007) 
5.53 0.17 3.22E-08 

Gen3 
0.053 

(0.014) 
3.90 0.16 9.79E-05 

Gen4 
-0.053 

(0.015) 
-3.45 0.13 5.66E-04 

LM2D 
-0.029 

(0.007) 
-3.98 0.09 7.03E-05 

MDD 
1.09 

(1.04,1.14) 
3.84 0.08 1.26E-04 

MDQ 0.026 (0.010) 2.56 0.07 0.01 

LM1 
-0.024 

(0.007) 
-3.17 0.06 0.002 

DSC 
-0.019 

(0.006) 
-2.89 0.04 0.004 

SPQ 0.017 (0.010) 1.70 0.03 0.09 

MHV 
-0.011 

(0.007) 
-1.60 0.01 0.11 

EPQE 
-0.006 

(0.008) 
-0.84 0.004 0.40 

VF 
-0.005 

(0.008) 
-0.66 0.003 0.51 

Table 4. Traits ranked by variance explained by depression polygenic risk score at 

discovery GWAS PT≤0.5. P-values which survived multiple testing correction are 

highlighted in bold. 

 

Genome-wide association analysis 

GWAA was performed to assess whether univariate or composite quantitative traits 

associated with MDD have improved power to identify genetic risk variants relative 

to the binary classification of MDD.  

No GWAA analysis yielded any genome-wide significant associations. Forty-four 

SNPs had a GWAA P-value ≤ 1E-05. The binary classification of MDD had 6 SNPs with 

a P-value ≤ 1E-05. Two quantitative traits had a higher number of SNPs with more 

extreme p-values, GHQ (8 SNPs) and SPQ (8 SNPs). Two quantitative traits also had 6 

SNPs, MDQ and Gen3. The remaining quantitative traits had fewer SNPs than binary 

MDD, Gen4 (5 SNPs), EPQN (3 SNPs), and SoS (2 SNPs). This suggests that 
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quantitative traits that are genetically correlated with MDD don’t have improved 

power to detect genetic variants in GWAA using the current sample size.  

Despite outperforming single traits in endophenotype criteria and ranking methods, 

composite traits performed more poorly in genome-wide association analysis in 

terms of the number of more extreme test statistics yielded for each trait, suggesting 

that improved performance in PRS analysis does not necessarily correspond to 

increased success in GWAA.  

Twenty-two SNPs overlapped with a known gene or its associated regulatory region 

(19 mapping to protein coding regions, 3 mapping to lincRNA regions). These SNPs 

were further explored using the GeneCards database to assess the gene(s)’ function 

and known disease associations. Four genes were mapped to in the binary MDD 

analysis: WNT11, CACNB2, MAST4, PPFIBP1; two genes for EPQN: CDH23, 

ENSG00000249209; three genes for GHQ: PWRN1, LRP1B, ECM1; three genes for 

MDQ: SOD1, DOCK2, SCAF4; four genes for SPQ: MYO3B, C1orf101, GPR137B, 

ENSG00000244650; two genes for SoS: ECM1, CDH23; and two genes for Gen3: 

ARAP2, GRM7. No SNPs in Gen4 mapped to a genic or regulatory region. 

Interestingly, there was no overlap in gene discovery between binary and 

quantitative measures of depression suggesting there may be biological utility in our 

approach. Some of these genes will be analysed in more depth in the discussion 

section. Summary statistics and biological annotation for SNPs with P-value ≤ 1E-05 

are shown in Supplementary Table 5. 

Replication in UKB 

To assess whether measures of MDD (binary and quantitative) had a genetic 

correlation with MDD status in an independent sample, the genetic correlation (rg) 

between GS GWAA summary statistics and MDD GWAA summary statistics from UK 

Biobank was calculated using bivariate LD Score regression (Bulik-Sullivan, Finucane, 

et al., 2015b). 

Five traits had a high rg (≥+/-0.69) which was within bounds (value between -1 and 1) 

with UKB MDD. Four traits had a positive correlation: EPQN, GHQ, SoS, and Gen3. 

Gen4 had a negative correlation. However, only EPQN and SoS remained statistically 

significant after multiple testing correction (p≤0.006).  

