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Abstract

Background

Faster nicotine metabolism, defined as the nicotine metabolite ratio (NMR), is known to
associate with heavier smoking and challenges in smoking cessation. However, the
broader health implications of genetically determined nicotine metabolism are not well
characterized.

Methods

We performed a hypothesis-free phenome-wide association study (PheWAS) of over
21,000 outcome variables from UK Biobank (UKB) to explore how the NMR (measured
as the 3-hydroxycotinine-to-cotinine ratio) associates with the phenome. As the
exposure variable, we used a genetic score for faster nicotine metabolism based on 10
putative causal genetic variants, explaining 33.8 % of the variance in the NMR. We
analysed ever and never smokers separately to assess whether a causal pathway through
nicotine metabolism is plausible.

Results

A total of 57 outcome variables reached phenome-wide significance at a false discovery
rate of 5 %. We observed expected associations with several phenotypes related to
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smoking and nicotine, but could not replicate prior findings on cessation. Importantly,
we found novel associations between genetically determined faster nicotine metabolism
and adverse health outcomes, including unfavourable liver enzyme and lipid values, as
well as increased caffeine consumption. These associations did not appear to differ
between ever and never smokers, suggesting the corresponding pathways may not
involve nicotine metabolism. No favourable health outcomes were linked to genetically
determined faster nicotine metabolism.

Conclusions

Our findings support a possibility that a future smoking cessation therapy converting
fast metabolizers of nicotine to slower ones could work without adverse side effects and
potentially even provide other health-related benefits.

Keywords: Nicotine metabolism, Nicotine Metabolite Ratio, CYP2A6 activity,
Smoking cessation, PheWAS, Phenome

Introduction 1

Smoking remains a leading cause of global morbidity and mortality [1]. While global 2

smoking prevalence has declined due to effective tobacco control policies, the prevalence 3

has risen or remained stagnant in many countries [2]. Furthermore, the emergence of 4

new nicotine products, such as e-cigarettes, which have aggressively been targeted at 5

the youth, has created a whole new generation of addicted individuals in some 6

countries [2, 3]. Nicotine, a toxic substance in itself [4, 5], is as addictive as cocaine and 7

heroine [6]. 8

The Nicotine Metabolite Ratio, NMR, measured as the 3-hydoxycotinine-to-cotinine 9

ratio (3HC/Cot), is an established biomarker for the rate of nicotine metabolism [7]. 10

Individuals with higher NMR values, reflecting faster nicotine metabolism, typically 11

smoke more [8, 9] and find quitting more challenging [10–12]. Personalizing cessation 12

treatments based on an individual’s NMR could improve cessation rates [13]. Another 13

approach would be to develop smoking cessation drugs tailored to modulate 14

metabolization rates. 15

The NMR is highly heritable [14], and understanding which genetic loci it associates 16

with, can illuminate potential drug targets. The largest genome-wide association study 17

(GWAS) on the NMR to date identified two independent association loci on 18

chromosomes 4 and 19, explaining 1.8 % and 36.4 % of the variation in the NMR, 19

respectively [15]. Notably, the chromosome 19 locus contains CYP2A6, which codes for 20

CYP2A6, the main metabolic enzyme for nicotine [16]. Nicotine is metabolized 21

primarily to cotinine (Cot) (up to 75 %), mainly by CYP2A6, and Cot is metabolized 22

primarily to 3-hydroxycotinine (3HC) (up to 40 %), exclusively by CYP2A6 [16]. Thus, 23

their ratio, 3HC/Cot, i.e. the NMR, also reflects CYP2A6 activity [7]. A smaller 24

fraction of nicotine and cotinine is metabolized through other enzymatic pathways [16]. 25

It is also essential to understand what traits or diseases the NMR is associated with. 26

This knowledge is critical for assessing possible side-effects and other opportunities for 27

drug development. A previous study by Chenowth et al. showed the NMR to be 28

associated with ethnicity, gender, hormonal replacement therapy, BMI, cigarettes 29

smoked per day (CPD), and number of alcohol drinks/week [17]. In that 30

hypothesis-driven study, the variables investigated had been carefully chosen based on 31

previous literature. Therefore, unknown and potentially important associations may 32

have been missed. 33
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Phenome-wide association studies (PheWASs) present a hypothesis-free approach to 34

discover novel associations [18]. PheWASs aim to identify associations with a genetic 35

instrument (e.g. a single nucleotide polymorphism (SNP) or genetic risk score), 36

proxying a given variable of interest, across an array of phenotypes (the phenome). Two 37

PheWASs of CYP2A6 activity have been published to date. The first, assessed 358 38

traits for nine CYP2A6 SNPs, and identified an association between one of the SNPs 39

and hearing loss among the nicotine-exposed subgroup but not among the 40

nicotine-unexposed subgroup [19]. The second, was a PheWAS of a genetic score for 41

CYP2A6 activity in UKB [20]. However, they limited their analyses to a total of 1,029 42

disease endpoints, based on ICD-9 and ICD-10 diagnostic rubrics. They found 43

associations with lung cancer and other known smoking related diseases; no associations 44

were seen among their subsets of former or never smokers. 45

Our aim was to use the UKB data (N = 343,662), without limiting ourselves to any 46

specific category of phenotypes, to assess how the NMR is associated with the phenome. 47

This is the largest PheWAS on the NMR to date, encompassing over 21,000 outcome 48

variables. Our study is also the first to explicitly focus on the NMR, rather than solely 49

on CYP2A6 activity. 50

We created a genetic score for the NMR from ten putative causal SNPs, explaining 51

33.8 % of the variance in the NMR. We used the sofware package PHESANT [21] which 52

enabled us to incorporate all variable types (continuous, binary, categorical, ordinal) in 53

the PheWAS, and thus uncover novel associations. Importantly, we used the GxE 54

MR-pheWAS approach [22], meaning that we ran the PheWAS also separately for ever 55

and never smokers. The approach permitted us to distinguish whether the associations 56

reflected a causal pathway through a) the NMR, either directly or through other traits 57

such as amount smoked (effect only seen in ever smokers), b) some other pathway not 58

including the NMR (same effect seen also in never smokers), or c) both (effect only seen 59

in never smokers, or there are quantitative or directional differences in the effect sizes 60

between ever and never smokers). Our findings contribute valuable information for drug 61

development and personalized interventions for treating nicotine addiction, as well as, 62

for example, cancer, given CYP2A6’s role in metabolizing various drugs, including the 63

chemotherapeutic agents letrozole and tegafur [23,24]. 64

Materials and methods 65

Study samples 66

UK Biobank 67

UK Biobank (UKB) is a population-based prospective study on genetic and non-genetic 68

determinants of diseases of middle and old age. The cohort consists of over 500,000 69

participants from the UK, aged between 37–73 at recruitment (2006–2010) [25]. The 70

resource comprises imputed genome-wide genotype data from all participants [26], along 71

with a comprehensive range of phenotypic data. This includes data from clinical 72

assessments, questionnaires, sample assays, and health record linkage—many of which 73

are available from all of the participants (see Sudlow et al. [27]). Of note, the NMR is 74

not available in the UKB data. 75

We had access to genetic data from 487,235 individuals after excluding withdrawals. 76

We restricted our sample to individuals of self-reported White British ancestry, and 77

performed further quality control measures, resulting in a final sample size of 343,662 78

individuals. During the quality control process, we ensured the genetic sex corresponded 79

to the reported sex, and that there were no instances of sex aneuploidy. We also verified 80

that our subset did not include any samples that were outliers with respect to genotype 81
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heterozygosity or missingness. Furthemore, we only retained one randomly chosen 82

individual from each pair of third-degree or closer relatives. 83

FINRISK 84

The National FINRISK Study consists of cross-sectional population-based data on 85

chronic non-communicable diseases in Finland [28]. Data collection was conducted every 86

five years between 1972–2012. Our previous GWAS of the NMR (n = 5,185 current 87

smokers from 5 cohorts) included 1,405 current smokers (Cot ≥ 10ng/ml) from the 2007 88

and 2012 FINRISK data collections [15]. These two cross-sectional studies included 89

independent samples from 25–74 year old Finns (see Buchwald et al. [15], Table S1). 90

Cot and 3HC concentrations were acquired from blood plasma samples using gas 91

chromatography-mass spectrometry. Self-reported variables on smoking behaviour, 92

including the number of factory and self-rolled cigarettes smoked per day (CPD), were 93

obtained from surveys. Genome-wide genotype data were imputed using a Finnish 94

reference panel (see Buchwald et al. [15], Table S2). 95

Young Finns Study 96

The Young Finns Study (YFS) is a prospective population-based study of cardiovascular 97

risk factors from childhood to adulthood. The initial cross-sectional sample from 1980 98

was selected so as to be representative of Finnish children aged 3, 6, 9, 12, 15 and 18. 99

The individuals have been followed up at regular intervals (see Raitakari et al. [29]). 100

Our previous GWAS of the NMR included 714 current smokers from the YFS, aged 101

15–45 (see Buchwald et al. [15], Table S1). For each individual we had chosen the time 102

point for which the NMR, sex, age and BMI were available, Cot was ≥ 10ng/ml, and for 103

which we had the least amount of missing values concerning the other GWAS variables 104

(CPD, Pack years, alcohol use). Whenever there were ties, the most recent time point 105

had been chosen. Cot and 3HC concentrations were acquired from blood plasma 106

samples using liquid chromatography-tandem mass spectrometry, and self-reported 107

smoking behaviour variables including CPD were obtained from surveys. Genome-wide 108

genotype data was imputed using the Haplotype Reference Consortium reference panel 109

(see Buchwald et al. [15], Table S2). 110

Measures 111

The genetic score for the nicotine metabolite ratio 112

Using the UKB data we created a genetic score (GS) for the NMR. We created it so 113

that higher values reflect faster nicotine metabolism, and thus, also refer to it in this 114

paper as the genetic score for faster nicotine metabolism. The GS served as the 115

independent variable (exposure) in our PheWAS. We constructed the GS as the 116

weighted sum of the 10 putative causal SNPs highlighted by our FINEMAP analyses 117

(see below). These SNPs together explained 33.8 % of the variance in the NMR. Prior 118

to running the PheWAS, we standardized the GS (zGS) by subtracting the mean and 119

dividing by the standard deviation for a simpler interpretation of the results. 120

Outcome variables 121

We used the PheWAS software package PHESANT [21] to preprocess the phenotype 122

data. Of the 5,559 UKB phenotype fields available to us, we included 4,546 in our 123

