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ABSTRACT 

Reticular pseudodrusen (RPD) signify a critical phenotype driving vision loss in age-related 

macular degeneration (AMD). Their detection is paramount in the clinical management of those 

with AMD, yet they remain challenging to reliably identify. We thus developed a deep learning (DL) 

model to segment RPD from 9,800 optical coherence tomography B-scans, and this model 

produced RPD segmentations that had higher agreement with four retinal specialists (Dice 

similarity coefficient [DSC]=0·76 [95% confidence interval [CI] 0·71–0·81]) than the agreement 

amongst the specialists (DSC=0·68, 95% CI=0·63–0·73; p<0·001). In five external test datasets 

consisting of 1,017 eyes from 812 individuals, the DL model detected RPD with a similar level of 

performance as two retinal specialists (area-under-the-curve of 0·94 [95% CI=0·92–0·97], 0·95 

[95% CI=0·92–0·97] and 0·96 [95% CI=0·94–0·98] respectively; p≥0·32). This DL model enables 

the automatic detection and quantification of RPD with expert-level performance, which we have 

made publicly available.  
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INTRODUCTION 

Age-related macular degeneration (AMD) remains one of the leading causes of irreversible vision 

loss worldwide.1 The hallmark of AMD is the presence of drusen, which are focal accumulations of 

extracellular debris that form beneath the retinal pigment epithelium (RPE).2 In recent years 

however, reticular pseudodrusen (RPD) – distinct subretinal drusenoid deposits that accumulate 

above the RPE – have emerged as a critical phenotype driving vision loss in AMD.3  

 

RPD have been observed to be a high-risk factor for developing late AMD complications,4,5 

especially for geographic atrophy (GA) – a late complication characterised by loss of the 

photoreceptors, RPE, and choriocapillaris, leading to profound loss of central vision.2 A previous 

meta-analysis reported that RPD were associated with a nearly five-fold increased risk of 

developing GA,5 and another recent study showed that eyes with RPD exhibit a 35% faster rate of 

the GA enlargement.6 The presence of RPD is also associated with significant impairment in visual 

function,3,7,8 especially during dark adaptation.9,10 Importantly, RPD also appeared to be a 

significant treatment effect modifier in a recent randomized trial investigating the role of a 

subthreshold nanosecond laser for slowing disease progression in the early stages of AMD.11 

Specifically, a post-hoc analysis revealed that those without coexistent RPD showed a four-fold 

reduction in the rate of developing late AMD with treatment, whilst in contrast, those with RPD 

showed a more than two-fold increased rate of developing late AMD.11  

 

When using conventional colour fundus photographs, approximately half to three-quarters of eyes 

with RPD that can now be detected on three-dimensional optical coherence tomography (OCT) 

scans are missed.3 Whilst OCT imaging is becoming increasingly ubiquitous in clinical practice, 

recent studies have observed a notable degree of variability in the assessment of RPD on OCT 

scans, even between experienced graders and retinal specialists.12,13 There is thus a crucial unmet 

need in the clinical management of AMD for a robust, objective method for detecting RPD on OCT 

scans with expert-level performance.  
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Previous studies have shown that an increasing extent of RPD, and not just their presence, is 

associated with greater levels of impairment in visual function.7,8 An automated method for 

quantifying the extent of RPD would thus allow us to understand whether associations between 

RPD and an increased risk of vision-threatening late AMD development or GA progression, or with 

treatment effect modification, differ based on RPD extent or minimum number of lesions present.   

 

Deep learning models using convolutional neural networks (CNNs) for medical images have been 

shown to achieve similar diagnostic performance as healthcare professionals across a range of 

tasks.14 With OCT imaging in ophthalmology, deep learning models have enabled the detection of 

referrable sight-threatening retinal diseases15 and glaucomatous optic neuropathy,16 quantification 

of GA,17 and prediction of neovascular AMD development,18 in a manner that is comparable to, or 

exceeds the performance of, human experts. Deep learning models have recently been developed 

to detect RPD on OCT scans, but studies to date have been limited by small cohort sizes for 

evaluating the model performance.13,19-21 Importantly, to the best of our knowledge, none of these 

models for detecting RPD on OCT have been externally evaluated.  

