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Supplementary Figures 

 
Supplementary Figure 1. 𝑋 and 𝑌 are two complex traits, and 𝑈 a latent confounder with causal effects on each other. 
𝐺 represents a genetic variant, with putative effects on 𝑋, 𝑌 and 𝑈. 



 
Supplementary Figure 2. A) Precision and B) Recall of PRISM predictions for significant variant-trait effects, on 
simulations. The x-axis represents the simulated traits in the network (See Fig. 6 and Online Methods). Significant 
effects are defined with 𝑃 < 5 × 10#$/17, the recommended threshold from PRISM (See Online Methods). Bars are 
colored according to predicted direct and pleiotropic labels. By convention, when variants neither exist nor were 
predicted for a given label, the accuracy or the recall equals 1, such cases are indicated with ND. Eight scenarios are 
represented across facets, with varying parameters. Polygenicity represents the proportion of variants with a direct 
effect on each trait. Effect on 𝐵4, the most pivotal trait, represents the proportion of effect passed to 𝐵4, for all traits with 
a non-zero vertical effect on 𝐵4. High targeted confounder means that few variants (0.01%) have an effect on the 
confounder U, but with magnitude of effect rivaling direct effects. Low pervasive confounder means that a large 
proportion (5%) of variants have an effect on the confounder, but with low magnitude. A) The y-axis represents the 



precision which is the proportion of well-predicted variants among all predicted variants for a given label. B) The y-axis 
represents the recall, which is the proportion of well-predicted variants among all true variants for a given label. NB: 
results for traits 𝐴-𝐷 can be found in Fig. 2 

 
Supplementary Figure 3. Violin plot of the similarity between PRISM-predicted variant networks and true simulated 
networks, evaluated using the Simple Matching Coefficient (SMC), represented on the y-axis. The SMC measures the 
accuracy of the predicted networks by matching their edges with those of the true networks. A SMC of 1 indicates that 
all predicted edges are true edges, while a SMC of 0 indicates that none of the predicted edges correspond to the true 
edges. The x-axis displays the eight simulated scenarios involving 18 traits with high heritability, as detailed in 
Supplementary Table 1. The red dot represents the average SMC. 



 
Supplementary Figure 4. Violin plot of the similarity between true simulated networks and PRISM-predicted variant 
networks, evaluated using the Simple Matching Coefficient (SMC), represented on the y-axis. The SMC measures the 
power of detecting true networks by matching their edges with those of the predicted networks. A SMC of 1 indicates 
that all true edges are predicted, while a SMC of 0 indicates that none of the true edges are predicted. The x-axis 
displays the eight simulated scenarios involving 18 traits with high heritability, as detailed in Supplementary Table 1. 
The red dot represents the average SMC. 

 
Supplementary Figure 5. P-values (−𝑙𝑜𝑔!%) from the UK Biobank GWAS on coronary heart disease (CHD) (x-axis) 
and PRISM (y-axis) for 947 genetic variants. Each dot represents a significant variant according to GWAS or PRISM, 
colored according to PRISM predicted labels: direct (blue), vertical (green) and confounder (red). 



 
Supplementary Figure 6. Circos plot of shared variants, for all traits processed by PRISM. This represents genetic 
pleiotropy obtained from PRISM, with each line representing a significant variant with direct horizontal or pleiotropic 
effect on two traits according to PRISM. Blue lines represent horizontal pleiotropy, green lines represent vertical 
pleiotropy, red lines represent confounder pleiotropy. 



 
Supplementary Figure 7. Enrichment of eGenes, from different tissues, mapped to genetic variants, according to 
variants labels. The x-axis represents all tissues. The y-axis represents the enrichment of eGenes. The studied trait is 
I25 from UK Biobank, chronic ischaemic heart disease (CHD). The eGenes were retrieved from GTEx v8. 



 
Supplementary Figure 8. Heatmap of shared genes between our 61 traits. The bottom-left triangle represents common 
genes mapped from GWAS variants. The top-right triangle represents common genes mapped from PRISM direct-effect 
variants. Each tile is the intersection between two traits, and the color of the tile represents the number of common 
genes between those two traits divided by the total number of genes (PRISM or GWAS). 



 
Supplementary Figure 9. Circos plot of genes mapped to shared variants, for all traits processed by PRISM. This 
represents genetic pleiotropy obtained from PRISM, with each line representing a gene mapped to a significant variant 
with direct horizontal or pleiotropic effect on two traits according to PRISM. Blue lines represent horizontal pleiotropy, 
green lines represent vertical pleiotropy, red lines represent confounder pleiotropy. To map a gene to a genetic variant, 
we prioritize first horizontal pleiotropy, then vertical pleiotropy, then confounder pleiotropy. 



 
Supplementary Figure 10. Z-score ratios for shared pathways enrichment between PRISM direct mapped genes and 
GWAS mapped genes. The x-axis represents all traits, colored by category. The y-axis represents a boxplot of Z-score 
ratios between PRISM direct and GWAS, from all pathways. A green triangle above a boxplot means that the enrichment 
is significantly higher than 1 for this specific trait. A red triangle above a boxplot means that the enrichment is significantly 
lower than 1, for this specific trait. 



 
Supplementary Figure 11. Centrality measures of PRISM direct bipartite gene-trait network and GWAS bipartite gene-
trait network. The three sub-plots show respectively the degree, the betweeness, and the closeness metrics, 
represented on the y-axis. The x-axis represents the traits, colored by category, as the metrics are specific to a trait in 
the network. Green dots correspond to the PRISM direct network. Grey dots correspond to the GWAS network. Blue 
dots correspond to the average of multiple networks with randomly removed genes, to have the same number of genes 
as PRISM. Red dots correspond to the average of multiple networks with randomly removed genes and edges, to have 
the same number of genes and edges as PRISM. 



 
Supplementary Figure 12. Initial GWAS Z-scores of labeled genetic variants, grouped by labels and trait categories. 
The y-axis represents the initial Z-scores in GWAS summary statistics from UK Biobank. The x-axis represents traits 
grouped by broad categories. Boxplots are colored according to PRISM predicted labels, and GWAS significance at 
threshold 𝑃 < 5 × 10#$/60. 

 
Supplementary Figure 13. The PRISM pipeline is divided in two main steps, pairwise and traitwise pipeline. The left 
side represents the pairwise pipeline, whereas the right side represents the traitwise pipeline. 



 
Supplementary Figure 14. A) Precision and B) Recall of PRISM and GWAS predictions for significant variant-trait 
effects, on simulations. The x-axis represents the simulated traits in the network (See Fig. 6 and Online Methods). 
Significant effects of PRISM and GWAS are defined with 𝑃 < 5 × 10#$/17, the recommended threshold from PRISM 
(See Online Methods). Bars are colored according to predicted direct effects from PRISM or significant associations 
from GWAS. Eight scenarios are represented across facets, with varying parameters. Polygenicity represents the 
proportion of variants with a direct effect on each trait. Effect on 𝐵4, the most pivotal trait, represents the proportion of 
effect passed to 𝐵4, for all traits with a non-zero vertical effect on 𝐵4. High targeted confounder means that few variants 
(0.01%) have an effect on the confounder U, but with magnitude of effect rivaling direct effects. Low pervasive 
confounder means that a large proportion (5%) of variants have an effect on the confounder, but with low magnitude. 
A) The y-axis represents the precision which is the proportion of well-predicted variants among all predicted variants 



for a given label. B) The y-axis represents the recall, which is the proportion of well-predicted variants among all true 
variants for a given label. 

 
Supplementary Figure 15. Precision of PRISM predictions for significant variant-trait effects on simulations, without 
𝐵4. The y-axis represents the precision which is the proportion of well-predicted variants among all predicted variants 
for a given label. The x-axis represents the simulated traits in the network (See Online Methods). Trait 𝐵4 was used to 
simulate the network of traits, but was not included in PRISM. To maintain the total number of traits, E0, a trait with no 
pleiotropy, was processed. Significant effects are defined with 𝑃 < 5 × 10#$/17, the recommended threshold from 
PRISM (See Online Methods). Bars are colored according to predicted direct and pleiotropic labels. By convention, 
when no variants were predicted for a given label, the accuracy equals 1, such cases are indicated with ND. Eight 
scenarios are represented across facets, with varying parameters. Polygenicity represents the proportion of variants 
with a direct effect on each trait. Effect on 𝐵4, the most pivotal trait, represents the proportion of effect passed to 𝐵4, for 
all traits with a non-zero vertical effect on 𝐵4. High targeted confounder means that few variants (0.01%) have an effect 
on the confounder U, but with magnitude of effect rivaling direct effects. Low pervasive confounder means that a large 
proportion (5%) of variants have an effect on the confounder, but with low magnitude. 