PheWAS. The excluded phenotype fields were either not listed in the variable 124

information file of PHESANT (252 dropped), were categorized as auxiliary variables in 125

the UKB data (STRATA=Auxiliary) (further 398 dropped) or based on the grouping 126
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done by Gibson et al. in their insomnia PheWAS [30] (further 141 dropped), or were 127

marked for exclusion in the PHESANT variable information file (further 60 dropped). 128

PHESANT uses a rule-based system for preprocessing and deciding which association 129

test to use for each variable. For full details, see [21]. For example, when a phenotype 130

has been measured at multiple time points, PHESANT automatically considers only the 131

first occurrence. For phenotypes measured multiple times at the first occurrence to 132

improve accuracy, PHESANT uses the mean value of those measurements. For multiple 133

choice questions where individuals have ticked all relevant options, PHESANT forms 134

multiple binary variables. For continuous variables, PHESANT inverse rank transforms 135

them to normality (unless, for example, there is a notable portion of some particular 136

value, in which case an ordered categorical variable is created). Out of the 4,546 137

phenotype fields, PHESANT created 21,094 outcome variables in total, meaning that 138

our initial PheWAS consisted of 21,094 regression analyses. Each outcome variable 139

served as the dependent variable in its respective regression model. 140

Covariates 141

We adjusted our PheWAS for sex and age to increase statistical power and to adjust for 142

potential confounding. We also adjusted for the first ten principal components of 143

genetic structure (1–10 PCs) to control for confounding due to population stratification. 144

We did not include any additional covariates to avoid inducing collider bias. 145

Ever-Never status 146

We wanted to perform the PheWAS separately for ever and never smokers to distinguish 147

whether the associations were independent of nicotine metabolism or indicative of a 148

possible causal pathway through nicotine metabolism (Fig 1), an approach described by 149

Millard et al. [22]. To reduce noise, we excluded experimenters and occasional smokers 150

from our Ever and Never subsets. We created a new Ever-Never variable based on two 151

existing variables: 152

1. Current tobacco smoking (”Do you smoke tobacco now?”, UKB field 1239) 153

2. Past tobacco smoking (”In the past, how often have you smoked tobacco?”, UKB 154

field 1249) 155

The second question had been asked from all except for those who indicated they 156

currently smoke on ”most or all days” in response to the first question. We classified all 157

who answered “most or all days” to either of the two questions as ever smokers. Those 158

who answered “no” to the first question and “never” to the second question, were 159

classified as never smokers. All others were assigned a missing value in our Ever–Never 160

variable, and excluded from the Ever and Never subsets. This included individuals who 161

answered “Occasionally” or ”Prefer not to answer” to either question, as well as those 162

who responded with “Tried once or twice” to the second question. 163

Out of our full sample (n = 343,662), we classified 135,890 as never smokers and 164

110,348 as ever smokers. Of those who dropped out, 99 % had answered ”Occasionally” 165

or ”Tried once or twice”. This group had marginally higher GS values as compared to 166

the Never group (Table S1 & Fig. S2). The GS distribution of the Ever group did not 167

differ from the Never group (Table S1 & Fig. S2). 168

Statistical analyses 169

Fig. S1 illustrates the main analyses and follow-up analyses performed in this study. 170
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Forming the GS 171

We previously performed a GWAS meta-analysis of the NMR in European ancestry 172

current smokers (n = 5,185) [15]. Our main GWAS model included sex, age, BMI, 173

alcohol use (g/week) and birth year as covariates. We identified two NMR loci, one on 174

chromosome 4 and one on chromosome 19. By fine-mapping these loci using 175

FINEMAP [31] and the datasets YFS and FINRISK (n = 2,119), we found there to be 176

only a single putative causal SNP on chromosome 4, explaining 1.7 % of the variance in 177

the NMR, but 13 putative causal SNPs on chromosome 19 explaining 36.7 % of the 178

variance in the NMR. 179

In the current study, we wanted to use the SNPs and weights obtained by the earlier 180

FINEMAP analyses to construct the GS for the NMR in the UKB data set. 181

Unfortunately, two of the 13 SNPs from chromosome 19 did not pass our quality control 182

in the UKB dataset (both had a Hardy-Weinberg Equilibrium p < 10−6). Excluding 183

these two SNPs would have dropped the variance explained in the NMR by the 184

chromosome 19 SNPs from 36.7 % to 23.7 %. Therefore, to gain maximal power, we 185

reran the FINEMAP analyses for the chromosome 19 locus as described previously (see 186

Buchwald et al. [15]) using only SNPs that were available and passed quality control in 187

UKB (See Supplementary information). The new FINEMAP analysis of the 188

chromosome 19 locus resulted in nine SNPs in the top configuration of putative causal 189

SNPs, explaining 32.1 % of the variance in the NMR (Table S2). All the aforementioned 190

estimates of the variance of the NMR explained, are the configuration-specific 191

heritability estimates obtained by FINEMAP. 192

We then calculated the GS as a weighted sum of these nine chromosome 19 SNPs 193

and a single chromosome 4 SNP, resulting in a GS explaining 33.8 % of the variance in 194

the NMR (Table 1). For both loci, we used the largest possible sample sizes to estimate 195

the effect sizes with the highest possible accuracy. For chromosome 19, we used the 196

joint effect size estimates from FINEMAP as the weights in order to adjust for 197

correlation among these SNPs. As only the datasets YFS and FINRISK were available 198

for fine-mapping, the sample size was n = 2,119. For chromosome 4, as there was only 199

one putative causal SNP, and thus no need to adjust for any correlated SNPs, the effect 200

estimate of this single chromosome 4 SNP equals to its marginal effect in the original 201

GWAS (n = 5,185). Of note, FINEMAP was not able to distinguish which of the three 202

top SNPs in the chromosome 4 locus was most likely to be the causal one [15]. All three 203

SNPs had the same p-value and were perfectly correlated. For the GS of the NMR, we 204

chose to use the SNP located in the middle based on base pair position. 205

To assess the performance and reliability of our GS, we plotted it against the NMR 206

top SNP (rs56113850) in the UKB data. In our previous study, the top SNP alone 207

explained 23 % of the variance in the NMR (see Buchwald et al [15], Table S5). Among 208

current smokers, we also plotted cigarettes smoked per day (CPD) against our GS as 209

CPD has been shown to associate positively with the NMR [8,9]. Additionally, we 210

tested the association of the GS with CPD with a linear model. We did this by first 211

regressing out sex, age and the first ten principal components of genetic structure, and 212

then inverse normalizing CPD. We used the whole data but also split the data into two: 213

lower and higher ends of the GS. We used 0 as the cut-off point based on the bend 214

apparent in the loess curve of the scatter plot (Fig 2) and to obtain roughly the same 215

sized groups as the mean was close to the median (Table 2). In order to have a reference 216

point, we used our Finnish data to create plots of CPD against the NMR, as well as 217

Cot+3HC, a biomarker for nicotine intake, against the NMR. 218
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Table 1. The ten SNPs and their weights used for calculating the GS for the NMR.

SNP CHR BP EA/NEA MINOR MAFUKB WEIGHT (MAF)

RS36103218 4 69359253 T/C C 0.3422 -0.175 (MAFMETA = 0.43)
RS189621498 19 41288136 A/G A 0.0003 0.6127 (MAFFY = 0.03)
RS74719953 19 41335799 T/C T 0.0652 -0.3581 (MAFFY = 0.09)
RS34945948 19 41340842 G/A G 0.1474 1.0276 (MAFFY = 0.14)
RS12985907 19 41343544 A/G A 0.2307 -0.8003 (MAFFY = 0.28)
RS1801272 19 41354533 T/A T 0.0271 -1.0103 (MAFFY = 0.02)
RS7250713 19 41355195 C/G G 0.4386 0.3251 (MAFFY = 0.37)
RS7248187 19 41437426 C/G G 0.3023 0.3187 (MAFFY = 0.24)
RS116382863 19 41534881 T/C T 0.1242 0.2212 (MAFFY = 0.13)
RS11466310 19 41861858 T/C T 0.0244 -0.5414 (MAFFY = 0.02)

For all chromosome 19 SNPs the weight has been obtained from their joint model using FINEMAP in the Finnish data. For
the chromosome 4 SNP the weight is the effect size obtained from our previous GWAS [15]. SNP, single-nucleotide
polymorphism; CHR, chromosome; BP, base pair position in GRCh37 coordinates; EA/NEA, the effect allele/ the non-effect
allele; MINOR, the less common allele; MAF, minor allele frequency; WEIGHT, weight used to calculate the GS (reported for
the effect allele); UKB, UK Biobank; META, data used in our previous GWAS meta-analysis (n = 5,185) from which the
weight for the chr 4 SNP is; FY, FINRISK and YFS data (n = 2,119) used to obtain the weights for the chr 19 SNPs.

PheWAS 219

We used the GxE MR-pheWAS approach [22], which allows for hypothesis-free testing 220

of the causal effects of the exposure (in our case, the NMR), while simultaneously 221

examining the presence of association pathways not involving the exposure (horizontal 222

pleiotropy) (See Supplementary Information). The idea is to divide the data in to 223

groups with different levels of the exposure, in our case, ever and never smokers. We 224

assume that the effect of nicotine metabolism only occurs in people who are actually 225

using nicotine, in other words our ever smokers subset. The approach permits us to 226

distinguish whether the PheWAS associations reflect a causal pathway through a) the 227

NMR, either directly or through other traits such as amount smoked (effect only seen in 228

ever smokers), b) some other pathway not including the NMR (same effect seen also in 229

never smokers), or c) both (effect only seen in never smokers, or there are quantitative 230

or directional differences in the effect sizes between ever and never smokers) (see Fig 1). 231

We began by running PHESANT (version 1.1) on the full sample using the ’save’ 232

option to save the variables processed and derived by PHESANT. Out of the 4,546 233

UKB phenotype fields we had to begin with, PHESANT created a total of 21,094 234

outcome variables. We then performed the actual PheWAS analyses in two stages. 235

Exploratory PheWAS. In the first stage, we used the 21,094 PHESANT derived 236

outcome variables to run an exploratory PheWAS for the entire sample (All), as well as 237

separately for those who had ever smoked daily (Ever) and those who had never smoked 238

(Never). We adjusted for age, sex and 1-10 PCs. For each PheWAS (All/Ever/Never), 239

we used the 5 % false discovery rate (FDR) level to define statistical significance at the 240

phenome-wide level. We used the Benjamini-Hochberg method to obtain the cut-off 241

points for the 5 % FDR, i.e. the thresholds for phenome-wide significance (TPWSs). 242