 

In this study, we aimed to develop a deep learning model for the segmentation of RPD lesions on 

individual OCT B-scans (i.e., single slices of a three-dimensional volumetric scan). We aimed to 

externally test the performance of this model for detecting RPD on OCT volume scans in multiple 

cohorts globally and compare its performance against that of retinal specialists.  

 

 

METHODS 

Overview of Study Design 

Details of the study methodology are described further below, but herein we describe an overview 

of the study design. In this study, we first used data from individuals with intermediate AMD in the 

Laser Intervention in the Early Stages of AMD (LEAD) study11 to develop a deep learning model for 

segmenting RPD lesions on OCT B-scans and internally test its performance against four retinal 

specialists. We then externally tested the performance of the model for detecting RPD in OCT 
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volume scans from non-late AMD eyes from individuals with intermediate AMD or unilateral late 

AMD in five independent datasets: the MACUSTAR study,22 the Northern Ireland Cohort for 

Longitudinal Study of Ageing (NICOLA) study,23 the Montrachet study,24 AMD observational 

studies at the University of Bonn, Germany (UB), and a routine clinical care cohort seen at the 

University of Washington (UW). The performance of the model in these external datasets was 

compared against the assessments by two retinal specialists. All studies adhered to the tenets of 

the Declaration of Helsinki, and respective institutional review board approvals were obtained at 

each site. This study followed the Transparent Reporting of a multivariable prediction model for 

Individual Prognosis or Diagnosis (TRIPOD) reporting guidelines.25 

 

Study Datasets and Eligibility Criteria 

All individuals in this study underwent OCT imaging using the Heidelberg Spectralis HRA+OCT 

(Heidelberg Engineering; Heidelberg, Germany), and the scan parameters used in the different 

datasets are described in the Supplementary Materials. Only OCT scans deemed to be gradable – 

those where the retina was sufficiently visible to assess pathological changes – were included in 

this study. Individuals were deemed to have intermediate or late AMD as defined based on a 

clinical history, and fundus examination and/or colour fundus photographs, as per the Beckman 

clinical classification of AMD.26 For individuals with late AMD in one eye, only the non-late AMD 

eyes with large drusen (>125 µm) were included. 

 

The deep learning model was developed using the prospectively-collected, baseline OCT scans 

(prior to any treatments) of individuals enrolled in the LEAD study,11 a randomised trial of a 

subthreshold nanosecond laser in intermediate AMD conducted at six sites (NCT01790802). OCT 

B-scans from 200 eyes from 100 individuals in the LEAD study were randomly selected to undergo 

manual annotations of RPD by a single grader (HK) at the pixel level, following training from two 

senior investigators (RHG and ZW). Only definite RPD lesions, defined as subretinal 

hyperreflective accumulations that altered the contour of, or broke through, the overlying 

photoreceptor ellipsoid zone on the OCT B-scans27 were annotated. Other diffuse subretinal 
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hyperreflective accumulations that did not meet this above definition were not annotated, as there 

is very poor inter-reader agreement for assessing even their presence on OCT B-scans.12 

 

The deep learning model was then internally tested in a different set of OCT scans from 125 eyes 

from 92 individuals from the LEAD study. This internal test set included all the remaining eyes that 

were graded as having RPD in the LEAD study11 from individuals that were not selected for 

training the deep learning segmentation model described above, and then one randomly selected 

eye from a randomly selected subset of individuals in the LEAD study without RPD to reach the 

above total number of eyes. Two B-scans from each eye were then randomly selected for manual 

annotations of RPD (as defined above; total of n = 250 B-scans) by four retinal specialists (RHG, 

AYL, AC, and MO), who performed this task independently and masked to the eye-level RPD 

grading.  