The genetic correlation for MDD in GS and UKB was >1 and out of bounds (rg = 

1.96). This can occur if one or both of the traits have a near-zero or negative 

heritability estimate, which is the case for MDD in GS (h2 = 0.04; SE = 0.07). Standard 

errors are large for all correlations, this could be reduced by using imputed data to 

increase the number of SNPs used in the analysis. 

Results from bivariate LD Score regression are shown in Table 5. 
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Trait rg (SE) P-value h2_liab (SE) h2_int (SE) gcov_int (SE) 

MDD 1.91 (1.67) 0.25 0.04 (0.07) 0.994 (0.007) -0.007 (0.005) 

EPQN 0.73 (0.23)  0.002 0.09 (0.03)   1.00 (0.008)   -0.005 (0.005) 

GHQ  0.76 (0.38)  0.04 0.04 (0.03)   1.01 (0.008) -0.003 (0.005) 

MDQ 0.41 (0.57)  0.47 0.03 (0.05)   1.00 (0.008)    0.005 (0.006) 

SPQ 0.04 (0.27)  0.895 0.09 (0.05) 0.99 (0.007) 0.006 (0.005) 

SoS 0.83 (0.29) 0.005 0.07 (0.03) 1.008 (0.008) -0.005 (0.005) 

Gen3 0.88 (0.60) 0.14 0.05 (0.06) 1.004 (0.008) -0.002 (0.005) 

Gen4 -0.69 (0.51) 0.18 0.05 (0.06) 1.002 (0.008) -1.99e-04 (0.005) 

Table 5. Bivariate LD Score regression between MDD and candidate endophenotypes in 

Generation Scotland and MDD in UK Biobank. P-values which survived multiple testing 

correction are highlighted in bold. rg (SE) denotes the estimated genetic correlation 

between traits its corresponding standard error. P-value denotes association P-value 

for the rG estimate; h2_liab (SE) denotes the liability heritability estimate and its 

corresponding standard error; h2int denotes the single-trait LDSR incept and its 

corresponding standard error; gcov_int denotes the cross-trait LDSR intercept. 
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Discussion 

In the current study, we sought to aid genetic discovery for depression by revisiting 

the binary phenotype and developing a quantitative trait using data from Generation 

Scotland. Our analyses aimed to test whether this derived quantitative trait has 

improved statistical power to identify genetic risk variants for depression, relative to 

the binary classification of case/control. 

Summary of findings 

Did quantitative traits fulfil endophenotype criteria? 

Two traits, GHQ and EPQN, fulfilled all endophenotype criteria: heritable, genetically 

and phenotypically correlated with depression, state independent, co-segregating 

with illness in families, and observed at a higher rate in unaffected relatives than in 

unrelated controls. A further three traits, MDQ, SPQ, and DSC fulfilled all 

endophenotype criteria except sharing a statistically significant phenotypic 

correlation with MDD. Although DSC was a considered as a potential candidate, there 

was a notable drop in strength of association between DSC and MDD relative to 

other high-ranking traits (supplementary tables 1, 3, and 4), hence it was not taken 

forward to create composite measures, which incorporated two (SoS), three (Gen3), 

or four traits (Gen4) traits. All composite traits fulfilled endophenotype criteria. 

Did endophenotypes "outperform" binary MDD? 

Endophenotypes were ranked using three methods (coheritability, variance explained 

by MDD PRS, and biological insights from GWAA) to assess their statistical power 

relative to binary MDD. 

Coheritability 

Coheritability assesses the covariation between two traits and evaluates the ability of 

quantitative traits to predict disease liability. Endophenotypes are considered a 

better predictor of disease liability than the observed trait itself if the trait has a 

higher coheritability value than the heritability of the disease trait. We considered 

coheritability using MDD heritability estimates from both the liability (Fernandez-

Pujals et al., 2015) and observed scale, as disease genotype is being predicted from 

case control status and the observed heritability takes account of the loss of 

information. Gen3 and Gen4 had higher coheritability estimates on the observed 

scale than MDD, suggesting that these composite traits may be better predictors of 

disease liability. No trait’s coheritability estimate exceeded the value for MDD on the 

liability scale.  

MDD PRS 

Variance explained by MDD polygenic risk score was chosen as a method to rank 

candidate endophenotypes because this method utilizes only common trait-

associated variants. Therefore it was hypothesized that selecting quantitative traits 

for use in GWAA based on this method may prove advantageous for gene-discovery. 
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The two univariate endophenotypes, GHQ and EPQN, and two composite 

endophenotypes, SoS and Gen3, which survived multiple testing correction all had 2-

3-fold higher trait variance explained relative to binary MDD. One trait which was not 

taken forward as an endophenotype, LM2D, also survived multiple testing correction, 

although the variance explained for this trait (0.09%) was very similar to binary MDD 

(0.08%).  