Within each PheWAS, we ranked the results based on ascending p-values. Next, for 243

each outcome variable, we calculated the critical value ci = 0.05× i/n, where i is the 244

rank and n the total number of tests performed in that PheWAS. The TPWS, was then 245

defined as the ci corresponding to the outcome with the highest rank to satisfy the 246

condition pi ≤ ci [32]. We used these TPWSs also in the second stage. 247

Final PheWAS. In the second stage of our analyses, we wanted to confirm our findings. 248
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Fig 1. Interpretations of the possible GxE MR results. The figure illustrates how the different types of results from
GxE MR can be interpreted in our case, where the exposure, X, is the NMR, and the genetic instrumental variable, Z, is the
genetic score for the NMR. The ever and never results can be categorized in to three types: 1) no interaction, i.e. the effect of
Z on outcome Y is not affected by smoking status, 2) qualitative interaction, i.e. the effect of Z on Y is apparent only in one
group or the effects are in opposing directions between the groups, and 3) quantitative interaction, i.e. the effects are
consistent between the groups but of different magnitude. There are three different interpretations for the associations: A) if
an effect of the same magnitude is apparent in both groups, there is evidence for a causal effect of Z on Y through a pathway
excluding X (this is known as horizontal pleiotropy), B) if an association is only seen among ever smokers, there is evidence
for a causal effect of Z on Y through X, and for X being causally associated with Y, either directly or through another
trait/other traits such as amount smoked (the latter is known as vertical pleiotropy), and C) if the ever and never subsets
show opposing effects, effects of different magnitude, or there is only an effect among never smokers, there is evidence for a
causal effect of Z both through the NMR (either directly or through vertical pleiotropy) and through another pathway
(horizontal pleiotropy). The figure has been modified from Millard et al. Fig 1 [22] and the figures at:
https://mr-dictionary.mrcieu.ac.uk/term/vertical-pleiotropy/. The figure was created with BioRender.com.

We reran the regression analyses for all the outcomes with phenome-wide significant 249

(PWS) associations in any of the three exploratory PheWASs described above 250

(All/Ever/Never). First, we manually checked the coding and the distributions of these 251

highlighted variables, as well as the appropriateness of the models used by PHESANT. 252

Where appropriate, we split the variable into multiple variables, adjusted the coding or 253

used a different regression model. We did these changes to obtain results that are more 254
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readily interpretable. Additionally, we reran the highlighted linear regression analyses 255

by regressing the covariates (age, sex, 1-10 PCs) out before inverse rank transforming 256

the outcome variables to normality. We did this because many of these continuous 257

outcomes, such as waist circumference, are known to be normally distributed around 258

different values depending on sex (one of our covariates). For the linear models, we 259

didn’t adjust for covariates anymore in the actual regression analyses. Otherwise, we 260

used the same protocol as PHESANT for our final analyses of the All, Ever and Never 261

data sets. A detailed description of the second stage outcomes that we derived, recoded 262

or analysed using a different model from the initial exploratory PheWASs can be found 263

in Table S3. For each data set we used the corresponding TPWS obtained previously to 264

determine statistical significance at the phenome-wide level. 265

Differences between the ever and never smokers 266

We wanted to assess whether there were any outcome variables for which there was a 267

statistically significant difference between the effect sizes for the Ever and Never subsets. 268

We did the Ever versus Never analyses in R by deriving p-values for the differences 269

using the function pchisq(x, df=1, lower=FALSE), where 270

x =
(β̂ever − β̂never)

2

se2ever + se2never
, and x ∼ χ2

1 under the null hypothesis of βever = βnever.

First, we did this for our initial PheWAS results. Of all the 21,094 PHESANT 271

derived outcomes altogether 15,212 had been analysed for both the Ever and Never 272

subsets using the same regression model. Once again, we used the 5 % FDR level to 273

determine phenome-wide significance, and obtained the TPWS using the 274

Benjamini-Hochberg method. We repeated the Ever versus Never analyses for our 275

outcomes from the second stage of our PheWAS analyses, using this same TPWS to 276

define statistical significance. 277

Follow-up analyses 278

Current versus Former analysis. We followed-up our Ever versus Never analyses by 279

taking all the outcomes with a PWS difference in their effect sizes, and repeated the 280

analysis for current versus former smokers. We did this to obtain a better understanding 281

of the possible causal role of smoking in the association pathway. We constructed the 282

current and former smoker subgroups from our Ever subset, and repeated the second 283

stage PheWAS regression analyses for the chosen outcomes in these two groups. 284

Follow-up of the GS-Cessation association. Our PheWAS results suggested a 285

positive association between the GS for faster nicotine metabolism and smoking 286

cessation. To investigate further what could be driving the positive association, we 287

examined the variable “Why did you stop smoking? (You can select more than one 288

answer): Illness or ill health / Doctor’s advice / Health precaution / Financial reasons” 289

(UKB Field 6157), and the variable “Number of unsuccessful stop-smoking attempts” 290

(UKB Field 2926) which captures the difficulty of quitting. 291

As faster nicotine metabolism is thought to associate with a greater amount of 292

cigarettes smoked and more difficulties in quitting smoking successfully (reviewed 293

in [10]), we began by rerunning the logistic regression model for cessation, including 294

CPD as an additional covariate to adjust for possible confounding. In other words, 295

among ever smokers, we ran a logistic regression, where cessation was the dependent 296

variable, and the zGS, age, sex, 1–10 PCs, and CPD were the predictor variables. 297

Smoking more will increase the risk of severe illnesses and the need for treatments such 298
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as surgery that require abstinence. Thus, we also ran this model within a subset of the 299

ever smokers from whom we had excluded those who listed illness and/or doctor’s 300

advice as the reason for stopping smoking. 301

Reasons for stopping smoking were available for those ever smokers who had at least 302

once managed to stop for over six months. We divided the Ever subset into three 303

approximately equal sized groups based on the GS tertiles, and named these groups as 304

slow, medium and fast metabolizers. We then compared, one reason at a time, whether 305

the proportions differed between the slow and fast groups. We used the 2-sample test 306

for equality of proportions using the prop.test function in R. 307

To assess the importance of the different reasons, we reran the cessation models 308

(with and without CPD included as a predictor) among those ever smokers who had at 309

least once managed to stop for over six months. Among this subset, we added all four 310

reasons to the models. We wanted to see how the reasons predicted former status at the 311

time of the questionnaire. 312

Then, among our former smokers, we ran a negative binomial regression model with 313

”Number of unsuccessful stop-smoking attempts” as the dependent variable and each of 314

the four reasons, the zGS, age, sex, and 1–10 PCs as the predictor variables. We also 315

ran the model including CPD as a confounder. 316

MRBase and FinnGen PheWASs using the top SNP for the NMR. For 317

comparison, we ran PheWASs of the top SNP for the NMR (rs56113850) using GWAS 318

summary data from FinnGen (Data freeze 9, from April 2022) and MRBase (Database 319

version 0.3.0, from 25 Oct 2020). We used the open access web interfaces. The FinnGen 320

Data Freeze 9 has a total sample size of 377,277 and consists of 2,272 disease endpoints 321

from Finnish biobank participants [33,34]. The GWAS results from FinnGen were 322

adjusted for sex, age, PC1-10, whether using FINNGEN1 or 2 chip, and legacy 323

genotyping batch [33]. The MRBase comprises GWAS summary data from numerous 324

consortia, including UKB and FinnGen [35,36]. From MRBase, we got results for 39,105 325

outcomes. This group of outcomes included expression quantitative trait loci (eQTLs) 326

as well. Unfortunately, we do not know what the GWAS results from MRBase were 327

adjusted for as the results come from multiple different cohorts and studies using 328

different protocols. 329

In both cases, we defined phenome-wide significance as before, and created tables of 330

the PWS results, i.e. those reaching statistical significance at the 5 % FDR level using 331

the Benjamini-Hochberg method. We used the library biomaRt in R to annotate the 332

eQTLs that were highlighted in the MRBase PheWAS. 333

Assessing sex and ancestry differences. We scrutinized our results by exploring 334

possible differences between sexes and among ancestries. First, we repeated the final 335

PheWAS analyses exactly as before, this time stratifying by sex. We then assessed 336

whether the effect sizes differed between the sexes by using the same formula we used 337

for the ever-never comparisons. Second, to assess to which extent our results can be 338

generalized to other ethnic groups, we used the mentioned top SNP for the NMR, 339

rs56113850-allele C (versus T), as a proxy for genetically determined faster nicotine 340

metabolism. This SNP has been shown to replicate in other ancestries, and to be an 341

important predictor for the NMR across ancestries [37–39]. We reran all the 33 342

continuous phenotypes highlighted as having a PWS association in our final PheWAS, 343

this time stratifying by ancestry and using the top SNP instead of the GS. We focused 344

on the continuous traits, since the sample sizes in the ancestries other than White 345

British were too small for disease studies (Table S11). To maintain reasonable sample 346

sizes, we did not separate ever and never smokers in the ancestry-specific analyses. To 347

create the ancestry groups that we then compared to our White British sample, we used 348

the Top level groupings listed for the UKB field 21000 on showcase [40]. 349
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Results 350

Descriptive statistics 351

For female participants, the smoking status (Ever/Experimenter/Never) category Never 352

was the largest (44 %), whilst for males the Ever category was the largest (38 %) 353

(Table 2). Among both sexes, over 70 % of the ever smokers were former smokers, and 354

roughly 70 % of the current smokers wanted to stop smoking. The distribution of the 355

GS for the NMR was nearly identical for both sexes (Table 2). When running a linear 356

model of the standardized GS by age, the age variable was not statistically significant 357

(p = 0.909). 358

The correlation between the GS and the top SNP (rs56113850) was 0.73 (Fig. S3). 359

Each standard deviation increase in the GS was associated with an increase of 0.6 360

cigarettes smoked per day (CPD), after adjusting for age, sex and 1–10 PCs (Table S4). 361

The association seemed to be stronger at the lower end of the GS than at the higher end 362

(Table S4, Fig 2a). This trend could also be seen in our Finnish sample when plotting 363

CPD or Cot+3HC against the NMR (Fig 2b). 364
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Fig 2. A Loess curve depicting the association between the standardized genetic score (zGS) for the Nicotine Metabolite
Ratio (NMR) and cigarettes smoked per day (CPD) in UK Biobank (UKB). B Loess curves depicting the associations
between the standardized NMR (zNMR) and CPD, as well as zNMR and Cotinine + 3-Hydroxycotinine (Cot + 3HC), a
biomarker for nicotine intake, using the combined data from FINRISK and Young Finns Study (YFS). All plots are for
current smokers. The x-axes have been restricted to show only data points within two standard deviations from the mean to
highlight the main trends. Full data are shown in Fig. S4. The standardized variables (zGS and zNMR) were calculated by
subtracting the mean and dividing by the standard deviation.