 
Supplementary Figure 16. Difference of precision between PRISM predictions on simulations with or without noised 
parameters. The y-axis represents the difference in precision, in different conditions. The x-axis represents the 
simulated traits in the network (See Online Methods). Bars are colored according to predicted direct and pleiotropic 
labels. Eight scenarios are represented across facets, with varying parameters. Polygenicity represents the proportion 
of variants with a direct effect on each trait. Effect on 𝐵4, the most pivotal trait, represents the proportion of effect passed 
to 𝐵4, for all traits with a non-zero vertical effect on 𝐵4. High targeted confounder means that few variants (0.01%) have 
an effect on the confounder U, but with magnitude of effect rivaling direct effects. Low pervasive confounder means that 
a large proportion (5%) of variants have an effect on the confounder, but with low magnitude. 

 
Supplementary Figure 17. Difference of recall between PRISM predictions on simulations with or without noised 
parameters. The y-axis represents the difference in recall, in different conditions. The x-axis represents the simulated 
traits in the network (See Online Methods). Bars are colored according to predicted direct and pleiotropic labels. Eight 



scenarios are represented across facets, with varying parameters. Polygenicity represents the proportion of variants 
with a direct effect on each trait. Effect on 𝐵4, the most pivotal trait, represents the proportion of effect passed to 𝐵4, for 
all traits with a non-zero vertical effect on 𝐵4. High targeted confounder means that few variants (0.01%) have an effect 
on the confounder U, but with magnitude of effect rivaling direct effects. Low pervasive confounder means that a large 
proportion (5%) of variants have an effect on the confounder, but with low magnitude. 

 
Supplementary Figure 18. Precision and recall of PRISM predictions for significant variant-trait effects, on simulations 
without pleiotropy. The y-axis represents precision or recall in different conditions. The x-axis represents the simulated 
traits in the network (See Online Methods). Significant effects are defined with 𝑃 < 5 × 10#$/17, the recommended 
threshold from PRISM (See Online Methods). Bars are colored according to predicted direct and pleiotropic labels. By 
convention, when variants neither exist nor were predicted for a given label, the accuracy or the recall equals 1, such 
cases are indicated with ND. Two scenarios are represented across facets, with varying polygenicity (the proportion of 
variants with a direct effect on each trait). 



 
Supplementary Figure 19. PRISM predictions for true horizontal variant-trait effects, on simulations. The y-axis 
represents the proportion of prediction in each group, in different conditions. The x-axis represents the confounder 
effects. Each bar represents a scenario, with variant-trait predictions merged for each trait. Significant effects are defined 
with 𝑃 < 5 × 10#$/17, the recommended threshold from PRISM (See Online Methods). Bars are colored according to 
the group the horizontal effect was predicted as. Eight scenarios are represented across facets, with varying 
parameters. Polygenicity represents the proportion of variants with a direct effect on each trait. Effect on 𝐵4, the most 
pivotal trait, represents the proportion of effect passed to 𝐵4, for all traits with a non-zero vertical effect on 𝐵4. High 
targeted confounder means that few variants (0.01%) have an effect on the confounder U, but with magnitude of effect 
rivaling direct effects. Low pervasive confounder means that a large proportion (5%) of variants have an effect on the 
confounder, but with low magnitude. 



 
Supplementary Figure 20. PRISM inferred causal network for a panel of validated genetic variants. Genetic variants 
are represented as black triangles. Red arrows are effects of the variant through a confounder meaning confounder 
pleiotropy. Green arrows are effects of variant through a causal trait meaning vertical pleiotropy. Blue arrows are direct 
causal effects from the variant to traits. Confounders are represented as red squares and traits are represented as 
circles colored according to trait categories. 



 
Supplementary Figure 21. Precision of PRISM predictions for significant variant-trait effects, on simulations. The y-
axis represents the precision which is the proportion of well-predicted variants among all predicted variants for a given 
label. The x-axis represents the simulated traits in the network (See Online Methods). Significant effects are defined 
with 𝑃 < 5 × 10#$/17, the recommended threshold from PRISM (See Online Methods). Bars are colored according to 
predicted direct and pleiotropic labels. By convention, when no variants were predicted for a given label, the accuracy 
equals 1, such cases are indicated with ND. Eight scenarios are represented across facets, with varying parameters. 
Polygenicity represents the proportion of variants with a direct effect on each trait. Parameter pU represents PRISM 
chosen value for latent parameter 𝜋&. High targeted confounder means that few variants (0.01%) have an effect on the 
confounder U, but with magnitude of effect rivaling direct effects. Low pervasive confounder means that a large 
proportion (5%) of variants have an effect on the confounder, but with low magnitude. 

Supplementary Tables 
Supplementary Table 1. Parameters of all 32 scenarios, used to simulate GWAS summary statistics. 

h2 AB h2 CDE 
Trait 
Polygenicity 

Confounder 
Polygenicity 

Causal effect 
(except B4) 

Causal effect 
(to B4) Scenario 

0.001 0.001 0.0001 0.05 0.3 0.3 1 
0.001 0.6 0.0001 0.05 0.3 0.3 2 
0.6 0.001 0.0001 0.05 0.3 0.3 3 
0.6 0.6 0.0001 0.05 0.3 0.3 4 
0.001 0.001 0.0001 0.0001 0.3 0.3 5 
0.001 0.6 0.0001 0.0001 0.3 0.3 6 
0.6 0.001 0.0001 0.0001 0.3 0.3 7 
0.6 0.6 0.0001 0.0001 0.3 0.3 8 
0.001 0.001 0.0001 0.05 0.3 0.05 9 
0.001 0.6 0.0001 0.05 0.3 0.05 10 
0.6 0.001 0.0001 0.05 0.3 0.05 11 
0.6 0.6 0.0001 0.05 0.3 0.05 12 



0.001 0.001 0.0001 0.0001 0.3 0.05 13 
0.001 0.6 0.0001 0.0001 0.3 0.05 14 
0.6 0.001 0.0001 0.0001 0.3 0.05 15 
0.6 0.6 0.0001 0.0001 0.3 0.05 16 
0.001 0.001 0.1 0.05 0.3 0.3 17 
0.001 0.6 0.1 0.05 0.3 0.3 18 
0.6 0.001 0.1 0.05 0.3 0.3 19 
0.6 0.6 0.1 0.05 0.3 0.3 20 
0.001 0.001 0.1 0.0001 0.3 0.3 21 
0.001 0.6 0.1 0.0001 0.3 0.3 22 
0.6 0.001 0.1 0.0001 0.3 0.3 23 
0.6 0.6 0.1 0.0001 0.3 0.3 24 
0.001 0.001 0.1 0.05 0.3 0.05 25 
0.001 0.6 0.1 0.05 0.3 0.05 26 
0.6 0.001 0.1 0.05 0.3 0.05 27 
0.6 0.6 0.1 0.05 0.3 0.05 28 
0.001 0.001 0.1 0.0001 0.3 0.05 29 
0.001 0.6 0.1 0.0001 0.3 0.05 30 
0.6 0.001 0.1 0.0001 0.3 0.05 31 
0.6 0.6 0.1 0.0001 0.3 0.05 32 

 
Supplementary Table 2. 61 heritable traits from UK Biobank. The first column is a trait category, the second column 
corresponds to the Trait code in UK Biobank, the third column corresponds to the description of the trait in UK Biobank. 