GWAA 

The ultimate purpose of ranking endophenotypes and generating composite 

measures of depression was to see what we insights we could gain from GWAA, as 

when these analyses were performed there were only two robustly replicated GWAA 

hits for depression, identified in the CONVERGE study (Cai et al., 2015).  

The majority of top-ranking SNPs did not tag genes which were explicitly linked to 

psychiatric phenotypes. Four of the 22 genes highlighted in the 8 GWAA we 

performed had a direct or plausible indirect link to the psychiatric literature: WNT11 

and CACNB2 from the MDD analysis, SOD1 from the univariate MDQ analysis, and 

GRM7 from the composite Gen3 analysis.  

Whilst WNT11 itself has not been previously reported in psychiatric disorders, it is 

inhibited by the Interleukin 1 beta (IL1β) gene which encodes for the IL-1β cytokine 

protein (Ryu and Chun, 2006). This protein has been previously implicated in 

psychiatric disorders including association with MDD symptoms in maltreated 

children of pre-school age (Ridout et al., 2014), association with case-control status 

in a small schizophrenia case-control study (Kapelski et al., 2015), and increased 

activity in the bilateral frontal region of the brain, such as the pre-frontal cortex, in 

schizophrenia patients (Fatjó-Vilas et al., 2012). 

CACNB2 encodes for the voltage-dependent L-type calcium channel subunit beta-2 

protein and has been cited numerous times in the literature for its potential 

involvement in the aetiology of psychiatric disorders. SNPs within CACNB2 achieved 

genome-wide significance in the PGC cross-disorder association meta-analysis of 

autism, ADHD, bipolar disorder, MDD and schizophrenia (Smoller, 2013) and is 

associated with bipolar disorder in GWAS in Han Chinese (Lee et al., 2011) and 

Taiwanese (Jan et al., 2014) populations. Hypermethylation of CACNB2 has been 

observed in haplotype carriers compared to married-in controls in a Scottish family 

multiply affected by bipolar disorder and MDD, who carry an illness-linked haplotype 

on chromosome 4p (Walker et al., 2016).  

SOD1 (Superoxide Dismutase 1) encodes an enzyme which catalyzes the dismutation 

of superoxide anions, a type of reactive oxygen species (ROS). In mice, transgenic 

overexpression of SOD1 resulted in increased resilience to glucocorticoid-induced 

depressive-like behaviour relative to wild type mice in the social interaction test, 

sucrose preference test and forced swim test. Overexpression of SOD1 also resulted 
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in the reduction of a marker of oxidative stress, suggesting that this increased 

resilience is mediated by decreasing cellular ROS levels (Uchihara et al., 2016). In 

humans, significantly reduced expression of SOD1 has been observed in conjunction 

with telomere shortening in white matter oligodendrocytes from MDD donors, 

relative to control donors (Szebeni et al., 2014). MDD patients have also been shown 

to exhibit significantly higher activity levels of SOD1 during an acute depressive 

episode relative to healthy controls (Gałecki et al., 2009).  

GRM7 (Metabotropic glutamate receptor 7 precursor) has previously been 

association with MDD via linkage analysis in a large study of families with severe, 

recurrent MDD (Breen et al., 2011) and a smaller study of families of heavy smokers. 

This gene has also been implicated as a potential candidate gene for MDD (p=1.11E-

06) via meta-analysis of three MDD case-control cohorts of European ancestry: 

STAR*D, GenRED, and GAIN-MDD (Shyn et al., 2011). Interestingly, this region of the 

genome was also identified for MDD in GS in a GWAS of a continuous measure of 

MDD created by performing Factor Analysis on SCID questions (unpublished).  

Did findings replicate in UKB? 

Only EPQN and SoS survived multiple testing correction in the bivariate LD Score 

Regression analysis with UK Biobank MDD. Three other traits with a high genetic 

correlation (GHQ, Gen3, Gen4), which did not survive owing to substantial standard 

error values. This is due to the GS data not being imputed, as the genetic correlation 

value is estimated using only SNPs which are in common between GS, UKB, and the 

LD reference panel (N=460,951). This makes it difficult to definitively ascertain 

whether the highest ranking endophenotypes in GS correlate with MDD in UKB.  