Exploratory PheWAS 365

A total of 61 different outcomes reached phenome-wide significance across the initial All, 366

Ever, and/or Never PheWASs (Fig. S5, Table S5). The exploratory full sample 367

PheWAS resulted in 47 PWS associations (TPWSAll : 0.05 · 47/21094 = 1.1e− 04) 368

(Table S5a). For the Ever subset there were 29 PWS associations 369

(TPWSEver : 0.05 · 29/16648 = 8.7e− 05) (Table S5b), and for the Never subset, only 370

two associations were PWS (TPWSNever : 0.05 · 2/16103 = 6.2e− 06) (Table S5c). 371
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Table 2. Descriptive statistics for age, sex, the GS for faster nicotine metabolism, and various smoking
variables in the UKB data.

All Female Male
n = 343, 662 n = 184, 565 (53.7%) n = 159, 097 (46.3%)

mean (sd), median [min, max] mean (sd), median [min, max] mean (sd), median [min, max]

Age 56.9 (8), 58 [39, 72] 56.7 (7.9), 58 [40, 71] 57.1 (8.1), 59 [39, 72]
GS 1.2 (0.6), 1.2 [-1.7, 2.9] 1.2 (0.6), 1.2 [-1.7, 2.9] 1.2 (0.6), 1.2 [-1.7, 2.8]
zGS 0 (1), 0.1 [-5.2, 3.1] 0 (1), 0.1 [-5.2, 3.1] 0 (1), 0.1 [-5.2, 2.9]

n (%) n (%) n (%)

Smoking status
Never 135,890 (39.7) 81,037 (44.1) 54,853 (34.6)
Experimenter 96,272 (28.1) 52,700 (28.6) 43,572 (27.5)
Ever 110,348 (32.2) 50,217 (27.3) 60,131 (38.0)

Former-Current (Ever subset)
Former 81,179 (73.6) 36,490 (72.7) 44,689 (74.3)
Current 29,141 (26.4) 13,711 (27.3) 15,430 (25.7)

Wants to quit (Current subset)
Yes 17,876 (70.3) 8,759 (72.4) 9,117 (68.4)
No 7,543 (29.7) 3,336 (27.6) 4,207 (31.6)

mean (sd), median [min, max] mean (sd), median [min, max] mean (sd), median [min, max]

Age started smoking on most days
Current (n = 25,522) 17.7 (5.8), 16 [5, 69] 18.1 (5.8), 17 [5, 69] 17.4 (5.7), 16 [5, 65]
Former (n = 80,788) 17.2 (3.6), 17 [5, 63] 17.7 (3.7), 17 [5, 60] 16.8 (3.4), 16 [5, 63]

Cigarettes smoked per day
Current (n = 23,682) 15.7 (8.4), 15 [1, 140] 14.2 (7.3), 15 [1, 120] 17.4 (9.2), 15 [1, 140]
Former (n = 76,865) 19.3 (10.5), 20 [1, 140] 16.8 (8.4), 15 [1, 100] 21.5 (11.6), 20 [1, 140]

Number of unsuccessful stop-smoking attempts
Current (n = 2,527) 4.1 (10.1), 3 [0, 200] 4 (10.7), 3 [0, 200] 4.1 (9.7), 3 [0, 200]
Former (n = 74,108) 2.9 (7.1), 2 [0, 200] 2.4 (5.3), 2 [0, 200] 3.2 (8.3), 2 [0, 200]

Age stopped smoking on most days
Current (n = 3,218) 47.3 (11.6), 48 [12, 70] 47.4 (11.5), 48 [13, 70] 47.1 (11.6), 48 [12, 70]
Former (n = 80,859) 39.5 (11.6), 39 [9, 69] 39.2 (11.5), 38 [12, 69] 39.7 (11.6), 39 [9, 69]

GS , genetic score for the nicotine metabolite ratio; zGS, standardized GS; Ever, individuals indicating smoking on most days
at present (UKB Field 1239) or in the past (UKB Field 1249); Never, individuals responding negatively to current (UKB
Field 1239) and past (UKB Field 1249) tobacco smoking; Experimenters, individuals indicating occasional or minimal past
(UKB Field 1249) or present (UKB Field 1239) tobacco use; Former-Current, subsets of ever smokers differentiating those
who had smoked in the past and those who smoke presently based on UKB Field 20116; Wants to quit, derived from the
variable “Wants to stop smoking” (UKB Field 3496) with responses grouped into “Yes” (including “Yes, definitely” and “Yes,
probably”) and “No” (including “No, probably not” and “No, definitely not”); Age started smoking on most days, UKB Field
2867 for former smokers, UKB Field 3436 for current smokers; Cigarettes smoked per day, UKB Field 3456 for current
smokers, UKB Field 2887 for former smokers; Number of unsuccessful stop-smoking attempts, all individuals who had
indicated that in the past they smoked tobacco on most or all days and that during the time they smoked they stopped for
more than 6 months were asked “How many times did you try to give up smoking before you were successful?” (UKB Field
2926); Age stopped smoking on most days, UKB Field 2897.

Final PheWAS 372

The set of 61 outcome variables highlighted in the first stage of our PheWAS analyses 373

was then taken to the second stage. Some of these variables were split into multiple 374
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variables to tease out which aspect of the phenotype was driving the association (Table 375

S3). For example, Smoking Status (Never/Previous/Current) was split into Cessation 376

(former vs current smoker) and Initiation (ever vs never smoker), out of which only 377

Cessation showed a PWS association when we reran the analyses (Fig 3). 378

14 / 71 were not stat. sig. in any of the data sets:
Waist circumference
Antigen for human cytomegalovirus
C-reactive protein
BrainSegVol-to-eTIV (whole brain)
Volume of VA (left hemisphere)
Tea drinker
Coffee drinker (excluding decaf)

Coffee drinker (including decaf)
Decaf vs caffeinated coffee
Decaf vs no coffee
Instant vs no coffee
Other caffeinated coffee vs none
Initiation
Occasional vs daily smoker

Impedance of arm
Degree of unsaturation

Linoleic acid
Omega-3 to total fatty acids ratio

Omega-6 to omega-3 ratio
Glycine

Eosinophill count
Eosinophill %

Apolipoprotein A
Calcium

Creatinine
Glycated haemoglobin

Urate
Father's age at death

Volume of grey matter in supracalcarine cortex
Coffee quantity (excluding decaf)
Coffee quantity (including decaf)

Creatinine in urine
Sodium in urine

Maternal smoking around birth
Free of mouth/teeth dental problems

Ground vs no coffee
Instant vs other caffeinated coffee

Serenace medication
Other operations on blood vessel

Radioactive seed implantation into prostate
Prosthetic replacement of hip joint

Liking coffee without sugar
Liking dark chocolate
Past tobacco smoking

FVC, best measure
FVC Z-score

FVC
Mouth/teeth dental problems: Dentures

Simvastatin medication
Leg artery bypass surgery
Worrier / anxious feelings

Anastomosis of ileum to anus (secondary)
Anastomosis of ileum to anus

Endarterectomy of femoral artery
Liking cigarette smoking

Chronotype

Alkaline phosphatase    
Alanine aminotransferase

CPD previously
Age stopped smoking

CPD currently
*FEV1, best measure
*FEV1, predicted %

*FEV1 Z-score
FEV1 to FVC ratio Z-score

*FEV1
Cessation

Cheese intake
Current smoking

Smoking compared to 10 years previous
Tea quantity

Fig 3. Venn diagram of the results of the final 71 variables. Out of these variables, 57 had a phenome-wide significant (PWS)
association in at least one of the data sets (All / Ever /Never). Those with a PWS difference in their effect sizes between the
ever and never smokers have been indicated with a star and bolded text.

Our second stage of the PheWAS analyses included 71 outcome variables (Table S6). 379

Of these, 57 showed a PWS association in at least one of the three data sets based on 380

the data specific TPWSs (Fig 3, Fig 4). We had 45 PWS associations among the full 381

sample, 26 among the Ever subset and three among the Never subset (Fig 3, Table 382

S6b–d). 383

For 14 outcomes, we did not observe a PWS association with the GS for faster 384

nicotine metabolism in any of the three groups (All, Ever or Never). This set of 385

non-significant associations included five continuous variables that had reached the 386

TPWS in at least one of the data sets in the exploratory PheWASs (when the covariates 387

had not been adjusted for before normalizing the outcome). The rest of the 388

non-significant results included the derived Smoking Initiation and Occasional vs Daily 389

Smoker variables, as well as some of the derived tea and coffee variables. 390

Ever versus Never analyses 391

In the first stage of our PheWAS, a total of 15,212 outcome variables had been analysed 392

for both the Ever and Never subsets using the same regression model. Of these, only 393

two variables showed a PWS difference in their effect sizes between the ever and never 394

smokers (Table S5d). The TPWS was thus at 0.05 · 2/15212 = 6.6e− 06. Both of these 395

were lung capacity variables and were included among the variables highlighted in the 396
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Urine assays

Spirometry

Lifestyle and environment

Imaging

Family history

Blood assays

Anthropometry

−0.05 0.00 0.05

n23109 − Impedance of arm

n30880 − Urate
n30750 − Glycated haemoglobin

n30700 − Creatinine
n30680 − Calcium

n30630 − Apolipoprotein A
n30620 − Alanine aminotransferase

n30610 − Alkaline phosphatase
n30210 − Eosinophill %

n30150 − Eosinophill count
n23462 − Glycine

n23459 − Omega−6 to omega−3 ratio
n23451 − Omega−3 to total fatty acids ratio

n23449 − Linoleic acid
n23443 − Degree of unsaturation

n1807 − Father's age at death

n25874 − Volume of grey matter in supracalcarine cortex

nd1498 − Coffee quantity (including decaf)
nd1498 − Coffee quantity (excluding decaf)

nd1488 − Tea quantity
n3456 − CPD currently

n2897 − Age stopped smoking
n2887 − CPD previously

n3062 − FVC
n20258 − FEV1 to FVC ratio Z−score

n20257 − FVC Z−score
n20151 − FVC, best measure

*n3063 − FEV1
*n20256 − FEV1 Z−score

*n20154 − FEV1, predicted %
*n20150 − FEV1, best measure

n30530 − Sodium in urine
n30510 − Creatinine in urine

Beta 
 1−SD increment in phenotype 

 per 1−SD increment in the GS of the NMR

Data

Never

Ever

All

Linear Regression

Fig 4. Results of the 71 variables from the final PheWAS analyses. The results of those variables (n = 57) that
were phenome-wide significant (PWS) (solid circles) in at least one of the data sets (All / Ever / Never) are shown. *, there
was a PWS difference between the effect sizes of the ever and never smokers; n, normalised after covariates had first been
regressed out; d, derived from the original UKB phenotype; c, coding corrected to be more intuitive.
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Psychosocial factors