 

External testing of the deep learning model for detecting RPD in an OCT volume scan was then 

performed in the five abovementioned datasets, where the presence of RPD was graded either as 

part of each study (MACUSTAR and UB datasets) or graded by one of the study investigators (HK; 

in the NICOLA, UW, and Montrachet datasets). All these studies defined RPD based on the 

presence of five or more definite lesions on more than one OCT B-scan that corresponded to 

hyporeflective lesions seen on near-infrared reflectance imaging. These datasets were then 

independently graded for RPD by two retinal specialists (RHG and DH) using a continuous scale (0 

to 100%) for the certainty of their presence. 

 

Model Development and Implementation 

We developed a deep learning model for segmenting RPD based on instance segmentation, an 

approach that detects and then delineates individual objects within a class, namely individual RPD 

lesions in this study. Details of this instance segmentation model are described in the 

Supplementary Materials. The development dataset was split at the individual level into five folds 

to train and tune five instance segmentation models, all of which were then used to create the final 

soft-voting ensemble model. From each input OCT B-scan, the model produced bounding boxes 
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and segmentation masks delineating individual RPD lesions with an associated probability. A 

tuneable threshold was then applied to produce a binary classification of an instance. This output 

was used for the internal testing of RPD segmentation at the pixel level.  

 

When evaluating the performance of the deep learning model for detecting RPD in an OCT volume 

scan, the one-dimensional label of RPD presence per A-scan (vertical column of pixels) from each 

two-dimensional B-scan was derived based on the presence of an RPD instance in the A-scan. 

The total percentage of A-scans in the entire OCT volume scan with the RPD label was then 

derived to provide a quantitative measure of its two-dimensional en face extent, which was used 

for the external testing for detecting RPD on OCT volume scans. 

 

Statistical Analysis 

The primary outcome was the comparison of the performance of the deep learning model for 

detecting RPD in an OCT volume scan in the external test datasets against independent grading 

by retinal specialists. This was evaluated based on the area under the receiver operating 

characteristic curve (AUC), with the differences in the measures between the deep learning model 

and each retinal specialist compared using a Wald test. Standard errors were calculated using a 

bootstrap resampling procedure (n = 1,000 resamples at the individual level to account for 

between-eye correlations).  

 

The secondary outcome was a comparison of the pixel-level of agreement for RPD between the 

output of the deep learning model and manual annotations by retinal specialists evaluated in the 

internal test dataset. This was first examined based on the Dice similarity coefficient (DSC), which 

was calculated from individual pairwise evaluations between the model and each grader (“model-

grader”), and between graders (“inter-grader”). The DSC is defined as two times the number of 

overlapping pixels for a given label between the two samples, divided by the total number of pixels 

of the label from the two samples. The DSC was assigned a value of 1·0 to all pairwise 

comparisons where no pixels on a B-scan were labelled as having RPD. The difference in the DSC 

between the mean model-grader and inter-grader comparisons was calculated using a random 
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intercepts model, specifying random effects at the person, eye, and B-scan levels to account for 

between- and within-eye correlations, and correlations from repeated pairwise comparisons 

between the model and graders. 

 

Role of the funding source  

The funders had no role in study design, data collection, data analysis, data interpretation, or 

writing of the report. The corresponding author had full access to all the data in the study and had 

final responsibility for the decision to submit for publication. 