Category Trait Code in UK Biobank Description of the trait in UK Biobank 
Anthropometric trait 23099_irnt Body fat percentage 
Anthropometric trait 21001_irnt Body mass index (BMI) 
Anthropometric trait 23106_irnt Impedance of whole body 
Anthropometric trait 50_irnt Standing height 
Anthropometric trait 3148_irnt Heel bone mineral density (BMD) 
Anthropometric trait 48_irnt Waist circumference 
Biomarker 30740_irnt Glucose (mmol/L) 
Biomarker 30620_irnt Alanine aminotransferase (U/L) 
Biomarker 30860_irnt Total protein (g/L) 
Biomarker 30600_irnt Albumin (g/L) 
Biomarker 30680_irnt Calcium (mmol/L) 
Biomarker 30850_irnt Testosterone (nmol/L) 
Biomarker 30810_irnt Phosphate (mmol/L) 
Biomarker 30890_irnt Vitamin D (nmol/L) 
Biomarker 30880_irnt Urate (μmol/L) 
Biomarker 30710_irnt C-reactive protein (mg/L) 
Biomarker 30750_irnt Glycated hemoglobin (mmol/mol) 



Biomarker 30700_irnt Creatinine (μmol/L) 
Biomarker 30770_irnt IGF-1 (nmol/L) 
Biomarker 30650_irnt Aspartate aminotransferase (U/L) 
Biomarker 30730_irnt Gamma glutamyltransferase (U/L) 
Blood trait 30140_irnt Neutrophil count 
Blood trait 30150 Eosinophil count 
Blood trait 30120_irnt Lymphocyte count 
Blood trait 30010_irnt Red blood cell (erythrocyte) count 
Blood trait 30080_irnt Platelet count 
Blood trait 30250_irnt Reticulocyte count 
Blood trait 30130_irnt Monocyte count 
Blood trait 30160 Basophil count 
Blood trait 30000_irnt White blood cell (leukocyte) count 
Blood trait 30180_irnt Lymphocyte percentage 
Cancer trait II_NEOPLASM Neoplasms 
Cancer trait C_PANCREAS Malignant neoplasm of pancreas 
Cancer trait C3_SKIN Malignant neoplasm of skin 
Cancer trait C50 Diagnoses - main ICD10: C50 Malignant neoplasm of breast 
Education 6138_1 Qualifications: College or University degree 
Education 20023_irnt Mean time to correctly identify matches 
Health 2178 Overall health rating 
Inflammatory trait K51 Diagnoses - main ICD10: K51 Ulcerative colitis 
Lifestyle trait 1458 Cereal intake 
Lifestyle trait 1468_4 Cereal type: Muesli 
Lifestyle trait 1558 Alcohol intake frequency. 
Lifestyle trait 1200 Sleeplessness / insomnia 
Lifestyle trait 884 Number of days/week of moderate physical activity 10+ minutes 
Lifestyle trait 20116_0 Smoking status: Never 
Lipid 30630_irnt Apoliprotein A (g/L) 
Lipid 30640_irnt Apoliprotein B (g/L) 
Lipid 30690_irnt Cholesterol (mmol/L) 
Lipid 30780_irnt LDL direct (mmol/L) 
Lipid 30870_irnt Triglycerides (mmol/L) 
Lipid 30760_irnt HDL cholesterol (mmol/L) 
Metabolic trait I25 Diagnoses - main ICD10: I25 Chronic ischaemic heart disease 
Metabolic trait 23105_irnt Basal metabolic rate 
Metabolic trait 4079_irnt Diastolic blood pressure, automated reading 
Metabolic trait 20002_1065 Non-cancer illness code, self-reported: hypertension 
Metabolic trait 20002_1466 Non-cancer illness code, self-reported: gout 
Metabolic trait 20002_1223 Non-cancer illness code, self-reported: type 2 diabetes 
Psychiatric trait V_MENTAL_BEHAV Mental and behavioral disorders 
Psychiatric trait 20127_irnt Neuroticism score 



Respiratory trait 3062_irnt Forced vital capacity (FVC) 
Respiratory trait 20002_1111 Non-cancer illness code, self-reported: asthma 

 

Supplementary Results 

PRISM vastly improves the interpretation of variant-trait associations 
detected in GWAS. 
Genome-wide association studies (GWASs) identify significant associations between 
genetic variants and traits, while PRISM re-examines these associations through the 
prism of other traits. We aimed to assess the added value of PRISM compared to 
traditional GWAS results. To do so, in our simulations, we calculated GWAS precision and 
recall for all traits by comparing genome-wide significant associations with true direct 
effects. GWAS accuracy and recall were then compared with those from PRISM 
(Supplementary Fig. 14). First, in scenarios with low polygenicity, GWAS exhibited high 
recall but low precision to predict direct effects. Precision was particularly reduced in 
cases of strong pleiotropy, i.e. high confounder effects, and traits affected by vertical 
pleiotropy (𝐴, 𝐵1-𝐵4, 𝐶1, 𝐶3). In contrast, PRISM consistently demonstrated high recall 
and high precision across all traits, regardless of pleiotropic complexity. Second, in 
scenarios with high polygenicity, as individual genetic variant effect sizes were small, 
GWAS exhibited high precision but low recall. GWAS only detected the strongest effect 
sizes, i.e. predominantly direct effects. On the other hand, PRISM largely outperformed 
GWAS in recall while maintaining comparable precision. We conclude that PRISM, using 
GWAS results, can vastly improve the biological interpretation of significant associations 
detected in GWAS. 

PRISM results are dependent on the set of processed traits. 
In our simulations, we applied PRISM to the complex network of traits (See Fig. 6), but 
purposefully omitted the most pivotal trait (𝐵4, See Online Methods) from input data. To 
keep the total number of traits processed by PRISM constant, we included a trait 𝐸0 with 
no causal interaction nor confounder with any other trait. As shown in Supplementary Fig. 
15, the precision to predict direct effects decreased across all traits in scenarios with high 
confounder pleiotropy, since confounder variant effects induced by 𝐵4 were misclassified 
as direct for the other traits. Additionally, the precision to predict direct effects in 𝐵3 
decreased in all scenarios, since the vertical pleiotropy from 𝐵4 to 𝐵3 was not included in 
the analysis. In this case, PRISM was unable to establish the mediation link with the 
omitted pivotal trait 𝐵4. 

PRISM is robust to reasonable parameter estimation errors. 
PRISM relies on global parameters from LHC-MR to estimate the relationships between 
traits. Therefore, we tested the robustness of PRISM to inaccurate estimations of the 
global parameters in the inference of causal variant networks. We added random noise 
within 20% of their original values to the global parameters. Supplementary Fig. 16 and 
17 show that PRISM precision and recall are robust to these reasonable parameter 



estimation errors. As an example, let us examine trait 𝐴 under two scenarios, both 
characterized by low polygenicity and low vertical effects on trait B4. In the high 
confounder scenario, the causal effect of trait 𝐷 on trait 𝐴 was reduced by nearly 10%, 
whereas in the low confounder scenario, this effect was increased by more than 8%. Both 
scenarios exhibited reduced precision in predicting direct effects and reduced recall in 
predicting vertical effects on trait 𝐴. Overall, most classification errors were due to 
fluctuations in specific parameters estimating causal effects between traits, leading to 
misclassifications of vertical effects as direct effects. However, since estimating causal 
effects is the primary objective of LHC-MR, the estimation errors of the causal effect 
parameters are minimized in real applications. 

PRISM accurately predicts direct variant-trait effects in the absence of 
pleiotropy. 
In our simulations, we applied PRISM to the complex network of traits (See Fig. 6), but 
purposefully removed pleiotropy. Specifically, we set all causal effects between traits to 
zero (no vertical pleiotropy), set all confounders polygenicity to zero (no confounder 
pleiotropy), and forbid variants to exert direct effects on more than one trait (no horizontal 
pleiotropy). As shown in Supplementary Fig. 18, PRISM exhibited excellent precision and 
high recall in these very simple scenarios. In the highly polygenic scenario, a recall of 
approximately 50% may appear underwhelming. However, given the fixed total heritability 
and high polygenicity, there were thousands of direct variants, many of which had 
extremely small effect sizes that PRISM could not reliably distinguish from non-causal 
variants. We sought to determine the smallest effect sizes that PRISM could reliably 
detect. For a fixed level of total heritability, the scenario with high polygenicity involved 
many variants with small effects, while low polygenicity involved fewer variants with larger 
effects. Analyzing the distribution of effect sizes, we found that the smallest detectable 
effects had median magnitudes of ~1.9 and ~5.0 standard deviations for high and low 
polygenicity, respectively. 