Lifestyle and environment

Health and medical history

Early life factors

0.975 1.000 1.025 1.050 1.075

1787 − Maternal smoking around birth

20003#1140861958 − Simvastatin medication

6149#6 − Mouth/teeth dental problems: Dentures

6149#100 − Free of mouth/teeth dental problems

d20116 − Cessation

d1508 − Instant vs other caffeinated coffee

d1508 − Ground vs no coffee

1980 − Worrier / anxious feelings

Logistic regression

Operations

Medical information

0.3 0.5 1.0 3.0 5.0

20003#1140867092 − Serenace medication

41272#W384 − Prosthetic replacement of hip joint

41272#L601 − Endarterectomy of femoral artery

41272#G725 − Anastomosis of ileum to anus

41210#G725 − Anastomosis of ileum to anus (secondary)

41200#M706 − Radioactive seed implantation into prostate

41200#L978 − Other operations on blood vessel

20004#1102 − Leg artery bypass surgery

OR 
 Odds ratio for phenotype (95 % CI) 

 per 1−SD increment in the GS of the NMR

Data

Never

Ever

All

Fig 4 continued

exploratory All and Ever PheWASs (Fig. S5). There was no association among the 397

Never subset while among the Ever and All groups higher values of the GS predicted 398

worse lung capacity. 399

15/34

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2023.12.22.23300430doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.22.23300430
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lifestyle and environment

Food (and other) preferences

0.90 0.95 1.00 1.05

20652 − Liking dark chocolate

20644 − Liking coffee without sugar

20641 − Liking cigarette smoking

c3506 − Smoking compared to 10 years previous

c1249 − Past tobacco smoking

c1239 − Current smoking

1408 − Cheese intake

1180 − Chronotype

OR 
 Odd ratio for one increment in phenotype category 

 per 1−SD increment in the GS of the NMR

Data

Never

Ever

All

Ordered logistic regression

Fig 4 continued

Of the 71 outcome variables included in the second stage of our PheWAS analyses, 400

58 were available for our Ever versus Never analysis. Of these, four showed a PWS 401

difference between ever and never smokers in their effect sizes (p < 6.6e− 06) (Table 402
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S6a, Fig 4). All four were lung capacity measures. For all four, there was no evidence of 403

association among never smokers but a PWS association among ever smokers, 404

suggesting a causal pathway through smoking. The results suggested that only among 405

ever smokers higher values of the GS predicted worse lung capacity. 406

Never smokers: associations with liver enzymes and tea quantity 407

Among never smokers, a higher GS for faster nicotine metabolism was associated with 408

decreased alkaline phosphatase and increased alanine aminotransferase, both of which 409

are liver enzymes (Table S6d). These associations were also seen among the Ever and 410

All groups (Fig 3, Fig 4), and were PWS for all three groups already in our exploratory 411

PheWASs (Fig. S5). 412

Among never smokers, there was also a PWS association with increased tea 413

consumption. This was PWS in the All group too, but not among the ever smokers 414

subset. Apart from these three outcomes, none of the other outcomes showed a PWS 415

association in the never smokers subset. The direction and magnitude of association was 416

nevertheless similar to those of the other groups for many variables such as for the other 417

blood and urine assay variables and variables related to coffee (Fig 4). 418

Ever smokers: associations with liver enzymes and smoking related variables 419

Among ever smokers, 26 of the final second stage outcome variables showed PWS 420

associations (Fig 3, Table S6c). In addition to the liver enzymes, a higher GS for faster 421

nicotine metabolism was associated with a greater number of cigarettes smoked per day, 422

an increased likelihood of having quit smoking, decreased lung capacity, an increased 423

likelihood of taking cholesterol medicine (Simvastatin), being more of a morning person 424

than an evening person, quitting smoking at a younger age, an increased likelihood of 425

having dentures, increased smoking compared to 10 years ago, decreased consumption of 426

cheese, a decreased likelihood of being a worrier, decreased liking for cigarette smoking, 427

an increased likelihood of leg artery operations, and a decreased likelihood of an 428

anastomosis of ileum to anus. 429

The GS for faster nicotine metabolism was also associated with an increased 430

likelihood of smoking less at the time of the interview (”Do you smoke tobacco now?: 431

No / Only occasionally / Yes, on most or all days”, UKB field 1239). This negative 432

association with current smoking was driven by the higher odds of quitting. There was 433

no association for the derived Occasional vs Daily outcome, whereas our derived 434

Cessation outcome demonstrated one of the strongest associations (Table S6c). Our ever 435

smokers only contained individuals who smoked daily or had smoked daily in the past. 436

Therefore, we had better statistical power for our Occasional vs Daily phenotype in our 437

full sample. Nevertheless, we saw no association there either (p = 0.90, Table S6b). 438

Full sample: strongest associations with liver enzymes, smoking related 439

variables, coffee, and tea 440

Among the full sample there were 45 outcome variables that showed a PWS association 441

with the GS for the NMR (Fig 3, Table S6b). The strongest associations were observed 442

for the liver enzymes, CPD, cessation, and coffee and tea consumption. The GS was 443

also associated with 16 biomarkers, often used to assess overall health. For example, the 444

GS was associated with outcomes related to fatty acids, blood sugar, kidney and liver 445

health, impedance of arm, calcium, and white blood cells. The Never and Ever 446

associations for these biomarkers were in line with each other but neither reached 447

phenome-wide significance, except for the liver enzymes mentioned earlier (Fig 4). 448
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Some additional outcome variables, that had not reached phenome-wide significance 449

in the smaller subsets, were highlighted in the full sample. For example, among the full 450

set, the GS for faster nicotine metabolism was associated with an increased liking for 451

dark chocolate and coffee without sugar, decreased father’s age at death, decreased 452

maternal smoking around birth, increased volumes of grey matter in the supracalcarine 453

cortex, and a decreased likelihood of using haloperidol (Serenace), an anti-psychotic 454

medication. Some outcomes were only analysed in some groups due to a lack of cases, 455

and the use of haloperidol was one of these (only analysed in the full sample). The 456

outcome Past tobacco smoking (Never/Tried once or twice/Occasionally/Most days or 457

daily) was only analysed in the All group as it required answers from both ever and 458

never smokers. The GS for faster nicotine metabolism was associated with an increased 459

likelihood of being in a higher past tobacco smoking category. 460

Follow-up analyses 461

Comparison of current and former smokers supports the causal role of 462

smoking on worse lung functioning. Our Ever versus Never analyses highlighted 463

four lung capacity measures, suggesting a causal pathway through nicotine metabolism, 464

as the association was only seen in the ever smokers. We followed-up these results by 465

rerunning the analyses for the current and former smoker subsets. The effect sizes for 466

all four lung capacity measures were smaller among former smokers compared to current 467

smokers, though they too remained PWS (p < TPWSEver = 8.7e− 05) (Fig 5, Table 468

S6e). 469

GS-Cessation association possibly explained by CPD and ill health. In our 470

sensitivity analyses of cessation, the odds ratio of the GS remained positive after 471

adjusting for CPD (Table S7a–b), although it did decrease from 1.07 (95 % CI: [1.06, 472

1.09]) to 1.05 [1.04, 1.07]. The odds ratio decreased further to 1.01 [0.97, 1.06] and was 473

no longer statistically significant once we excluded individuals who had stopped due to 474

’Illness or ill health’ and/or ’Doctor’s advice’ (p = 0.54) (Table S7c). 475

When comparing the reasons for stopping smoking (llness or ill health / Doctor’s 476

advice / Health precaution / Financial reasons - participants could choose as many as 477

they wanted), fast metabolizers of nicotine (high GS) seemed to have more incentive to 478

quit than slow metabolizers (low GS), though differences were small (Table S8). 479

Regardless of reason, fast metabolizers had a slightly higher percentage of people 480

selecting it than slow metabolizers. For the more prevalent reasons: ’Health precaution’ 481

and ’Financial reasons’, the differences were statistically significant at the 0.05 level 482

(Table S8). 483

We took a closer look at ever smokers who had managed to quit at least once for 484

over six months, to see whether any of the reasons for stopping smoking were associated 485

with remaining a former smoker still at the time of the questionnaire (Table S7d–e). 486

Listing ’Financial reasons’ was positively associated with remaining a former smoker 487

(OR = 1.21 [1.11, 1.31]), while ’Doctor’s advice’ had a negative association (OR = 0.61 488

[0.54, 0.69]) (Table S7d). The GS for faster nicotine metabolism showed a positive 489

association (OR = 1.04 [1.005, 1.08]). After adding CPD to the model, the direction of 490

the association remained the same for all reasons, as well as for the GS (Table S7e). 491

Now the reasons with p-values below 0.05 were ’Doctor’s advice’ (OR = 0.51 [0.45, 492

0.59]), ’Illness or ill health’ (OR = 0.83 [0.74, 0.94]), and ’Health precaution’ (OR = 493

1.08 [1.001, 1.17]). For every additional cigarette the odds of remaining a former smoker 494

was 6 % greater (OR = 1.06 [1.06, 1.07]). 495

Among former smokers of the Ever subset, the median number of unsuccessful 496

smoking attempts was 2.0, the mean was 2.9 and the standard deviation was 7.1. Once 497

we excluded those listing ’Illness or ill health’ and/or ’Doctor’s advice’, the numbers 498
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p = 0.0193

p = 0.0334

p = 0.0008

p = 0.0089

Spirometry

−0.08 −0.04 0.00 0.04

n3063 − FEV1

n20256 − FEV1 Z−score

n20154 − FEV1, predicted %

n20150 − FEV1, best measure

Beta 
 1−SD increment in phenotype per 1−SD increment in the GS of the NMR

Data

Former

Current

Linear Regression

Fig 5. Current versus Former smokers comparison for the four lung capacity variables highlighted in the Ever
versus Never smoker analysis. For both Current and Former subsets all four variables had a phenome-wide significant
(PWS) association with the GS. Differences between these two subsets were not PWS. Nevertheless, the association is visibly
attenuated for the former smokers for all four variables. n, normalised after covariates had first been regressed out.
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hardly changed: 2.0, 2.8, and 6.9. 499

All four reasons were statistically significant at the 0.05 level in explaining the 500

number of unsuccessful stop-smoking attempts in the former smokers subset (Table S9). 501

They were all associated with an increased number of attempts, with ’Health precaution’ 502

demonstrating the strongest association. Individuals listing ’Health precaution’ had a 39 503

% higher number of attempts compared to those who had not listed it (IRR = 1.39 [1.36, 504

1.42]) (Table S9a). Additionally, for every standard deviation increase in the GS for the 505

