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Abstract

Consumer sleep trackers can provide useful insight into sleep and sleep patterns. However,

large scale performance evaluation studies against direct sleep measures are needed to

comprehensively understand sleep tracker accuracy. This study evaluated performance of an

under-mattress sensor to estimate sleep and wake versus polysomnography, during multiple

in-laboratory protocols in a large sample including individuals with and without sleep disorders

and during day versus night sleep opportunities.

183 participants (51% male, mean[SD] age=45[18] years) attended the sleep laboratory for a

research study that included simultaneous polysomnography and under-mattress sensor

(Withings Sleep Analyzer [WSA]) recordings. Epoch-by-epoch analyses with confusion matrices

were used to determine accuracy, sensitivity, and specificity of the WSA versus

polysomnography. Bland-Altman plots examined bias in sleep duration, efficiency,

onset-latency, and wake after sleep onset.

Overall WSA sleep-wake classification accuracy was 83%, sensitivity 95%, and specificity 37%.

The WSA significantly overestimated total sleep time (48[81]minutes), Sleep efficiency

(9[15]%), sleep onset latency (6[26]), and underestimated wake after sleep onset (54[78]),

p<0.05. Accuracy and specificity were higher for night versus daytime sleep opportunities in

healthy individuals (89% and 47% versus 82% and 26% respectively, p<0.05). Accuracy and

sensitivity were also higher for healthy individuals (89% and 97%) versus those with sleep

disorders (81% and 91%, p<0.05).

WSA performance is comparable to other consumer sleep trackers, with high sensitivity but

poor specificity compared to polysomnography. Poorer accuracy and specificity during

daytime versus night-time sleep opportunities is likely due to increased wake time and reduced

sleep efficiency. Contactless, under-mattress sleep sensors show promise for accurate sleep

monitoring, noting the tendency to over-estimate sleep particularly where wake time is high.
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Introduction

Sleep is critical for optimal daytime function, performance, safety, and health. Thus, accurate

and reliable estimates of sleep are important to help manage these key outcomes. However,

sleep is difficult to objectively evaluate, particularly over extended multi-day periods. This is

partly because gold-standard quantification of sleep, polysomnography, is expensive and

complex to administer over multiple nights. Wearable and ”nearable” (devices that are not in

direct contact with an individual) sleep tracking devices are used to simplify sleep estimation in

the home, such as wrist-based actigraphy, bedside radar, or mattress sensor devices [1, 2].

Deciding which devices are best suited for sleep estimation requires critical appraisal of device

performance and practicality. Accordingly, the present study evaluated the performance of an

under-mattress device, the Withings Sleep Analyzer (WSA), to evaluate sleep in a diverse cohort

and various sleep opportunities (day and night).

To help circumvent cost and measurement complexity for multi-day assessments, wearable

sleep trackers, such as actigraphy based devices, are often used to infer wake and sleep frombody

movements. This approach is sensitive to detect sleep but cannot reliably discriminate wake from

sleep when people lie still awake [3]. Additional signals such as heart rate, heart rate variability,

and breathing can improve device performance, but poor specificity remains a key limitation of

this technology. Another problem is that wearable devices require the user to ensure the device is

charged and properly worn. Consequently, data loss is common [4], variable [5], and performance

can drastically drop when devices are not worn correctly [6]. ”Nearable” sleep trackers that infer

sleep from detected motion, including respiratory and cardiac motion, avoid the need to charge or

wear any device. These devices are typically designed to be placed on or under the mattress, or at

the bedside, with little subsequent intervention required once properly set up [1, 7]. However, some

evidence suggests that these devices may be less accurate than wearable counterparts [8]. Thus,

rigorous performance evaluation is essential to determine device reliability, practical benefits, and

sleep tracking performance.