PRISM reliably detects horizontal pleiotropy in simulations. 
In the real application, horizontal pleiotropy is surprisingly rare, accounting for only 0.2% 
of the observed pleiotropy in GWAS. In simulations, we investigated whether this scarcity 
could result from a bias in PRISM against horizontal pleiotropy. A horizontal variant-trait 
effect is defined as a direct effect from a variant with at least one other direct effect. Given 
the low probability of randomly generating horizontal pleiotropy in scenarios with low 
polygenicity, we introduced four true horizontal variants (See Supplementary Methods for 
details). In our simulations, we assessed PRISM ability to predict all true horizontal 
variant-trait effects (Supplementary Fig. 19). Our findings indicate that PRISM is 
adequately capable of detecting horizontal pleiotropy and does not exhibit bias against it. 

PRISM direct variants show no distinctive features in large-scale genetic 
studies. 
One of our key results is the enriched per-variant heritability observed in PRISM direct 
variants. Consequently, we investigated whether direct variants exhibit distinctive 
characteristics in other large-scale genetic studies. First, we compared CADD scores1, 
that assess the deleteriousness of genetic variants, between direct, pleiotropic and GWAS 
variants. Second, we compared minor allele frequencies from GNOMAD2 v4.0 between 



direct, pleiotropic and GWAS variants, across African, American, and European 
ancestries. Third, we compared predicted pathogenicity scores of variants from 
AlphaMissense3 between direct, pleiotropic and GWAS variants. In all three analyses, we 
found no significant differences between direct, pleiotropic, and GWAS variants. We 
concluded that direct variants were typical genetic variants that are neither less common, 
nor significantly more pathogenic or deleterious. The distinction between direct and 
pleiotropic variants lies in what they affect rather than the nature of their impact. 

PRISM produces coherent results on a panel of literature-validated variants. 
As mentioned in the Results section, we examined whether the variant-trait effects 
identified and labeled by PRISM had already been previously validated in the literature for 
a panel of variants. Here are some additional examples where PRISM inferred a causal 
network aligned with the literature. 

Variant rs1697421 (Supplementary Fig. 20A) mapping to gene ALPL which encodes for 
Alkaline Phosphatase has been validated for its association with phosphorus levels. 
Additionally, ALPL has been studied as a potential biomarker for C-reactive protein 
(CRP)4. These findings highlight the significance of ALPL in metabolic and inflammatory 
processes. 

The genetic variant rs1471633 (Supplementary Fig. 20B) is located in the PDZK1 gene, 
which encodes a protein involved in the regulation of urate transport5. Additionally, the 
variant rs1967017, which is in complete linkage disequilibrium with rs1471633, has been 
validated as impacting PDZK1 expression and altering the excretion of urate6. This is 
consistent with PRISM predictions, which indicate that rs1471633 directly affects urate 
levels, subsequently inducing a vertical effect on gout disease. 

Variant rs560887 (Supplementary Fig. 20C) is located in the G6PC2 gene, coding for a 
protein involved in the gluconeogenic and glycogenolytic pathways7. Polymorphisms in 
G6PC2 have been validated in mice to alter fasting blood glucose levels, which are 
associated with type 2 diabetes (T2D)8. Interestingly, PRISM predicts a direct effect of this 
variant on HbA1c, a marker of blood glucose levels. It has been showed that variant 
rs560887 is linked to higher HbA1c in individuals with glucokinase mutations in MODY 
(Maturity Onset Diabetes of the Young) patients. Specifically, individuals who are GG 
homozygotes are more likely to meet the diagnostic criteria for diabetes based on their 
HbA1c levels9. Unfortunately, PRISM does not establish a vertical link between HbA1c 
and T2D, but does identify a confounder effect on glucose levels and T2D. 

Variant rs6993770 (Supplementary Fig. 20D) maps to the ZFPM2 gene, which encodes a 
transcription factor of the FOG family, known for regulating hematopoiesis. This variant 
has been validated as causal for plateletcrit, which is the proportion of blood volume 
occupied by platelets. Although associated with multiple blood traits in GWAS, PRISM 
only finds a direct effect on platelet count and only vertical effects on the additional blood 
traits. 

Variant rs429358 (Supplementary Fig. 20E) make allele APOE-𝜀4 of apolipoprotein E. 
The allele is well known for its involvement in congnitive impairment, specifically 
Alzheimer’s disease. But the allele has also been linked to the metabolic syndrome10,11 
which is a cluster of conditions that occur together, increasing the risk of heart disease, 
stroke, and type 2 diabetes, and includes high blood pressure, high blood sugar, excess 



body fat around the waist, and abnormal cholesterol or triglyceride levels in full agreement 
with PRISM findings. 

The rs12970134 variant (Supplementary Fig. 20F) is located in the MC4R (Melanocortin 
4 Receptor) gene, coding for the melanocortin 4 receptor protein, a key regulator of energy 
homeostasis. This variant has been significantly associated with body mass index (BMI) 
in a case-control study12. Interestingly, the MC4R gene is heavily studied due to its critical 
role in obesity13,14,15,16,17. Notably, a recent article18 have highlighted that loss-of-function 
variants in the MC4R gene have substantial impacts on BMI, weight, fat mass, and lean 
mass. These findings align with PRISM, which identifies a direct effect of this variant on 
BMI and basal metabolic rate. Consequently, a myriad of pleiotropic ripple effects is 
predicted, for example vertical effects on body impedance, waist circumference, body fat 
percentage, HDL-cholesterol, and Apolipoprotein A. Pleiotropic effects on inflammation 
markers, urate, and hypertension further link this variant to obesity-related complications. 

The rs12150660 variant (Supplementary Fig. 20G) is located in the SHBG gene, coding 
for the Sex Hormone-Binding Globulin protein. This protein binds and regulates 
androgens and estrogens, exhibiting a particularly high affinity for testosterone19. PRISM 
does predict that this variant has a direct impact on testosterone levels. Additionally, 
PRISM forecasts potential confounder effects on various traits, such as diastolic blood 
pressure, inflammation markers, and body impedance. A review of the scientific literature 
suggests that these confounder effects might be linked to metabolic syndrome, as 
testosterone deficiency is implicated in its development20. 

Variant rs738408 (Supplementary Fig. 20H) maps to the PNPLA3 gene, coding for a 
triacylglycerol lipase involved in the hydrolysis of triacylglycerol in adipocytes. This variant 
is associated with NAFLD21 (non-alcoholic fatty liver disease), and is in tight LD with 
rs738409, which accounts for large fraction of liver disease heritability22. However, the 
precise role of PNPLA3 in liver lipid metabolism remains unclear23. In any case, the link 
between these variants and liver diseases accounts for the numerous confounder effects 
on inflammation markers, body impedance, and even gout24 predicted by PRISM. 
Furthermore, variant rs738409 is linked to variations in alanine aminotransferase levels25, 
aligning with PRISM direct effect, though further details are lacking. 

Genetic variant rs7741021 (Supplementary Fig. 20I) is located in the RSPO3 gene, coding 
for the R-spondin-3 protein. This variant has been significantly associated with bone 
mass26. Additionally, rs7741021 has been shown to affect circulating levels of R-spondin-
3 protein, where elevated levels are linked to increased bone mineral density (BMD) and 
a substantially reduced risk of distal forearm fractures27. These results align with the direct 
effect of this variant on BMD as predicted by PRISM. Furthermore, PRISM predicts 
pleiotropic effects on lipid traits, including ApoB, triglycerides, and HDL-C levels. This can 
be explained by the role of RSPO3 in influencing peripheral adipose tissue storage 
capacity28, providing insight into these additional effects. 

Supplementary Methods 

PRISM - Pleiotropic Relationships to Infer the SNP Model. 
The PRISM method relies on the Mendelian Randomization (MR) model from LHC-
MR29,30. LHC-MR is an integrative MR method that aims to infer the causal relationship of 



a pair of traits from GWAS summary statistics, while taking into account a latent 
confounder. The principle of PRISM is to reroute the trait-level MR model from LHC-MR 
to infer information at the level of genetic variants. Thus, to introduce our PRISM model, 
we recapitulate some elements of the basic model from LHC-MR. 