NMR, there was an expected 1 % increase in the number of attempts (IRR = 1.012 506

[1.002, 1.022]). However, after including CPD in the model, the GS was not statistically 507

significant anymore (p = 0.24) (Table S9b). With every additional cigarette, the number 508

of unsuccessful stop-smoking attempts increased by 1.6 % (IRR = 1.016 [1.01, 1.02]). 509

PheWASs in MRBase and FinnGen confirm our findings and highlight lung 510

cancer and lipid outcomes. The NMR top SNP in our previous Meta GWAS of 511

current smokers with European ancestry was rs56113850 on chromosome 19 [15]. Based 512

on our Meta GWAS, the beta for the major allele C (vs. T) was 0.682 (se = 0.02) (C 513

allelle frequency was 0.553). Both the FinnGen and MRBase PheWAS results have been 514

presented for the allele C so that the results can be interpreted for genetically 515

determined faster nicotine metabolism. 516

The FinnGen PheWAS highlighted two PWS associations: both were for lung cancer 517

diagnoses (Table S10a). The associations were positive, so genetically determined faster 518

nicotine metabolism was associated with greater odds of having lung cancer. The 519

MRBase database pinpointed 199 outcomes with a PWS association (Table S10b). 520

However, many of these outcomes overlapped or were highly similar (Table S10c). Most 521

of the top associations were related to smoking, lung cancer, lung functioning, liver 522

enzyme levels, cholesterol and other lipids, as well as gene expression (See annotations 523

for highlighted genes: Table S10d). Our own PheWAS of the UKB had not included 524

some of these outcomes such as those related to gene expression, but otherwise the 525

MRBase results closely mirrored ours. 526

Sex and ancestry stratified analyses revealed limited variation. Out of the 71 527

variables assessed in our sex-stratified analyses, only three showed statistically 528

significant differences between the sexes at a Bonferroni significance level (0.05/71) in at 529

least one of the three data sets (Ever/Never/All) (Fig. S6, Table S12). The genetic 530

score for faster nicotine metabolism was associated with an increased number of 531

cigarettes smoked per day for both sexes but the effect size was greater among males. 532

The GS was negatively associated with glycine. However, this association was absent 533

among male never smokers, while for females, this association was strongest among 534

never smokers. Among current smokers, for smoking compared to 10 years previous 535

(Less nowadays?/About the same?/More nowadays?), there was no association among 536

males but a positive association among females. All variables showing a difference 537

between the sexes that was significant at the 0.05 level have been plotted in Fig. S6, 538

which mainly shows differences in magnitude of effect. 539

Six of the 33 continuous variables included in our ancestry-stratified analyses were 540

not available for the other ancestry groups. None of the remaining 27 variables showed 541

differences in effect sizes between the ancestry groups and the White British group at a 542

Bonferroni significance level (0.05/27) (Table S13). All variables showing a difference 543

between any of the other ancestry groups and our White British group at the 0.05 level, 544

or showing an effect reaching the 0.05 significance level in one of the other ancestry 545

groups have been plotted in Fig. S7. For both of the liver enzymes, our findings were 546

replicated in some of the other ancestry groups. 547
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Discussion 548

In our study we used a hypothesis-free method, GxE MR-PheWAS [22], to identify novel 549

associations across the phenome with the NMR. Importantly, we conducted separate 550

PheWAS analyses for ever and never smokers. This enabled us to identify which 551

associations might be attributable to a causal effect through nicotine metabolism. We 552

explored over 21,000 outcome variables, making our PheWAS the most comprehensive 553

to date on the rate of nicotine metabolism. Notably, our study was the first PheWAS to 554

explicitly focus on the NMR itself, rather than solely on CYP2A6 activity. 555

We found associations with several smoking related traits and diseases. These were 556

in line with existing literature, with the exception of a positive association between our 557

GS for faster nicotine metabolism and smoking cessation. Additionally, our study 558

unveiled novel associations with measures not previously reported to associate with the 559

NMR, including liver enzymes, lipids, and consumption of coffee and tea. 560

We did not replicate the hearing loss finding identified by the initial PheWAS of 561

CYP2A6 activity [19]. The other PheWAS published to date on CYP2A6 activity, used 562

the UKB data, but focused only on about 1,000 disease endpoints [20]. They did not 563

replicate the hearing loss finding either. Their findings, limited to tobacco related 564

diseases, were in line with ours, although none of their findings reached phenome-wide 565

significance in our study which included over 21,000 outcome variables. Their top 566

finding, lung cancer, ranked 56th in significance in our subset of ever smokers, for which 567

we saw 29 PWS associations. In our secondary analyses, however, we conducted a 568

PheWAS replication study of the top GWAS SNP for the NMR using the FinnGen data. 569

This FinnGen PheWAS consisted of roughly 2,000 disease endpoints, and here, the only 570

two PWS associations were indeed for lung cancer diagnoses (Table S10a). 571

Faster nicotine metabolism is known to associate with increased smoking [8,9]. Our 572

PheWAS results align with this established relationship. The GS for faster nicotine 573

metabolism was associated with a greater number of cigarettes smoked per day, 574

increased smoking compared to ten years earlier, and greater smoking in the past (asked 575

from all except daily current smokers). 576

We found both the GS and the NMR to have a non-linear association with CPD 577

(Fig 2). This non-linear relationship, indicative of a plateau-effect on CPD, aligns with 578

previous findings for cotinine [41], where a plateau-effect was observed on cotinine when 579

modelling it against CPD. However, to our knowledge, this phenomenon has not been 580

previously reported for the NMR. This relationship provides a possible explanation to 581

why in previous studies CYP2A6 variation has shown a stronger association with lung 582

cancer risk in light smokers (CPD ≤ 20) than in the total sample [20,42], and hasn’t 583

shown any association among the heavy smokers (CPD > 20) [42]. However, it is 584

possible that, as our population-based data relied on voluntary participation from 585

invitees, some subgroups of individuals with ill health, such as those with high GS and 586

high CPD values, were underrepresented. More research conducted in a controlled 587

setting would be warranted to explore this association more comprehensively. 588

While clinical trials and longitudinal data have shown that faster nicotine 589

metabolism predicts lower quit rates [11,12], our PheWAS yielded contrasting results. 590

The GS was associated with greater odds of quitting, and quitting at a younger age 591

(Fig 4). This positive association between genetically determined faster nicotine 592

metabolism and cessation was also seen by Loukola et al. in their follow-up analyses of 593

their NMR GWAS [14]. Cessation was not included in our FinnGen and MRBase 594

replication PheWASs which we performed using the top NMR SNP, rs56113850. 595

However, the same positive association was seen for the top NMR SNP allele C count 596

with cessation in the GSCAN GWAS [43]. They found that with every additional allele 597

C, the odds for being a former smoker (versus current) increased by 6 % (OR = 1.06 598
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[1.05, 1.07], p = 1.61e− 48 —calculated from [43] Table S3 to reflect our coding for 599

cessation (1 = former, 0 = current)). 600

To further investigate the positive relationship between genetically determined faster 601

nicotine metabolism and smoking cessation seen in these population based 602

cross-sectional data, we reran the UKB cessation analyses adding CPD as a covariate to 603

the model. We speculated whether CPD might be acting as a possible mediator for the 604

association. Faster nicotine metabolism is known to be positively associated with CPD. 605

Amount smoked, in turn, impacts one’s health and possibly one’s inclination to quit due 606

to the realization of adverse health effects or the necessity of abstinence, for example, 607

for consequent surgical procedures. After adding CPD into the model, the association 608

weakened but remained positive (Table S7a–b). Once we additionally excluded 609

individuals who listed ill health and/or doctor’s advice as the reason for quitting, the 610

association was no longer statistically significant (Table S7c). Loukola et al. observed 611

similar findings in their follow-up analyses of their NMR GWAS [14]. 612

When we looked at the reasons for quitting more closely, it did appear that fast 613

metabolizers might have had slightly more incentive to quit (Table S8). Additionally, it 614

looked like internal reasons (health precaution and financial reasons) were more likely to 615

result in continued abstinence (remaining a former smoker at the time of the UKB 616

questionnaire) (Table S7d–e). Conversely, having quit because of doctor’s advice seemed 617

to decrease the likelihood of remaining a former smoker at the time of the questionnaire. 618

As mentioned, those with faster nicotine metabolism are thought to have a harder 619

time succeeding at quitting [10]. Among former smokers, the GS had a positive 620

association with the number of unsuccessful quit attempts but the association was no 621

longer statistically significant once we adjusted for CPD (Table S9). All four reasons 622

increased the number of attempts, as did CPD. Health precaution and ill health however, 623

had considerably stronger associations than doctor’s advice and financial reasons. 624

Our results suggest that several factors are at play when it comes to cessation. 625

Individuals with faster nicotine metabolism may smoke more, spend more money on 626

tobacco, and experience more health problems. They may thus be more motivated to 627

quit but succeeding can possibly be more challenging due to greater nicotine 628

dependence which has been shown to correlate with faster nicotine metabolism by some 629

studies [42,44]. Regardless of the difficulties, faster metabolizers of nicotine appear 630

more likely to quit long-term (remain former smokers) than slower metabolizers of 631

nicotine. This could be due to their heightened motivation and more frequent quit 632

attempts. Additionally, due to the nature of the UKB dataset, selection bias may be 633

also contributing to this positive association. The UKB dataset is enriched with 634

individuals who are healthier and come from higher socioeconomic backgrounds [45]. 635

Thus those who smoke more and have not quit may be underrepresented, potentially 636

affecting the results. 637

In summary, our findings suggest that health precautionary reasons and higher daily 638

cigarette consumption make quitting more challenging. However, they also make it 639

more likely for the individual to remain a former smoker if they do manage to quit. We 640

believe that the positive association between the GS and cessation may be explained, to 641

some extent, by possible confounding or mediation by CPD and ill health, as well as, 642

various selection biases in UKB. 643

Our Ever versus Never analyses highlighted four lung capacity measures. The 644

associations were only seen in the ever smokers, providing evidence for a causal pathway 645

through nicotine metabolism (Table S6a, Fig 4). When we divided the ever smokers into 646

subsets of former and current smokers, the effect sizes for all four lung capacity measures 647

were attenuated among the former smokers, giving support for the possible causal role 648

of smoking on worse lung functioning (Fig 5, Table S6e). Our results align with existing 649

research. Smoking is known to accelerate the decline in lung function, which may 650
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develop into chronic obstructive pulmonary disease [46,47]. It is worth noting that, 651

although smoking cessation has been shown to slow down this rate of decline, it does 652

not appear to fully revert the rate of decline to that of never smokers [48]. 653