The WSA has been previously validated in smaller trials (N=18-118 [49-118 nights]) against

polysomnography to estimate sleep and identify breathing disturbances [8–11]. The device uses

a pneumatic sensor placed under the mattress to detect air-pressure changes, from which

movement, sleep, respiration and heart rate are inferred. The device is attractive for both clinical
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and research use, as once set up and connected to Wi-Fi and mains power, minimal ongoing user

input is required. Indeed, recent large scale, long-term monitoring studies that have used this

technology have been able to address key sleep health questions that were not previously

possible with polysomnography or existing wearables [11–15]. Furthermore, this technology

could markedly reduce data loss compared to wearable sleep trackers that require regular device

charging and correct daily wear. The unobtrusive nature of this approach is also potentially

amenable to patient/participant monitoring in environments less conducive to wearable devices

such as hospitals, nursing homes, and in high-risk on-call workplace settings. Given poor

specificity of sleep tracking devices, sleep classification may be less accurate in these

environments as sleep is more likely to be impaired, compared to in the home or laboratory.

Despite this, few devices have been rigorously evaluated across multi-night sleeps, and fewer

devices have been assessed to any degree with non-standard sleep schedules. Device accuracy

under these conditions is particularly important if they are to be used for readiness evaluation in

shift workers, or to examine clinical outcomes in people with sleep disorders. Therefore,

comprehensive performance evaluation of the WSA during sleep opportunities of varied timing

and in people with and without sleep disordersd remains important to establish the potential

utility of nearable sleep trackers for extended multi-day monitoring in more challenging sleep

assessment settings.

This study used comprehensive objective measurements of sleep in several laboratory sleep

research studies to evaluate the classification accuracy of the WSA compared to

polysomnography. Secondary aims explored how classification accuracy 1) was affected by the

timing of the sleep opportunity, 2) differed in people with versus without sleep disorders, 3) was

explained by polysomnography sleep efficiency, and 4) compared to a validated consumer

wearable, the Fitbit device.
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Methods

Data were utilized from 13 studies conducted at Flinders Health and Medical Research Institute:

Sleep Health, from 2021-2023, where data from the WSA was collected during the sleep study.

These comprised of ten studies with between 1-3 nights in the sleep laboratory for participants

with suspected or diagnosed obstructive sleep apnea (OSA), insomnia, co-morbid insomnia and

OSA (COMISA), cardiovascular disease, or general sleep complaint; two studies with single-night

laboratory visits with healthy volunteers; and one study with two 8-day laboratory visits

comprised of one nighttime sleep followed by five daytime sleep opportunities. Across all

research studies, 416 sleep recordings (224 nighttime and 192 daytime recordings) with

simultaneous polysomnography and WSA recordings were available for analysis. Data were

time-matched based on the clock-times in the polysomnography and WSA recordings. Subsets

of data were used to address secondary aims. Specifically, only data from healthy participants

were available for the time of recording comparisons (given that only one study collected data

from daytime sleep opportunities), only nighttime recordings were available for the healthy

versus sleep disorder comparisons, and only one study of healthy participants had data available

from both the WSA and the Fitbit to enable device comparisons. Detailed study information can

be found in Table S1.

Equipment

Polysomnography

Polysomnography was collected during all sleep opportunities. Polysomnography setups were

conducted in accordance with the standard 10-20 electroencephalography electrode placement

system, using Compumedics Grael 4K PSG:EEG devices (Compumedics, Victoria, Australia).

Sleep studies were independently scored using Profusion Compumedics software (v 4.0)

according to standardized American Academy of Sleep Medicine polysomnography scoring

criteria [16]. Polysomnography sleep stages were extracted as wake, rapid eye movement (REM)

sleep, stage 1 sleep (N1), stage 2 sleep (N2), and stage 3 sleep (N3).
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Withings Sleep Analyzer

The WSA is an under-mattress device that uses a pneumatic sensor to detect changes in

pressure in an air-bladder relative to atmospheric pressure (i.e., ballistography). The device uses

this information to infer movement, from which respiration, heart rate and sleep stages are

estimated via proprietary algorithms. The WSA was placed under the mattress, level with the

chest of the sleeping individual. WSA-derived total sleep time, sleep efficiency, and wake after

sleep onset has been validated, compared to polysomnography [8, 9, 11, 17], but extensive

performance evaluation of sleep characteristics and sleep staging accuracy is lacking.