Part 1: Basic structural Equation Model 

The structural equation model is defined by the following equations: 

𝑋 = 𝑞$ ⋅ 𝑈 + 𝛼%→$𝑌 + 𝑮 ⋅ �⃗�$ + 𝜖'  (𝐴) 

𝑌 = 𝑞% ⋅ 𝑈 + 𝛼$→%𝑌 + 𝑮 ⋅ �⃗�% + 𝜖(  (𝐵) 

𝑈 = 𝑮 ⋅ �⃗�) + 𝜖*  (𝐶) 

In this model (See Supplementary Fig. 1): 

• 𝑋 and 𝑌 are continuous random variables representing two complex traits. 
• 𝑈 is a continuous random variable representing a latent heritable confounder, with 

causal effects 𝑞$ and 𝑞% on 𝑋 and 𝑌, respectively. 
• To simplify the notations, we assume that 𝐸(𝑋) = 𝐸(𝑌) = 𝐸(𝑈) = 0 and 𝑉𝑎𝑟(𝑋) =

𝑉𝑎𝑟(𝑌) = 𝑉𝑎𝑟(𝑈) = 1. 
• 𝑋 and 𝑌 have causal effects on each other, denoted 𝛼$→% and 𝛼%→$. 
• The genome-wide genotype data for 𝑚 genetic variants and 𝑛 individuals are 

denoted by 𝐆 ∈ ℝ+×-. The vectors �⃗�$ , �⃗�% , �⃗�) ∈ ℝ- represent the true multivariate 
direct effects of all 𝑚 genetic variants on 𝑋, 𝑌 and 𝑈, respectively. 

• 𝜖' ∼ 𝒩(0, 𝜎$#), 𝜖( ∼ 𝒩G0, 𝜎%#H, and 𝜖* ∼ 𝒩(0, 𝜎)#) are normally distributed and 
mutually independent error terms. 

We assume that only a proportion 0 ≤ 𝜆$ , 𝜆% , 𝜆) ≤ 1 of the genome has a direct effect on 
𝑋, 𝑌 and 𝑈, respectively. The vectors 𝛾$ , 𝛾% , �⃗�) are modeled using a spike-and-slab 
distribution: 
 

�⃗�. = 𝜉. ⊙𝜅.  (𝐷) 

where 𝜉. ∼ ℬ(𝑚, 𝜆.) and 𝜅. ∼ 𝒩 O0, /!
"

-0!
P for 𝑎 = 𝑥, 𝑦, 𝑢. 

𝜉. , 𝜅. ∈ ℝ- are vectors of dimension 𝑚. Let 𝐴 denote either trait 𝑋, 𝑌, or 𝑈. The vector 𝜉. 
consists of binary elements (0 or 1) indicating whether the genetic variant has an effect 
on 𝐴. The effect 𝜅. follows a Gaussian distribution. ℎ$#, ℎ%# , ℎ)#  represent the heritability of 
𝑋, 𝑌 et 𝑈, respectively. The symbol ⊙ denotes the element-wise product. We assume 
zero covariance between the direct effects of a genetic variant on 𝑋, 𝑌 and 𝑈, thus 
𝐜𝐨𝐯G�⃗�$ , �⃗�%H = 𝐜𝐨𝐯G�⃗�$ , �⃗�%H = 𝐜𝐨𝐯G�⃗�$ , �⃗�%H = 0. 

Part 2: Reparametrization of the summary statistics distributions. 

We observe the univariate association summary statistics on traits 𝑋 and 𝑌 from finite 
samples 𝑁$ and 𝑁%, of size 𝑛$ and 𝑛% respectively. The realizations of 𝑋, 𝑌 and 𝑈 are 
denoted by 𝑥, �⃗�, 𝑢Y⃗ ∈ ℝ+#. The genome-wide genetic data for 𝑛$ individuals with 𝑚 variants 



𝑔1YYYY⃗ 	

are represented by 𝐆$ ∈ ℝ+#×-. The genetic data for a variant 𝑘 which is tested for 
association across 𝑛$ individuals are denoted �⃗�1 ∈ ℝ+#. All variant genotypes are 
standardized to a standard normal distribution. 

 

𝐆 =

⎝

⎜⎜
⎛

𝑔!! 𝑔#! … 𝑔1! … 𝑔-!

⋮ ⋮ ⋮ ⋮
𝑔!2 𝑔#2 … 𝑔12 … 𝑔-2

⋮ ⋮ ⋮ ⋮
𝑔!
+# 𝑔#

+# … 𝑔1
+# … 𝑔-

+#⎠

⎟⎟
⎞
∈ ℝ+#×- 

The association summary statistics 𝛽1$ for variant 𝑘 on trait 𝑋 can be written: 
 

𝛽1$ =
⟨�⃗�1 , �⃗�⟩
𝑛$

 

Substituting �⃗� with its expression from equation (𝐴), we obtain: 
 

𝛽1$ =
𝑞$ ⋅ ⟨�⃗�1 , 𝑢Y⃗ ⟩ + 𝛼%→$ ⋅ ⟨�⃗�1 , �⃗�⟩ + ⟨�⃗�1 , 𝐆$ ⋅ �⃗�$⟩ + 𝑔1 ⋅ 𝜖$

𝑛$
 

Further substituting �⃗� and 𝑢Y⃗  with their expression from equations (𝐵) and (𝐶), we obtain: 

𝛽1$

=
𝑞$ ⋅ ⟨�⃗�1 , 𝐆$ ⋅ �⃗�) + 𝜖)⟩

𝑛$
+
𝛼%→$ ⋅ ⟨�⃗�1 , G𝑞% ⋅ 𝐆$ ⋅ �⃗�) + 𝜖)H + 𝛼$→%�⃗� + G𝐆$ ⋅ �⃗�% + 𝜖%H⟩

𝑛$

+
⟨�⃗�1 , 𝐆$ ⋅ �⃗�$⟩ + 𝑔1 ⋅ 𝜖$

𝑛$
 

𝛽1$

=
𝑞$ ⋅ ⟨�⃗�1 , 𝐆$ ⋅ �⃗�)⟩

𝑛$
+ 𝑞$ ⋅ 𝜖1) +

𝛼%→$𝑞% ⋅ ⟨�⃗�1 , 𝐆$ ⋅ �⃗�)⟩
𝑛$

+ 𝛼%→$𝑞% ⋅ 𝜖1) + 𝛼%→$𝛼$→%𝛽1$

+
𝛼%→$⟨�⃗�1 , 𝐆$ ⋅ �⃗�%⟩

𝑛$
+ 𝛼%→$𝜖1

% +
⟨�⃗�1 , 𝐆$ ⋅ �⃗�$⟩

𝑛$
+ 𝜖1$ 

because 𝛽1$ =
⟨45⃗ $,$⃗⟩
+#

 and with: 𝜖1$ =
⟨45⃗ $⋅9#⟩
+#

∼ 𝒩 O0, :#
"

+#
P, 𝜖1) =

⟨45⃗ $⋅9%⟩
+#

∼ 𝒩 O0, :%
"

+#
P, 𝜖1

% =
⟨45⃗ $⋅9&⟩
+#

∼ 𝒩 O0, :&
"

+#
P 

To simplify, we denote �⃗�1 =
𝐆#'⋅45⃗ $
+#

, as the Linkage Disequilibrium (LD) coefficients between 
variant 𝑘 and all markers in the genome. So: 

𝛽1$
= 𝑞$ ⋅ ⟨�⃗�1 , �⃗�)⟩ + 𝑞$ ⋅ 𝜖1) + 𝛼%→$𝑞% ⋅ ⟨�⃗�1 , �⃗�)⟩ + 𝛼%→$𝑞% ⋅ 𝜖1) + 𝛼%→$𝛼$→%𝛽1$ + 𝛼%→$⟨�⃗�1 , �⃗�%⟩

+ 𝛼%→$𝜖1
% + ⟨�⃗�1 , �⃗�$⟩ + 𝜖1$ 



We denote 𝜂1$ = G𝑞$ + 𝛼%→$ ⋅ 𝑞%H ⋅ 𝜖)1 + 𝛼%→$𝜖%1 + 𝜖$1 ∼ 𝒩 O0,  2#
+#
P, with 𝑖$ = G𝑞$ + 𝛼%→$ ⋅

𝑞%H
#𝜎)# + 𝛼%→$𝜎%# + 𝜎$#. 𝑖$ is equivalent to the LD score regression intercept31. So: 

𝛽1$ = G𝛼%→$𝑞% + 𝑞$H ⋅ ⟨�⃗�1 , �⃗�)⟩ + 𝛼%→$⟨�⃗�1 , �⃗�%⟩ + ⟨�⃗�1 , �⃗�$⟩ + 𝛼%→$𝛼$→%𝛽1$ + 𝜂1$ 