Limitations 

Whilst the question posed in this manuscript is sensible statistically and genetically, 

the tools and methods used to answer the question were subject to several 

limitations which are important to consider.  

Pedigree versus genotype methods 

Given our outcome of interest was number of SNPs identified via GWAA and their 

biological interpretation, it may have proven advantageous to use SNP-based metrics 

of heritability and genetic correlation, instead of pedigree-based methods which may 

be inflated by capturing non-additive and rare genetic effects. 

Indeed, the convergence of our two endophenotype ranking methods - the 

coheritability and variance explained by MDD PRS were weakly correlated (adjusted 

R2 = 0.09) and non-significant (F(1,8) = 1.9; p = 0.20), as shown in Figure 3. 
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Figure 3. Linear relationship between variance explained by MDD PRS and 

observed coheritability with MDD for selected mood, personality and cognitive 

traits, showing a lack of convergence between ranking methods. 

 

However, the choice was made to pursue pedigree-based methods on the basis that 

heritability estimates using pedigree information do not suffer downward biases as a 

product of phenotypic heterogeneity to the same extent as estimates using genomic 

information (Wray and Maier, 2014).  

Secondly, at the time this study was conducted, only the raw genotype information 

was available. Estimates derived from genotype data are limited by the fact that they 

only account for the variance explained by common SNPs that are tagged by 

genotyped variants, and not all causal variants, and as such gives a lower bound 

heritability estimate. This is incongruent with the purpose of this study, namely, to 

derive a quantitative trait where the heritability was maximized. If the study was 

repeated in a large, population-based sample with imputed genetic data, using 

genotypic metrics of coheritability would be the sensible approach.  

Trait selection 

EPQN, GHQ, MDQ and SPQ were taken forward as the highest ranking 

endophenotypes to be used in the creation of composite traits. Although their high 

genetic correlation and coheritability made MDQ and SPQ an appealing choice, these 

traits had a markedly reduced sample size (N~10,000), about half that of other 

available measures (N~20,000). It could be fruitful to derive a composite trait which 

used information from EPQN, GHQ and DSC, as DSC generally performed well across 
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endophenotype criteria, and has the advantage of a sample size more equivalent to 

EPQN and GHQ.  

Model selection 

The mixed family and population structure of GS yields some analytical advantages. 

For example, complex pedigrees improve the ability to partition variance into causal 

components, which can be difficult due to the differential rate of decay of 

environmental and genetic sources of correlation (Tenesa and Haley, 2013). However, 

this also makes building a regression model which balances adequately accounting 

for sources of confounding with computational and statistical issues challenging. 

In pedigree-based analyses, shared household and sibling environment were fitted as 

random effects to account for shared environment. The addition of common spouse 

environment was also tested, and improved model fit for seven traits (GHQ, MDQ, 

SPQ, DSC, EPQE, LM2D and VF). We chose not to include spouse as a random effect, 

as without longitudinal data it is difficult to distinguish between common 

environment and assortative mating. The purpose of fitting environmental sources of 

resemblance in this study is to ensure that heritability estimates are not 

overestimated and fitting a spousal environmental effect in the presence of 

assortative mating would incorrectly partition some of the variance from the genetic 

effect. However, assortative mating could be explicitly tested using the methods 

outlined in Robinson et al (Robinson et al., 2017).  

The way forward 

The two primary factors which have hindered genetic discovery in depression have 

been statistical power and heterogeneity. That being said, since this work was 

conceived, phenomenal progress has been made in psychiatric genetics. The most 

recent MDD GWAA employed a minimal phenotyping approach to achieve a 

substantial discovery sample size (N=807,553) which identified associations in 102 

independent loci, 87 of which replicated in an independent sample. This 

demonstrates that, even without addressing heterogeneity, with considerable sample 

size increases we gain sufficient statistical power to detect the many variants of small 

effect (OR = 0.97-1.05) contributing to the polygenic burden of depression and 

enriched in biological plausible pathways associated with synaptic structure and 

neurotransmission (Howard et al., 2019). 