Fitbit Charge 4

The Fitbit Charge 4 is a wrist-worn device that contains a tri-axial accelerometer to track

movement (i.e., actigraphy) and a photoplethysmography sensor to estimate heart rate. This

information is used to infer sleep stages and wake. Fitbit devices were placed on each

participant’s non-dominant wrist, with appropriate band-sized chosen to ensure proper fit. The

Charge 4 model has been validated against polysomnography [18], and earlier Fitbit models

similarly show reasonable accuracy to detect sleep compared to polysomnography. Individual

validation studies show such devices typically overestimate total sleep time by 30-60 minutes

and sleep efficiency by 5-10%, and underestimate wake after sleep onset by 20-60 minutes

[19–21]. Meta-analyses suggest that newer Fitbit devices may not significantly differ from

polysomnography in total sleep time, sleep efficiency, and wake after sleep onset [22], yet the

latest validated devices still show poor specificity (e.g., 6̃2% of wake correctly identified [18]).

Accordingly, Fitbit devices are generally at least on-par with highly validated research-grade

actiwatch devices [22, 23].

Statistical Analysis

WSA performance was evaluated based on recommended guidelines [24, 25]. Device data (WSA

and Fitbit) were extracted via custom software at www.snapi.space, developed in Python (v3.11).

Polysomnography data were extracted as European Data Format files using Python, and time-

matched to WSA and Fitbit data to provide concurrent epoch-by-epoch data. As the WSA device

only provides sleep stage classification data 60 second intervals, Fitbit and polysomnography data
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were converted from 30s to 60s epochs. Where combined epochs differed, wake was scored if

present in either, otherwise the first value was used [26]. Lights on and off were derived from

polysomnography sleep reports to determine sleep opportunities. Where device data started or

ended within these limits, preceding and trailing epochs were designated as wake.

Total sleep time (TST) was calculated as the sum of sleep epochs within the sleep

opportunity. Sleep efficiency (SE) was calculated as the sum of sleep epochs divided by the total

number of epochs within the sleep opportunity. Sleep onset latency (SOL) was calculated as the

sum of wake epochs before the first sleep epoch, within the sleep opportunity. Wake after sleep

onset (WASO) was calculated as the sum of wake epochs between the first and last sleep epoch

within the sleep opportunity. Wake and sleep classification performance was determined for

each sleep recording as accuracy (proportion of correctly scored epochs), sensitivity (proportion

of polysomnography-derived sleep epochs that the WSA correctly scored as sleep), and

specificity (proportion of polysomnography-derived wake epochs that the WSA correctly scored

as wake), compared to polysomnography. Additionally, four-stage (’wake’, ’light’, ’deep’, ’REM’)

sleep classification from the WSA was compared to polysomnography sleep stages, where

polysomnography N2 and N3 sleep epochs were combined as ’deep’ sleep.

Linear mixed model (LMM) analyses examined 1) performance (WSA vs polysomnography)

by time of recording (daytime vs nighttime) in healthy participants, 2) performance (WSA vs

polysomnography) by sleep disorder status (healthy sleep vs sleep disorder), and 3)

performance by consumer sleep tracker ([WSA vs polysomnography] vs [Fitbit vs

polysomnography]). LMM analyses were performed using the lme4 package [27] (R v4.2.2) to

examine how sleep estimates (TST, SOL, WASO, SE) and WSA performance (accuracy,

sensitivity, and specificity) were affected by these three fixed effects. Participant ID was entered

as random effects in all models. Marginal R2 was calculated to estimate variance explained by

fixed effects. Secondary analysis were conducted using mixed models adjusted for age, BMI and

polysomnography-derived sleep efficiency to examine potential confounders in the relationship

between sleep opportunity timing, sleep disorder status, and WSA performance.