Beyond variables related to smoking, our study identified several other variables 654

associated with our GS for the NMR. It is noteworthy that many of these associations 655

did not seem to rely on pathways through nicotine metabolism. Interesting associations, 656

where we saw no apparent differences between ever and never smokers, included liver 657

enzymes, lipid measures, and coffee and tea consumption. 658

In our PheWAS, only two phenotypes, the liver enzymes alkaline phosphatase (ALP) 659

and alanine aminotransferase (ALT), showed associations with the GS that were PWS 660

in both ever and never smokers (Fig 4). These associations ranked among the top 661

findings in all three groups (All, Ever, Never), as well as in the PheWAS results from 662

MRBase (Table S6b–d, Table S10b). 663

Both ALP and ALT are blood serum liver enzymes that are key biomarkers for 664

assessing the extent and cause of liver damage [49–51]. One cause of liver damage is 665

alcohol use, and alcohol use and smoking are well known to be associated behaviours. 666

However, the strengths of the associations did not differ between the ever and never 667

smokers, implying that the associations are not mediated by nicotine metabolism or 668

smoking, and thus most likely not by alcohol either. 669

Building upon previous PheWAS analyses of these liver enzymes, conducted by Liu 670

et al. [49], our study suggests that a higher GS for faster nicotine metabolism is 671

correlated with less favourable liver enzyme levels with respect to associated diseases. 672

We observed a negative association between the GS and ALP levels. The ALP PheWAS 673

by Liu et al., revealed that lower values of the genetically determined ALP were 674

associated with increased odds of hypercholesterolemia, pulmonary heart disease, as well 675

as phlebitis and thrombophlebitis of lower extremities. 676

On the other hand, we found a positive association between the GS and ALT levels. 677

For genetically determined ALT levels, Liu et al. found 16 associations in their ALT 678

PheWAS. The strongest associations, based on p-values, highlighted a clear trend: 679

higher values of genetically determined ALT levels were consistently associated with a 680

higher risk of hepatic diseases such as hepatitis, primary liver cancer and non-alcoholic 681

cirrhosis. Additionally, genetically determined ALT was positively associated with Type 682

2 Diabetes, possibly due to the role ALT plays in insulin resistance [49]. In our 683

PheWAS of the entire sample, we identified a PWS positive association between the GS 684

and glycated haemoglobin, suggesting that higher GS values correlate with poorer blood 685

sugar control. The effect size remained consistent across the Ever and Never subsets but 686

did not reach PWS in ether subset. Of the 16 associations reported by Liu et al. for 687

ALT, only three showed an opposite direction of effect: dementias, fracture of hand and 688

wrist, and corneal degenerations. However, all three had p-values that had only just 689

surpassed the 5 % FDR threshold, and for dementias, the direction of the effect varied 690

depending on the Mendelian Randomization analysis method they used. 691

A substantial portion of our MRBase PheWAS results concerned outcome variables 692

related to cholesterol, fatty acids, and other lipids (Table S10c). Likewise, other 693

outcomes indicative of cardiovascular health were also highlighted. For instance, 694

genetically determined faster nicotine metabolism (the NMR top SNP, rs56113850, 695

allele C count), was associated with elevated levels of cholesterol, triglycerides, LDL 696

levels, and a higher apolipoprotein B/apolipoprotein A ratio (indicative of poorer 697

cardiovascular health), as well as an increased waist circumference, higher BMI and 698

greater odds of using cholesterol medication. Of note, cholesterol medication was among 699

the top five associations in the PheWAS of the FinnGen data, based on p-values, 700

although it did not reach phenome-wide significance. 701
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In our UKB PheWAS, the GS was associated with decreased apolipoprotein A, 702

increased linoleic acid, a higher omega-6 to omega-3 ratio and a decreased omega-3 to 703

total fatty acids ratio (Fig 4). Again, the direction of association was such that higher 704

GS values predicted worse lipid values with respect to cardiovascular health (see 705

e.g. [52]). These results were in line with our findings from the MRBase PheWAS. 706

However, they were PWS only in our All group. Nevertheless, there was no apparent 707

difference between the effect size estimates among the ever and never smokers, alluding 708

to effects independent of nicotine metabolism, and possibly to a shared genetic 709

component between nicotine metabolism and lipid levels. Interestingly, only among ever 710

smokers, we observed PWS positive associations between the GS and the use of 711

cholesterol medication, leg artery bypass surgery, and endarterectomy of femoral artery 712

(Fig 4). This suggests that ever smokers with higher GS values may face a compounded 713

risk for cardiovascular diseases due to their smoking history and genetics, and may thus 714

be more likely to face adverse health effects and require medical interventions. 715

Moving on to another noteworthy association highlighted in our PheWAS, the GS 716

for faster nicotine metabolism was associated with increased coffee and tea consumption 717

(Fig 4). We observed PWS associations with coffee consumption in the All group and 718

with tea consumption in the All and Never groups. The concordant results between Ever 719

and Never subsets suggest an association pathway distinct from nicotine metabolism. 720

When decaffeinated coffee was included in the coffee quantity variable, there was a 721

slight attenuation of associations, suggesting that the observed effect is possibly driven 722

by caffeine metabolism. Notably, in a GWAS of caffeine metabolites, multiple SNPs at 723

19q13.2, including the CYP2 cluster, NUMBL, ADCK4, MIA and EGLN2, showed 724

genome wide significant associations [53]. The CYP2A6 enzyme is known to play a 725

minor role in caffeine metabolism [53], and it is possible that our results reflect this 726

connection. 727

Interestingly, our PheWAS also highlighted a positive correlation between the GS 728

and preferences for dark chocolate and coffee without sugar. These associations were 729

PWS only in the All subset. However, both the Ever and Never results were consistent 730

with those of the All subset. Once again, this would imply that the association pathway 731

is unlikely to involve nicotine metabolism. Like coffee and tea, dark chocolate contains 732

caffeine and tastes bitter. Therefore, these findings suggest that the association with 733

coffee and tea consumption could be mediated through preference for bitter taste in 734

addition to caffeine metabolism. Cornelis and van Dam (2021) found in their study that 735

genetically inferred bitter taste perception indeed did play a role in coffee and tea 736

drinking behaviour but to a lesser extent than genetically inferred caffeine 737

sensitivity [54]. They also found support for conditioned taste preferences where 738

individuals learn to associate the bitter taste with either beneficial or adverse 739

physiological effects of caffeine. 740

While we did not observe direct evidence of a pathway involving smoking, it is well 741

known that smoking and coffee consumption correlate [55]. The prevailing belief is that 742

tobacco smoke increases an individual’s caffeine metabolism and that is why smokers 743

require more caffeine to achieve the desired effect [56]. Once an individual stops 744

smoking, their caffeine metabolism eventually returns to normal. A previous Mendelian 745

randomization study found support for this relationship [57]. They compared current, 746

former and never smokers using a single SNP as a biomarker for CPD [57]. They found 747

no association with coffee consumption among never or former smokers in their 748

meta-analysis of three datasets but did find an association among current smokers. 749

Our results align with the work of Cornelis and van Dam, suggesting some shared 750

genetics between nicotine metabolism and caffeine metabolism, along with potential 751

connections to bitter taste perception. Both smoking and caffeine impact the 752

metabolism of some medications and affect optimal dosages [56]. Additionally, it has 753
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been proposed that smokers attempting to quit, may inadvertently confuse symptoms of 754

caffeine toxicity with nicotine withdrawal symptoms if they fail to adjust their coffee 755

consumption [55]. Thus, understanding the interactions between smoking and caffeine 756

consumption is of great interest. 757

The main limitation of our study was the potential bias due to UKB’s enrichment 758

with healthier individuals. Additionally, we had limited statistical power to study 759

ancestry groups other than the White British group, as the sample sizes are notably 760

smaller. This limits the accuracy of the effect size estimates for the other groups, and 761

thus our power to detect differences with the White British group or to observe 762

replication of our results. Based on our ancestry-stratified follow-up analyses, the other 763

ancestry groups did not seem to notably differ from our White British sample, 764

admittedly possibly due to a lack of statistical power. We were, however, able to 765

replicate our liver enzyme findings in some of the other ancestry groups. Another 766

limitation is that there may be some overlap between the individuals included in our 767

NMR GWAS and those analyzed in the top NMR SNP (rs56113850) PheWASs from 768

MRBase and FinnGen. Considering that the GWAS and Sequencing Consortium of 769

Alcohol and Nicotine use (GSCAN) (n = 243,952) is the most likely cohort in MRBase 770

to have overlap with our data, and that the total sample size for FinnGen was 377,277, 771

our NMR GWAS was conducted with a relatively small sample size of 5,185 individuals 772

(of whom 2,572 were from Finland). Thus, we expect that the overlapping individuals 773

have minimal impact on the estimated effect sizes for most of the outcome variables in 774

the FinnGen and MRBase PheWASs. A further limitation, as discussed by Buchwald et 775

al. [15], was that individual-level genotype and NMR data required for the fine-mapping 776

analyses of the NMR loci were only available from two Finnish datasets. Thus, the 777

weights used for the chromosome 19 SNPs in the genetic score rely solely on these 778

datasets. However, one of our main strengths was the ability to perform FINEMAP 779

analysis: the variance explained by the chromosome 19 FINEMAP top configuration 780

was 32.1 % as opposed to 23 % explained by the top SNP alone. Additionally, apart 781

from having a very strong instrumental variable, another main strength of our study 782

was the implementation of the GxE MR approach, which involved comparing ever 783

versus never smokers and allowed for inferences about the association pathways. 784

Conclusions 785

This study presents the first comprehensive PheWAS of the NMR, uncovering novel 786

associations not previously reported in the context of nicotine metabolism. Our results 787

suggest that genetically determined faster nicotine metabolism is associated not only 788

with smoking related traits but also with various adverse health outcomes. Our GS for 789

faster nicotine metabolism was associated with worse liver enzyme and lipid values with 790

respect to associated diseases, as well as increased coffee and tea consumption. 791

Importantly, we saw no evidence of a causal pathway through nicotine metabolism for 792

these associations. Leaning on the assumption that slow metabolizers of nicotine have 793

an easier time quitting, our findings are promising. They support a possibility that a 794

future smoking cessation therapy targetting genes associated with the NMR, to convert 795

fast metabolizers into slower metabolizers, could work without adverse side effects and 796

potentially even provide other health-related benefits. Future research, focusing on 797

these newly highlighted variables using additional data and study designs, involving 798

different sources of potential bias, is warranted to confirm and extend these findings. 799
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Availability of data and materials 800