Focussing on minimal phenotyping has its statistical advantages, but some of the 

nosological concerns are analogous to the pleiotropic considerations in the current 

study. Cai and colleagues conducted a study to empirically test the genetic 

differences between minimal phenotyping and clinically defined depression in the 

same individuals using UK Biobank data. Their concern with minimal phenotyping is 

that it introduces substantial measurement error due to the lack of clinical interaction 

in 50% of self-declared patients, and the prevalence of anti-depressant usage for 
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conditions other than depression. They observed that strictly defined MDD had a 

higher heritability estimate (h2=0.26) than minimal phenotyping (h2=0.14), and that 

the signal for the minimal phenotype was spread across a greater proportion of the 

genome (80.2%) than strict MDD (65.8%) (Cai et al., 2019).  

One could argue that the strong genetic correlation (rg=0.86, SE=0.05) between self-

reported and clinically diagnosed MDD (Howard et al., 2018), or our quantitative 

traits and MDD, represents a shared additive component which should ameliorate 

concerns over phenotypic validity. However, each trait still has a non-shared genetic 

component. Therefore it does not necessarily follow that signal arising from the 

analysis of minimal or quantitative phenotypes is representative of what is shared 

with clinically defined depression. One means of combating this issue would to be to 

employ methods such as GSEM (Grotzinger et al., 2019) or GWIS (Nieuwboer et al., 

2016) to capture the shared genetic component between the trait of interest and 

clinical depression whilst discarding the non-shared components, then take this 

factor (GSEM) or principal component (GWIS) forward for analysis.  

Regarding heterogeneity, one approach is to stratify the depressed phenotype into 

discrete subgroups. Recent work by Howard et al attempted this aim using traits 

which were significantly correlated with depression and sufficiently well powered for 

analysis using BUHMBOX. They observed no evidence for subgroups within 

depression with the psychiatric, autoimmune, and anthropomorphic traits tested, 

suggesting the genetic correlations between these traits and MDD were driven by 

pleiotropic variants carried by most or all cases, rather than a specific subgroup 

(Howard et al., 2020).  

So the question remains - how can we exploit pleiotropy to characterize the biology 

of depression? One possibility would be to identify endophenotypes of specific 

symptom domains, as individual symptoms are differentially heritable (Fried and 

Nesse, 2015a) and risk factors exert differential influences on individual symptoms 

(Lux and Kendler, 2010; Fried et al., 2014). This would prevent approaching 

depression as a sum-score of many disparate symptoms, collapsing individuals into 

one undifferentiated category which assumes that symptoms are interchangeable 

and equal in pathological contribution, when that is not the case (Fried and Nesse, 

2015a). For the purposes of case control studies, it would also be invaluable for 

control participants to fully complete structured interviews, as a lot of valuable 

information is lost due to questions being skipped once the initial screening 

questions have been administered. This additional information could be used to 

inform stratification, with multivariate methods such as item response theory and 

structural equation modelling being employed to analyse the exact relationships 

between symptoms and underlying dimensions (Fried and Nesse, 2015a).  
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Conclusions 

When considering the evolution of our understanding of inheritance, the plant 

hybridization experiments of Gregor Mendel are forefront in our consciousnesses. 

Mendel’s observations were undoubtedly extraordinary and revolutionary, 

establishing that two parental units of inheritance give rise to phenotypic traits - 

nearly a century before the characterization of DNA. However, the binary lens 

through which traits were viewed gives rise to a false model of dominance, 

encouraging a reductive genetic determinism that has previously been ascribed the 

moniker “Scientific Calvinism” (Radick, 2016).  

Weldon’s revisitation of Mendel’s experiments, albeit much less remembered, 

demonstrate theories that are a much closer approximation to how we understand 

complex trait genetics today - embracing complexity and variation. If we continue to 

categorize quantitative liabilities as binary traits, we risk deliberately excluding 

variability that would produce alternative pathophysiological associations (Stearns, 

2010), and being limited to only observing what has already been observed. 

Mendel’s ratio and the co-segregation of traits would remain consistent through the 

generations if the traits remained binary, yet no single gene has been identified as 

having a pleiotropic effect on seed coat colour, flower petal colour, and axial spots. 

So whilst Mendelian genetics plays a historical, foundational role in how we approach 

the biggest challenges of psychiatric genetics today, the Weldonian emphasis on 

variation, ancestry, and environment is much more likely to help us bridge the gap 

between statistical association and functional consequences. 
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