We hypothesize that 𝛼%→$𝛼$→% ≈ 0 because in real traits, either one of the two causal 
effects is zero, or the product of the bidirectional causal effects is very small. In addition, 
as mentioned in the LHC-MR paper, in case of high bidirectional effects, the interpretation 
of all parameters becomes delicate. So, regrouping all 𝛽1$ on the left and factorizing: 

𝛽1$ ≈ G1 − 𝛼%→$𝛼$→%H𝛽1$ = G𝛼%→$𝑞% + 𝑞$H ⋅ ⟨�⃗�1 , 𝛾)⟩ + 𝛼%→$⟨�⃗�1 , �⃗�%⟩ + ⟨�⃗�1 , �⃗�$⟩ + 𝜂1$ 

Then, we substitute equation (𝐷): 

𝛽1$ = G𝛼%→$𝑞% + 𝑞$H ⋅ ⟨�⃗�1 , 𝜉) ⊙𝜅)⟩ + 𝛼%→$⟨�⃗�1 , 𝜉$ ⊙𝜅$⟩ + ⟨�⃗�1 , 𝜉% ⊙𝜅%⟩ + 𝜂1$ 

𝛽1$ = G𝛼%→$𝑞% + 𝑞$H ⋅ ⟨�⃗�1 ⊙ 𝜉), 𝜅)⟩ + 𝛼%→$⟨�⃗�1 ⊙ 𝜉% , 𝜅%⟩ + ⟨�⃗�1 ⊙ 𝜉$ , 𝜅$⟩ + 𝜂1$ 

Assuming similar LD structures (�⃗�1), we apply the same reasoning for 𝛽1
%: 

𝛽1
% = G𝛼$→%𝑞$ + 𝑞%H ⋅ ⟨�⃗�1 ⊙ 𝜉), 𝜅)⟩ + 𝛼$→%⟨�⃗�1 ⊙ 𝜉$ , 𝜅$⟩ + ⟨�⃗�1 ⊙ 𝜉% , 𝜅%⟩ + 𝜂1

% 

with 𝜂1$ ∼ 𝒩 l0,  2&
+&
m and 𝑖% = G𝑞% + 𝛼$→% ⋅ 𝑞$H

#𝜎)# + 𝛼$→%𝜎$# + 𝜎%# 

Therefore, the joint distribution of can be written as: 

n
𝛽1$

𝛽1
%o

= l
1

𝛼$→%
m ⋅ ⟨�⃗�1 ⊙ 𝜉$ , 𝜅$⟩ + O

𝛼%→$
	1 P ⋅ ⟨�⃗�1 ⊙ 𝜉% , 𝜅%⟩ + l

𝛼%→$ ⋅ 𝑡% + 𝑡$
𝛼$→% ⋅ 𝑡$ + 𝑡%

m ⋅ ⟨�⃗�1 ⊙ 𝜉), 𝜅)⟩ + n
𝜂$1

𝜂%1
o 

Following the same reasoning as the cross-trait LD-score regression31, the noise term 
distribution is29: 

n
𝜂$1

𝜂%1
o ∼ 𝒩

⎝

⎜⎜
⎛
O00P ,

⎝

⎜
⎛

𝑖$/𝑛$
𝑐𝑜𝑟𝑟(𝑋, 𝑌) ⋅ 𝑛$∩%

𝑛$ ⋅ 𝑛%
𝑐𝑜𝑟𝑟(𝑋, 𝑌) ⋅ 𝑛$∩%

𝑛$ ⋅ 𝑛%
𝑖%/𝑛%

⎠

⎟
⎞

⎠

⎟⎟
⎞

 

Here, 𝑛$∩% represents the sample overlap between the two studies used to calculate 𝛽u1$ 
and 𝛽u1

%, and 𝑐𝑜𝑟𝑟(𝑋, 𝑌) is the phenotypic correlation between variables 𝑋 and 𝑌. 
=>??(',()⋅+#∩&

B+#⋅+&
 is akin to the cross-trait LD Score regression intercept32. We set 𝑐𝑜𝑟𝑟(𝑋, 𝑌) =

0. Our objective with PRISM is to identify pleiotropic variant-trait effects. We consider a 
variant-trait effect induced by the correlation between two traits not as noise, but as 
vertical pleiotropy. Furthermore, in the case of large sample size, the bias caused by 
sample overlap is expected to be small33. 



Part 3: Derivation of the likelihood function. 

Let 𝜋$ , 𝜋), 𝜋% denote the fractions of variants for which �⃗�1 ⊙ 𝜉$, �⃗�1 ⊙ 𝜉), �⃗�1 ⊙ 𝜉% are non-
zero respectively. These are the fractions of observed variants that are in non-zero LD 
with at least one causal variant for 𝑋, 𝑈, 𝑌 respectively. We assume that causal markers 
are sufficiently tagged by GWAS variants. Then 𝜋$ > 𝜆$ , 𝜋) > 𝜆), 𝜋% > 𝜆%, since LD 
propagates association signals beyond strictly causal markers. Next, we calculate the 
variance of the building blocks. For 𝑎 = 𝑥, 𝑢, 𝑦: 

𝑉𝑎𝑟G⟨�⃗�1 ⊙ 𝜉. , 𝜅.⟩H = 𝐸x⟨�⃗�1 ⊙ 𝜉. , 𝜅.⟩#y − 𝐸x⟨�⃗�1 ⊙ 𝜉. , 𝜅.⟩y
#
 

Given that 𝜌1 , 𝜉. , 𝜅. are independent: 

𝑉𝑎𝑟G⟨�⃗�1 ⊙ 𝜉. , 𝜅.⟩H = 𝐸 zG�⃗�1 ⊙ 𝜉.H
#
{ ⋅ 𝐸[𝜅.#] − 𝐸x�⃗�1 ⊙ 𝜉.y

#
⋅ 𝐸[𝜅.]# 

Since 𝐸[𝜅.] = 0: 

𝑉𝑎𝑟G⟨�⃗�1 ⊙ 𝜉. , 𝜅.⟩H = 𝐸 zG�⃗�1 ⊙ 𝜉.H
#
{ ⋅ 𝐸[𝜅.#] = 𝐸[�⃗�1#] ⋅ 𝐸x𝜉.#y ⋅ 𝐸[𝜅.#] = 𝑙1 ⋅ 𝜆. ⋅

ℎ$#

𝜆.𝑚
= 𝑙1 ⋅

ℎ$#

𝑚  

where 𝑙1 = ⟨�⃗�1 , �⃗�1⟩ corresponds to the LD score. 

Since ⟨�⃗�1 ⊙ 𝜉. , 𝜅.⟩ is modeled as a spike-and-slab Gaussian mixture model, with mixing 
proportion 𝜋., the non-zero component variance is the total variance divided by the mixing 
proportion. Thus, the distribution of the component can be expressed as: 

⟨�⃗�1 ⊙ 𝜉. , 𝜅.⟩ ∼ 𝜋. ⋅ 𝒩 n0, 𝑙1 ⋅
ℎ.#

𝑚 ⋅ 𝜋.
o + (1 − 𝜋.) ⋅ 𝒩(0,0) 

 
Here, 𝜋. represents the proportion of genetic variants with a true causal effect on 𝐴 or in 
non-zero LD with such variants, and (1 − 𝜋.) represents the variants with no effect and in 
zero LD with causal variants. 

• Next, we partition the genomic variants into eight disjoint components based on 
their associations with 𝑋, 𝑌 and 𝑈: 

(0) No association 
(1) Associated with 𝑋 
(2) Associated with 𝑈 
(3) Associated with 𝑌 
(4) Associated with 𝑋 and 𝑈 
(5) Associated with 𝑋 and 𝑌 
(6) Associated with 𝑈 and 𝑌 
(7) Associated with 𝑋, 𝑌 and 𝑈 

• We assume that the components are independent, so the proportion of variants in 
each component can be expressed as: 

(0) 𝜔C = (1 − 𝜋))(1 − 𝜋$)G1 − 𝜋%H 
 



(1) 𝜔! = 𝜋$	(1 − 𝜋))G1 − 𝜋%H 
 

(2) 𝜔# = 𝜋)	(1 − 𝜋$)G1 − 𝜋%H 
 

(3) 𝜔D = 𝜋%	(1 − 𝜋))(1 − 𝜋$) 
 

(4) 𝜔E = 𝜋$	𝜋)	G1 − 𝜋%H 
 

(5) 𝜔F = 𝜋$	𝜋%	(1 − 𝜋)) 
 

(6) 𝜔G = 𝜋%	𝜋)	(1 − 𝜋$) 
 

(7) 𝜔H = 𝜋$	𝜋%	𝜋) 

The joint distribution of n
𝛽1$

𝛽1
%o depends on the component from which variant 𝑘 is drawn. 