Access to the UK Biobank data can be applied at 801

http://ukbiobank.ac.uk/register-apply/. To apply for access to the YFS data see: 802

http://youngfinnsstudy.utu.fi/, and for FINRISK see: 803

https://thl.fi/en/web/thl-biobank. All analyses were performed in R and bash. Scripts 804

will be deposited on GitHub upon publication of the manuscript. 805

Supporting information 806

Fig. S1 Pipeline plot summarising the methods and UKB data used. Main 807

analyses are in pink and follow-up analyses in blue. 808

Fig. S2 Boxplots of the standardised GS for the NMR in UKB by 809

subgroups. Experimenters includes those individuals who answered ”Occasionally” or 810

”Tried once or twice” to the questions on current and past smoking behaviour. 811

Fig. S3 Scatterplot of the GS for faster nicotine metabolism against the 812

imputed genotype dosage (allele C) at the chromosome 19 top SNP 813

(rs56113850) for the NMR in UKB. 814

Fig. S4 Scatterplots and loess curves presenting the full data of the 815

association between A the standardized genetic score for the NMR (zGS) and 816

cigarettes smoked per day (CPD) in UKB, B the standardized NMR (zNMR) and CPD 817

in the Finnish data, C the NMR and CPD in the Finnish data, and D the zNMR and 818

Cotinine + 3-Hydroxycotinine (Cot + 3HC), a biomarker for nicotine intake, in the 819

Finnish data. All plots are for current smokers. The standardized variables (zGS and 820

zNMR) were calculated by subtracting the mean and dividing by the standard deviation. 821

Fig. S5 Venn diagram of the 61 variables highlighted in our initial 822

PheWAS. The figure shows the 61 variables that were statistically significant at the 5 823

% FDR level in at least one of the data sets (All / Ever / Never). The variable Smoking 824

status has been listed twice in the figure as it contained a different amount of categories 825

for the All and Ever groups. 826

Fig. S6 Forest plot of the 18 variables highlighted in our sex stratified 827

analyses of the 71 variables that were included in our final PheWAS. Results 828

for males have been indicated with squares and results for females with diamonds. Solid 829

circles/squares indicate a statistically significant effect size at p < 0.05. The figure 830

shows the variables that had a statistically significant (p < 0.05) difference between the 831

effect sizes of females and males in at least one of the data groups (Never/Ever/All). *, 832

there was a bonferroni significant (p < 0.05/71) difference between the effect sizes of the 833

males and females, n, normalised after covariates had first been regressed out; d, derived 834

from the original UKB phenotype; c, coding corrected to be more intuitive. 835

Fig. S7 Forest plot of the 11 variables highlighted in our ancestry-stratified 836

analysis of the 33 continuous variables that were phenome-wide significant 837

in our final PheWAS. The figure shows the 11 variables that were statistically 838

significant (p ¡ 0.05) in at least one of the ancestry groups (solid circles/squares), other 839

than White British, or had a statistically significant difference in their effect sizes as 840

compared to the White British group (p ¡ 0.05) (square shape). n, normalised after 841

covariates had first been regressed out; d, derived from the original UKB phenotype. 842

26/34

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2023.12.22.23300430doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.22.23300430
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S1 GS distribution by subset of smoking status. The p-values are from 843

Mann-Whitney U tests comparing the GS distributions to the Never group. sd, 844

standard deviation. 845

Table S2 FINEMAP top configuration of causal SNPs for the NMR on the 846

chromosome 19 locus in the Finnish data. FINEMAP results of the 5Mb region 847

centred at the top SNP when only including SNPs passing quality control in UKB 848

(n(SNP) = 10,133). The most probable configuration consisted of 9 SNPs (depicted in 849

the table) and their heritability estimate was 32.1% (95% CI: 28.5–35.6%). FINEMAP 850

gave a regional heritability estimate of 33.8% (95% CI: 30.0–37.8%) and suggested that 851

there are 7–11 causal SNPs within the region. SNP, single-nucleotide polymorphism; 852

BP, base pair position in GRCh37 coordinates; EA/NEA, the effect allele/ the 853

non-effect allele; MINOR, the less common allele; MAF, minor allele frequency in the 854

Finnish dataset (n = 2,119) used for the FINEMAP analysis; SNP PROB, posterior 855

probability of being a causal SNP; BETAJ, effect estimate from the joint model 856

including all these 9 SNPs (reported for the effect allele); SEJ, standard error for the 857

BETAJ; P-VALUEJ, p-value for the BETAJ. 858

Table S3 Variable descriptions for PheWAS outcomes. A Variable 859

information on all the second stage outcomes that we derived, recoded or analysed using 860

a different model from our initial PheWAS (See Table S3b). B Variable information on 861

all 61 variables highlighted in our initial PheWAS analyses. 862

Table S4 Linear regression beta coefficient for the zGS when explaining 863

CPD by zGS in UK Biobank. Analysis was done for the current smokers subset of 864

UK Biobank. CPD has been adjusted for sex, age and the first 10 genetic principal 865

components, and then inverse normalized (rank-based-inverse-normal-transformation) 866

before regressing it on zGS. The standard deviation of the adjusted CPD was 8.3. 867

When looking at all individuals, each standard deviation increase in the GS is 868

associated with a 0.07516 standard deviation increase in CPD, i.e. a 0.6 increase in 869

cigarettes smoked per day. The regression was ran for three subsets of the data 870

including either all individuals (ALL), only those with lower zGS values (LOW GS; zGS 871

< 0) or only those with higher zGS values (HIGH GS; zGS ≥ 0). 872

Table S5 Results from the initial PheWAS. A-C PheWAS results for the 873

variables that were significant at the 5 % FDR level for the All, Ever and Never data, 874

respectively. D Ever versus Never analysis results for the variables that had a 875

statistically significant difference at the 5 % FDR level between their effect sizes for the 876

Ever and Never subsets. 877

Table S6 Results from the final stage of the PheWAS. A Ever versus Never 878

analysis results. B-D PheWAS results for the All, Ever and Never data, respectively. E 879

Current versus Former analysis results for the four lung capacity measures that had 880

been highlighted in the Ever versus Never analysis (See Table S6a). 881

Table S7 Odds ratios from the logistic regression model for cessation. A 882

Among Ever smokers (n = 110348 ), model including the standardized GS, sex (1=Male, 883

0=Female), age and the first 10 genetic principal components as the predictor variables. 884

B Among Ever smokers (n = 110348 ), model including CPD as an additional predictor 885

variable. C Among subset of Ever smokers who did not stop smoking due to Illness or 886

Doctor’s advice (n = 70278), model including all the same variables as in B. D Among 887

subset of Ever smokers who had at least once managed to quit for over 6 months (n = 888
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83704 ), model including the 4 reasons for stopping smoking. E Among subset of Ever 889

smokers who had at least once managed to quit for over 6 months (n = 79228 ), model 890

including the 4 reasons for stopping smoking and CPD. 891

Table S8 Reason for stopping smoking by nicotine metabolism group 892

(grouped based on the tertiles of the GS for the NMR). Ever smokers who had 893

stopped smoking for over 6 months during the time they smoked were asked: ”Why did 894

you stop smoking? (You can select more than one answer)” (UK Field 6157). Total 895

number of ever smokers included in this analysis was n = 110 348, of which 26 % were 896

current smokers and 74 % former smokers. *, statistically significant difference (p < 897

0.05, 2-sample test for equality of proportions) between the Slow and Fast groups. 898

Table S9 Incident Rate Ratios (IRRs) from the negative binomial 899

regression model for Number of unsuccessful stop-smoking attempts. A 900

Among former smokers, model including standardized GS, the four reasons (1 = Yes, 0 901

= No), sex (1 = Male, 0 = Female), age and the first 10 genetic principal components 902

as the predictor variables. B Same as A but including CPD as a covariate in the model. 903

Table S10 The FDR significant results from the PheWAS of the top NMR 904

SNP, rs56113850 (allele C), using FinnGen and MRBase. A Using the 905

FinnGen r9 there were two outcomes reaching statistical significance at the 0.05 FDR 906

level. Beta has been counted for the C allele. Allele C frequency (vs T) was 56–57 % 907

across all phenotypes. mlogp,-log10(p); Bhcritical, Benjamini-Hochberg critical value. B 908

Using the MRBase (Database version: 0.3.0 from 25 October 2020) there were 199 909

outcomes reaching statistical significance at the 0.05 FDR level. minuslogp,-log10(p); 910

Bhcritical, Benjamini-Hochberg critical value; bf, significant at the 0.05 bonferroni level 911

(T=TRUE, F=FALSE). C Same as B but ordered by trait. D Annotations for the 14 912

gene expression outcomes that were among the 199 MRBase results. Annotations were 913

obtained from the Ensembl database using BiomaRt in R. band, Karyotype band; 914

gene biotype, Gene type; hgnc symbol, HGNC (The HUGO Gene Nomenclature 915

Committee) gene symbol. Note: MRBase id column can be searched as the GWAS ID 916

here: https://gwas.mrcieu.ac.uk/datasets/ for more information on the study. 917

Table S11 Information on the NMR top SNP, rs56113850, and smoking 918

status by ancestry group. 919

Table S12 Sex-stratified analyses. Results for all 71 variables assessed. 920

Table S13 Ancestry-stratified analyses. Results for all 33 continuous variables 921

assessed. 922
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Jahnsson Foundation to JB, by the Academy of Finland (grants 338507, 336825 and 933

352795) and Sigrid Juselius Foundation to MP and JK, and by the Academy of Finland 934

Center of Excellence in Complex Disease Genetics (grants 336823, 352792), and the 935

Finnish Foundation for Cardiovascular Research to JK. VS was supported by the Juho 936

Vainio Foundation. The FINRISK surveys have been mainly funded from budgetary 937

funds of THL. Important additional funding has been obtained from the Academy of 938

Finland and from several domestic foundations. The YFS has been financially 939

supported by the following sources: Academy of Finland (grant numbers 356405, 940

322098, 286284, 134309 (Eye), 126925, 121584, 124282, 255381, 256474, 283115, 319060, 941

320297, 314389, 338395, 330809, and 104821, 129378 (Salve), 117797 (Gendi), and 942

141071 (Skidi)); the Social Insurance Institution of Finland; Competitive State Research 943

Financing of the Expert Responsibility Area of Kuopio, Tampere and Turku University 944

Hospitals (grant X51001); the Juho Vainio Foundation; the Paavo Nurmi Foundation; 945

the Finnish Foundation for Cardiovascular Research; the Finnish Cultural Foundation; 946

the Sigrid Juselius Foundation; the Tampere Tuberculosis Foundation; the Emil 947
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52. Julkunen H, Cichońska A, Tiainen M, Koskela H, Nybo K, Mäkelä V, et al. Atlas
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