 

 

RESULTS:  

Study Data Characteristics 

The development dataset consisted of 9,800 OCT B-scans from 200 volume scans, taken from 200 

eyes of 100 individuals with intermediate AMD at baseline in the LEAD study.11 The internal test 

dataset for comparing the level of pixel-level RPD agreement between the deep learning model 

and retinal specialists consisted of 250 OCT B-scans from 125 volume scans, taken from 125 eyes 

of 92 individuals with intermediate AMD at baseline also from the LEAD study.11 Five external test 

datasets for evaluating the performance of the deep learning model for detecting RPD on OCT 

volume scans compared to retinal specialists consisted of a total of one OCT volume scan each 

from 1,017 eyes of 812 individuals. The characteristics of the individuals included in each of these 

datasets are presented in Table 1. 
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 Table 1 | Characteristics of individuals included in the development and test datasets  

  
Development 

Dataset 

Internal 
Test 

Dataset 

External Test Datasets  

  MACUSTAR NICOLA UW UB Montrachet  

 Number of OCT 
B-Scans 9,800 250 - - - - -  

 Number of OCT 
Volume Scans 200 125 164 267 97 31 458  

 Number of Eyes 200 125 164 267 97 31 458  

 Number of 
Individuals 100 92 164 219 97 23 309  

 Age, years 69 (8) 71 (7) 71 (8) 68 (9) 76 (10) 69 (7) 83 (4)  

 Sex         

    Female 75 (75%) 65 (71%) 107 (65%) 102 (47%) 58 (60%) 13 (57%) 195 (63%)  

    Male 25 (25%) 27 (29%) 57 (35%) 117 (53%) 39 (40%) 10 (43%) 114 (37%)  

 Number of Eyes 
with RPD 50 (25%) 70 (56%) 37 (22%) 33 (12%) 44 (45%) 4 (13%) 95 (21%)  

 Data are n, mean (SD), or n (%). OCT = optical coherence tomography. RPD = reticular pseudodrusen. NICOLA = the Northern 
Ireland Cohort for Longitudinal Study of Ageing. UW = University of Washington. UB = University of Bonn. Only data for the 
number of OCT volume scans for the external test datasets are presented as the evaluation of RPD as only performed at the OCT 
volume scan level in these datasets. 

 

 

 

 
Performance for Pixel-Level Segmentation of RPD 

In the internal test dataset, the mean pixel-level agreement for labelling RPD between the DL 

model and the four graders (model-grader DSC = 0·76, 95% confidence interval [CI] = 0·71–0·81) 

was higher than the agreement between the graders (inter-grader DSC = 0·68, 95% CI = 0·63–

0·73; p<0·001). These findings, along with the individual pairwise DSC, are shown in Table 2. 

Similar findings were observed when comparing the deep learning model and one grader against 

aggregate annotations from three graders using a weighted voting algorithm (data presented in the 

appendix, pp 3–4). An OCT B-scan from this internal test set with the segmentation output of the 

DL model and the annotations by the four graders are shown in Figure 1. 
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 Table 2 | Pixel-level agreement for reticular 
pseudodrusen on optical coherence tomography B-
scans, internal test set 

 

  Dice Similarity Coefficient (DSC)  

 Individual 
Comparisons 

Grader 
Two 

Grader 
Three 

Grader 
Four 

DL  
Model 

 

    Grader One 0·58 0·83 0·76 0·82  

    Grader Two - 0·53 0·61 0·64  

    Grader Three - - 0·75 0·79  

    Grader Four - - - 0·81  

 Mean of 
Comparisons 

     

    Inter-Grader 0·68 (0·63–0·73)  

    Model-Grader 0·77 (0·71–0·81)  

 DSCs are presented for individual and mean pairwise comparisons between 
each of the four graders (inter-grader) or between each grader and the deep 
learning (DL) model.  

 

   

 

 

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.09.11.24312817doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.11.24312817


 9 

 

Figure 1 | Segmentation output of the deep learning model compared to human experts 

A representative OCT B-scan from the internal test set is shown with the segmentation output from 

the deep model (green) and the annotations from the four retinal specialists (red, orange, blue, and 

purple) overlaid to illustrate the inter-grader and model-grader agreement.  