For example, if variant 𝑘 is drawn from component (1): 

n
𝛽1$

𝛽1
%o = l

1
𝛼$→%

m ⋅ ⟨�⃗�1 ⊙ 𝜉$ , 𝜅$⟩ + n
𝜂$1

𝜂%1
o 

because 𝜉% = 0Y⃗  and 𝜉) = 0Y⃗ . 

n
𝛽1$

𝛽1
%o ∼ l

1
𝛼$→%

m ⋅ 𝜋$ ⋅ 𝒩 n0, 𝑙1 ⋅
ℎ$#

𝑚 ⋅ 𝜋$
o + n

𝜂$1

𝜂%1
o

= 𝒩�O00P , 𝑙1 ⋅
ℎ$#

𝑚 ⋅ 𝜋$
�
1 𝛼$→%

𝛼$→% 𝛼$→%#
�� + n

𝜂$1

𝜂%1
o 

Following the same reasoning for all 8 components, and summing them according to their 
respective proportion 𝜔I: 

n
𝛽1$

𝛽1
%o ∼�𝜔I

H

2JC

⋅ 𝒩 nO00P , 𝛀12o 

• where: 
(0) 𝛀1C = 𝚺C 
(1) 𝛀1! = 𝑙1 ⋅ 𝚺$ +𝛀C 
(2) 𝛀1# = 𝑙1 ⋅ 𝚺) +𝛀C 
(3) 𝛀1D = 𝑙1 ⋅ 𝚺% +𝛀C 
(4) 𝛀1E = 𝑙1 ⋅ (𝚺$ + 𝚺)) + 𝛀C 
(5) 𝛀1F = 𝑙1 ⋅ G𝚺$ + 𝚺%H + 𝛀C 
(6) 𝛀1G = 𝑙1 ⋅ G𝚺) + 𝚺%H + 𝛀C 
(7) 𝛀1H = 𝑙1 ⋅ G𝚺$ + 𝚺) + 𝚺%H + 𝛀C 

and: 



𝚺) =
ℎ)#

𝑚 ⋅ 𝜋)
�

(𝛼%→$ 	 ⋅ 	 𝑞% + 𝑞$)# (𝛼%→$ 	 ⋅ 	 𝑞% + 𝑞$) 	 ⋅ 	 (𝛼$→% 	 ⋅ 	 𝑞$ + 𝑞%)
(𝛼%→$ 	 ⋅ 	 𝑞% + 𝑞$) 	 ⋅ 	 (𝛼$→% 	 ⋅ 	 𝑞$ + 𝑞%) (𝛼$→% 	 ⋅ 	 𝑞$ + 𝑞%)#

� 

𝚺$ =
ℎ$#

𝑚 ⋅ 𝜋$
�
1 𝛼$→%

𝛼$→% 𝛼$→%#
� 

𝚺% =
ℎ%#

𝑚 ⋅ 𝜋%
�
𝛼%→$# 𝛼%→$
𝛼%→$ 1 � 

𝛴C =

⎣
⎢
⎢
⎢
⎡
𝑖$
𝑛$

𝜌$∩%

𝜌$∩%
𝑖%
𝑛% ⎦

⎥
⎥
⎥
⎤
 

Since the sum of two independent normally distributed random variables is Gaussian, 

when calculating the distribution of n
𝛽1$

𝛽1
%o for each component, the terms ⟨�⃗�1 ⊙ 𝜉. , 𝜅.⟩ are 

either 0Y⃗  or independent Gaussian distributions (as affecting 𝑋, 𝑌 or 𝑈 is independent). 
Therefore, the sum of ⟨�⃗�1 ⊙ 𝜉. , 𝜅.⟩ terms is a Gaussian distribution, making each 
component modeled with a Gaussian distribution. It is worth mentioning that, although 
each component is modeled with a Gaussian distribution, the global model is not 
Gaussian. This is not an issue since likelihoods and posterior probabilities are calculated 
independently for each component. 

We chose to use a model with 8 nested components, whereas it would be possible to use 
a simpler model with just 4 components (𝑂, 𝑋, 𝑌, and 𝑈). However, U is a latent variable 
and 𝜋) is an unknown prior. We do not want to risk masking effects on 𝑋 and 𝑌 because 
of 𝑈. For example, let us consider a genetic variant 𝑣 with causal effects on 𝑋 and 𝑈. With 
a 4-components model, 𝑣 would have a high probability to belong to component 𝑋 and to 
belong to component 𝑈. However, we would have no way to interpret these probabilities. 
We would not be able to compare probabilities to conclude if 𝑣 affects 𝑋, 𝑈, or both, nor 
to conclude on a type of pleiotropy. In the 8-component model, 𝑣 will have a high 
probability of belonging to model (4), 𝑋&𝑈, that we choose to classify as “direct pleiotropy”. 
In others words, this is an ingenious way of performing a fuzzy classification where 
categories are not strictly defined. This is why we preferred the more complex model, 
which can handle more subtle effects. 

To account for the added complexity of the multi-effect components, we penalize each 
component with the prior probability 𝜔I for a variant to belong to the component. The more 
complex the component, the lower its prior, resulting in a greater penalty. 

Part 4: Calculating posterior probabilities and scores for variants. 

Parameters 𝜃 = 𝑖$ , 𝑖% , 𝜋$ , 𝜋% , ℎ$#, ℎ%# , 𝑞$ , 𝑞% , 𝛼$→% , 𝛼%→$ , 𝜌$∩% are estimated from the 
observed association summary statistics, using LHC-MR. Parameters 𝑛$ , 𝑛% , 𝑚 are 
known, ℎ)#  is a latent parameter fixed to 1, 𝜋) is a latent parameter fixed to 10KF. 

We chose 𝜋) = 10KF based on simulations indicating that using a very low value for 𝜋) 
had no adverse effects. As shown in Supplementary Fig. 21, setting a very low value for 



𝜋) significantly improved the precision in detecting direct variants, regardless of the actual 
polygenicity of the confounder. 

Applying Bayes’ theorem, the probability that a given variant 𝑘 belongs to the Gaussian 
component 𝑗 is determined by the following posterior probability: 

𝑃�G𝑘 ∈ 𝑗|𝛽u1$ , 𝛽u1
%H =

𝜙G𝛽u1$ , 𝛽u1
%|0, 𝛀� 𝐣H𝑃�(𝑘 ∈ 𝑗)

∑ 𝜙H
2JC G𝛽u1$ , 𝛽u1

%|0, 𝛀� 𝐣H𝑃�(𝑘 ∈ 𝑗)
 

Here, 𝛀� 𝐣 denotes the variance-covariance matrix of Gaussian component 𝑗. Function 𝜙 
represents the joint probability density function of the bivariate normal distribution, and 
𝑃�(𝑘 ∈ 𝑗) = 𝜔I is the prior probability of variant 𝑘 to belong to component 𝑗, conditional on 
parameters 𝜃. These probabilities will be use to differentiate between direct and pleiotropic 
effects in Part 6. 

The probabilities for variant 𝑘 to belong to the 8 Gaussian components are converted into 
scores, indicating whether 𝑘 has no effect (denoted 𝑂), or an effect on 𝑋, or on 𝑌.  

No Effect: the score indicating no effect of variant 𝑘 on neither 𝑋 nor 𝑌 corresponds to the 
probability of belonging to component (0): 𝑆u1M = 𝑃�G𝑘 ∈ {component 0}|𝛽u1$ , 𝛽u1

%H 

Effect on 𝑋: the score indicating an effect of variant 𝑘 on 𝑋 corresponds to the highest 
probability among the components that include an effect on 𝑋, specifically components 
(1), (4), (5) and (7): 𝑆u1' = 𝑃�G𝑘 ∈ {component 1,4,5,7}|𝛽u1$ , 𝛽u1

%H 

Effect on 𝑌: the score indicating an effect of variant 𝑘 on 𝑌 corresponds to the highest 
probability among components indicating an effect on 𝑌, specifically components (3), (5), 
(6) and (7): 𝑆u1( = 𝑃�G𝑘 ∈ {component 3,5,6,7}|𝛽u1$ , 𝛽u1

%H 

𝑆1 = (𝑆u1M 𝑆u1' 𝑆u1() ∈ ℝD is a vector of dimension 3 that contains these scores, for each 
variant 𝑘. 