 

 

Original B-scan

DL Model

Grader 2

Grader 3

Grader 4

Grader 1
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External Evaluation of Detection of RPD on OCT Volumes 

In the external test datasets, the overall performance for detecting RPD by the deep learning 

model (AUC = 0·94; 95% CI = 0·92–0·97) was comparable with those by two retinal specialists 

(AUC = 0·95 [95% CI = 0·92–0·97] and AUC = 0·96; 95% CI = 0·94–0·98; both p≥0·32). These 

findings are illustrated in the receiver operating characteristic curve in Figure 2, and summarised 

and presented alongside the findings for each external dataset separately in Table 3. Similar 

findings were also observed evaluating the area under the precision-recall curve (data presented in 

the appendix, pp 4–5).  

 

 Table 3 | Detection of reticular pseudodrusen on optical coherence 
tomography volume scans, external test sets 

 

  DL Model  Grader A Grader B  

 All External Datasets Combined     

    AUC 0·94 
(0·92–0·97) 

0·95  
(0·92–0·97) 

0·96 
(0·94–0·98) 

 

    p value - 0·94 0·32  

 External Dataset: MACUSTAR     

    AUC 0·92  
(0·85–0·97) 

0·89 
(0·81–0·96) 

0·91 
(0·84–0·97) 

 

    p value - 0·46 0·84  

 External Dataset: NICOLA     

    AUC 0·96 
(0·89–1·00) 

0·97  
(0·90–1·00) 

0·93 
(0·83–0·99) 

 

    p value - 0·86 0·47  

 External Dataset: UW     

    AUC 0·98 
(0·95–1·00) 

0·96  
(0·91–0·99) 

0·98 
(0·96–1·00) 

 

    p value - 0·40 0·86  

 External Dataset: UB     

    AUC 0·75 
(0·25–1·00) 

0·75 
(0·25–1·00) 

0·86 
(0·61–1·00) 

 

    p value - 1·00 0·67  

 External Dataset: Montrachet     

    AUC 0·94 
(0·89–0·98) 

0·96 
(0·91–0·99) 

0·96 
(0·94–1·00) 

 

    p value - 0·50 0·11  

 Data in parentheses are 95% confidence intervals from non-parametric bootstrap. DL = deep learning. 
AUC = area under the receiver operating characteristic curve. NICOLA = the Northern Ireland Cohort for 
Longitudinal Study of Ageing. UW = University of Washington. UB = University of Bonn. The p values are 
shown for comparison against the DL model. 
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Figure 2 | Receiver operating characteristic (ROC) curve for detecting RPD 

The performance of the deep learning (DL) model and two retinal specialist graders for detecting 

RPD in OCT volume scans in all external test datasets combined, as evaluated based on the area 

under the ROC curve (AUC; 95% confidence intervals [CI] are also presented in parentheses). 

 

 

DISCUSSION 

In this study, we developed a deep learning model for the automated detection and segmentation 

of RPD on OCT scans. When evaluated across five external datasets, the performance of this 

model for detecting RPD on OCT volume scans was comparable with two retinal specialists. This 

model also showed a higher level of agreement with four retinal specialists for the segmentation of 

RPD lesions on OCT B-scans when compared to the level of inter-grader agreement in the internal 

test dataset. Together, these findings suggest that expert-level performance for the automated 

detection of RPD on OCT scans can be achieved using the deep learning model developed in this 

study. 
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RPD have been increasingly recognised as a critical phenotype driving vision loss in AMD,3 having 

been reported to be a high-risk factor for developing late, vision-threatening complications of this 

disease.4,5 Eyes with RPD also exhibit significant impairment in visual function,3,8-10 and more 

importantly, they have been observed to respond differently – potentially worse – to intervention.11 

Thus, the detection of RPD is critical in the clinical management of AMD, especially for those with 

the early stages of this condition, for both patient counselling and monitoring. Furthermore, 

accurate detection of RPD is becoming vital in the current era where novel interventions are being 

tested in the early stages of AMD, given that RPD may influence treatment responses.  

 

However, the detection of RPD on OCT scans remains a challenging task, with a notable degree of 

variability existing in the assessment of their presence even between retinal specialists and 

experienced graders.12,13 Previous studies have developed deep learning models to detect RPD on 

two-dimensional retinal imaging modalities such as colour fundus photography and fundus 

autofluorescence (FAF).28,29 However, these imaging modalities are unable to specifically 

distinguish the subretinal localisation of RPD from conventional drusen (a defining characteristic of 

RPD lesions) in a manner that is possible with three-dimensional OCT imaging.27 Additionally, 

approximately half to three-quarters of eyes with RPD visible on OCT scans are typically missed 

on colour fundus photographs, and approximately one in five eyes with RPD on OCT scans are 

missed on FAF imaging.3 Furthermore, previous studies that have developed deep learning 

models to detect RPD from OCT scans have only evaluated their performance in relatively small 

internal test datasets.13,19-21 In contrast, our model was externally evaluated in over 1,000 eyes 

from 800 individuals across five independent and geographically distinct cohorts, which is crucial to 

understand its generalisability. Of the two previous studies that evaluated the model performance 

compared to human experts in internal test datasets, one study reported comparable agreement 

between the model and four human graders,19 whilst another showed a slightly lower overall level 

of model-grader agreement when compared to inter-grader agreement.13 Instead, we observed a 

higher level of agreement between the deep learning model developed in this study and four retinal 

specialists, when compared to the agreement between these four human experts.  
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The deep learning model developed in this study provides an automated tool for detecting RPD on 

OCT scans with expert-level performance and interpretable segmentation outputs for visualisation. 

This model has the potential to not only provide an objective method for RPD detection, but also 

for the quantification of their extent, which would be prohibitively time-consuming to perform 

manually. This deep learning segmentation model could therefore be used in future studies to 

understand whether an increasing extent of RPD, or whether a certain minimum number of lesions 

present, is associated with an increased risk of developing late AMD,4,5 faster rate of GA 

progression,6 or with treatment effect modification.11 To facilitate such future research, we have 

made this deep learning model publicly available. 

 

Nonetheless, our study has some limitations to consider. First, the deep learning model was 

developed and evaluated only on OCT scans acquired using one widely used type of device 

(Heidelberg Spectralis HRA+OCT), and we have not tested its performance on scans obtained 

from other devices. Second, this deep learning model for RPD was also only developed and 

evaluated on gradable OCT scans. A separate deep learning model to identify ungradable scans is 

thus required for a fully automatic application of this model to avoid potentially misleading outputs 

being generated from ungradable scans. Finally, we only included eyes with non-late AMD in this 

study, as the detection of RPD in these eyes is important clinically for risk assessment of the 

development of late AMD complications and when evaluating new preventative treatments.  

 

In conclusion, this study describes the development and evaluation of a deep learning model for 

instance level segmentation of RPD on OCT scans. The model achieved performance comparable 

with human experts for their detection on OCT volume scans when evaluated in five external 

cohorts. This model also showed a higher level of agreement with four retinal specialists for RPD 

segmentation on OCT B-scans when compared to the inter-grader agreement. This method thus 

shows potential for supporting the clinical management of individuals with AMD by providing an 

objective and automated means for detecting and quantifying this important disease phenotype. 

We have made this deep learning model publicly available to facilitate research to understand the 
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disease mechanisms driving RPD formation and vision loss in AMD, and to develop targeted 

treatments for these individuals. 
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Data Sharing 

The deep learning model developed in this study has been made publicly available online here: 

https://github.com/uw-biomedical-ml/detectron2-rpd-yb. However, the datasets used to develop 

and externally evaluate the deep learning model in this study is not publicly available, as they 

either relate to real-world clinical data that cannot be shared publicly or require written research 

collaboration agreements.  
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