𝐒� =

⎝

⎛
𝑆u!M 𝑆u!' 𝑆u!(

𝑆u#M 𝑆u#' 𝑆u#(
⋮ ⋮ ⋮
𝑆u-M 𝑆u-' 𝑆u-(⎠

⎞ ∈ ℝ-×D 

𝐒� is a matrix of dimensions 𝑚 × 3 stemming from the concatenation of all 𝑚 𝑆1 vectors. 

Part 5: Trait-wise workflow of PRISM and classification of the genetic variants. 

We detailed the process to obtain 𝐒� for two complex traits 𝑋 and 𝑌, using their GWAS 
summary statistics. The idea of PRISM is to apply this process to a large number of traits 
𝑇 pairwise. Consequently, N(NK!)

#
 different 𝐒� matrices are obtained from the pairwise 

pipeline. 

Then, for each variant 𝑘, we extract the scores 𝑆u corresponding to each trait. For example, 
let us consider the variant-trait association of variant 𝑘 on a new trait 𝐴, included in PRISM 
workflow. We previously observed the effect of variant 𝑘 on trait 𝐴 in 𝑇 − 1 contexts, trait 
𝐴 paired with all the other traits. So, we aggregate all previously calculated scores 𝑆u1O and 



𝑆u1M from all 𝐒� matrices containing 𝐴. As a result, we obtain 𝐸Y⃗ 1O = G𝑆u1
O) 𝑆u1

O" ⋯ 𝑆u1
O*+)H ∈

ℝNK! and 𝐸Y⃗1M = G𝑆u1
M) 𝑆u1

M" ⋯ 𝑆u1
M*+)H ∈ ℝNK!. Vector 𝐸Y⃗1O is the collection of 𝑇 − 1 

observations of the score of the very same variant 𝑘 to have a causal effect on trait 𝐴. 
Vector 𝐸Y⃗ 1M is the collection of 𝑇 − 1 observations of the score of the very same variant 𝑘 
to have no effect on trait 𝐴. 

Part 6: Statistical test of the variant-trait effect consistency. 

Next, we compare these values using a paired Student test. We define 𝜇1O as the average 
of all 𝑆1O and 𝜇1M as the average of all 𝑆1M. The hypotheses of the test are 𝐻C: 𝜇1O = 𝜇1M and 
𝐻!: 𝜇1O > 𝜇1M. 

By applying this test to all 𝑘 variants, we obtain one p-value per variant. Variant 𝑘 is 
considered significant if p-value1 <

F×!C+,

NK!
. This threshold corresponds to a Bonferroni 

correction in addition to the usual GWAS significance threshold of p < 5 × 10KP. 

Then, to label significant variants for trait 𝐴 according to whether their effect is direct or 
pleiotropic, we follow a three-step procedure. 

1) A significant variant is flagged with vertical pleiotropy on trait 𝐴 if any trait 𝐵 is 
causal to trait 𝐴, and 𝑃�G𝑘 ∈ {component 3}|𝛽u1$ , 𝛽u1

%H > 𝑃�G𝑘 ∈
{component 0,1,2,4,5,6,7}|𝛽u1$ , 𝛽u1

%H in the causal inference model for pair (𝐴, 𝐵). This 
means that the probability that the genetic variant 𝑘 has an effect only on trait 𝐵 is 
higher than all other possibilities. 

2) A significant variant is flagged with confounder pleiotropy on trait 𝐴 if, in at least 
one causal inference model involving trait 𝐴, 𝑃�G𝑘 ∈ {component 2}|𝛽u1$ , 𝛽u1

%H >
𝑃�G𝑘 ∈ {component 0,1,3,4,5,6,7}|𝛽u1$ , 𝛽u1

%H. This means that the probability that the 
genetic variant 𝑘 has an effect on 𝐴 only through a confounder is higher than all 
other possibilities. 

3) All other significant variants are considered to have a direct effect on trait 𝐴. 

The same procedure is applied to each trait. Finally, for each variant, we construct the 
causal network by creating a graph where nodes represent the variant and traits, and 
edges represent the relationships inferred from PRISM (direct, vertical, or confounder 
effects). We refine the causal network for each variant by removing vertical edges 
between the variant and specific traits, conditioned on other traits involved in vertical 
relationships. This process ensures that the causal pathways are accurately represented. 
Additionally, when a variant shows vertical effects on multiple traits through a common 
causal trait, we average the effect on the causal trait and eliminate redundant edges. 

GWAS simulation 
We started by creating an intricate network of 18 traits (See Online Methods, Fig. 6). We 
tested 32 different scenarios, varying parameters for heritability, polygenicity, and causal 
relationships, as detailed in Supplementary Table 1. To approximate a genome-wide 
model while maintaining computational feasibility, we opted for sets of 𝑚 = 100,000 
simulated variants. The standardized effects of all these variants on all the traits were 



simulated, taking into account the network relationships between the traits. First, for each 
trait, we randomly selected genetic variants to have a true direct effect on trait 𝑋 and on 
the confounders between trait 𝑋 and other traits. We also randomly selected 4 genetic 
variants to have a true direct effect on two traits, specifically 𝐵3&𝐶2, 𝐶3&𝐸4, 𝐵4&𝐸5 and 
𝐸2&𝐸3 to test for horizontal pleiotropy. Then, for the selected genetic variants, the true 
effects were drawn from a Gaussian distribution with parameters depending on the trait 
and the scenario. Specifically, true direct effects of all 𝑚 variants on trait 𝑋 were computed 
as: 

�⃗�$ = 𝜉$ ⊙𝜅$ 

Here, 𝜉$ ∼ ℬ(𝑚, 𝜋$) consisted of binary elements (0 or 1) indicating the presence or 
absence of a genetic variant effect on trait 𝑋. The effect 𝜅$ ∼ 𝒩O0, /#

"

-0#
P followed a 

Gaussian distribution with variance depending on the heritability of 𝑋, ℎ$#, and on the total 
number of variants with effect on 𝑋, 𝑚𝜆$. Similarly, the true confounder effects of all 𝑚 
variants on all confounders 𝑈 were computed separately as: 

𝛾) = 𝜉) ⊙ �⃗�) 

Similarly, 𝜉) ∼ ℬ(𝑚, 𝜋)) consisted of binary elements (0 or 1) indicating the presence or 
absence of a genetic variant effect on 𝑈. The effect 𝜅$ ∼ 𝒩 O0, /#

"

-0#
P followed a Gaussian 

distribution with variance depending on the heritability of 𝑈, ℎ)# = 1, and on the total 
number of variants with effect on 𝑈, 𝑚𝜆). 

Then, the true effects were propagated to the other 𝑇 traits through vertical and 
confounder pleiotropy. Specifically, 

𝛽$ = 𝛾$ +�lG𝑞$ + 𝑏𝑞%H ⊙ �⃗�)#&m
N

%J!

+ 𝑏�⃗�% 

Additionally, the effects were propagated according to the LD structure of each variant. 
For example, for variant 𝑘 in LD with all 𝐽 variants with coefficients denoted 𝑟I#: 

𝐵1$ = 𝛽1$ +�𝛽I$
Q

IJ!

𝑟I# 

Finally, an error term was added: 

 𝛽$ªYYYYY⃗ = 𝐵Y⃗ $ +𝒩�𝑂Y⃗-, 𝑚𝑒𝑑 �
(1 − 𝐵$#)

√𝑁
� 𝐼-� 

This gives us, for all genetic variants, standardized effects  𝛽$ªYYYYY⃗  on all traits, and LD scores. 
The LD score of a variant is the sum of its LD with all variants (including itself). The LD 
structure that we used was derived from 1000 Genomes34 LD data from chromosome 1. 
We chose to simulate small independent LD blocks, rather large LD blocks deemed 
computationally prohibitive for extensive simulations. 
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