Bland-Altman plots were used to examine bias and limits of agreement (LOAs), calculated as

± 1.96 the standard deviation of mean differences and their 95% confidence limits, between

polysomnography and device-derived estimates of TST, SE, WASO and SOL for each recording.

Proportional bias was also calculated and tested, where significant bias indicated that the mean

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 11, 2024. ; https://doi.org/10.1101/2024.09.09.24312921doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.09.24312921
http://creativecommons.org/licenses/by-nc-nd/4.0/


difference between device and polysomnography increased or decreased as a function of the

size of measurement [28].

For participants with more than one recording, the coefficient of variation (CV; SD divided by

mean) for accuracy, sensitivity, and specificity were calculated for each individual. To examine

differences in performance variability across sleep disorder statuses and sleep opportunity

timings, group differences in mean CV and the distribution of CVs were compared using linear

regression and Levene tests, respectively.

Finally, in the subset where both Fitbit and WSA devices were used, data-loss was quantified

and compared using a paired-samples t-test. Post-hoc comparisons with Bonferroni corrections

were conducted where main effects were significant. All data are reported as mean (SD) unless

otherwise specified. p<.05 was considered statistically significant.

Results

Final data included 416 recordings from 183 participants, collected across 13 sleep research

studies at Flinders Health and Medical Research Institute: Sleep Health. Participant

demographics can be found in Table 1.

Table 1: Participant demographics.

Healthy Sleep Sleep Disorder Total
Sample size 82 101 183

Nighttime recordings 96 128 224
Daytime recordings 192 0 192

Age (years), mean (SD) 30.9 (11.9) 56.5 (14.2) 45 (18.4)
Sex, n (%) male 35 (43) 58 (57) 94 (51)

n (%) female 47 (57) 43 (43) 89 (49)
BMI (kg/m2), mean (SD) 24 (4) 31.7 (10.4) 28.3 (9)

AHI (events/hour), mean (SD) 2.9 (7.1) 25.9 (26.6) 16.2 (23.6)

Note: For a full breakdown of sleep disorders refer to Table S4.
AHI=apnea hypopnea index; BMI=body mass index; SD=standard deviation

Accuracy, Sensitivity and Specificity

The WSA had high overall accuracy and sensitivity but moderately poor specificity, compared to

polysomnography, seen in Table 2. LMMs showed significantly lower mean (standard error

[SEM]) accuracy of 7% (±1.4%), F(272)=25.2, p<.001, marginal R2=0.08, and specificity of 19.7%

(±2.5%), F(277.2)=64.2, p<.001, marginal R2=0.18, during daytime sleep opportunities compared
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to nighttime sleep opportunities. There was no significant difference in sensitivity (p>.05).

LMMs also showed significantly higher accuracy of 7.2% (±1.7%), F(181)=18.5, p<.001, marginal

R2=0.08, and sensitivity of 4.4% (±1.5%), F(190.9)=8.6, p=.004, marginal R2=0.04, for healthy

sleepers compared to those with a diagnosed or suspected sleep disorder.

Table 2: Epoch-by-epoch performance of Withings Sleep Analyzer versus polysomnography.

Accuracy % Sensitivity % Specificity %
Healthy Sleeps

Nighttime 88.7 (7.8) 97.2 (3.3) 46.7 (19.9)
Daytime 81.8 (12) 96.5 (6.6) 26 (20.2)

Sleep Disorders
Nighttime 80.6 (13.3) 91.4 (12.6) 46 (26.3)

Overall
83 (12) 95.1 (8.8) 36.9 (24.3)

Note: Therewere no data available for daytime sleep opportunities in patientswith sleep disorders.

Fully adjusted models (Table 3) show that the group effect of sleep disorder status on

accuracy was fully explained by age, BMI and polysomnography-derived sleep efficiency. The

effect on specificity was partially explained by age. The group effect of nighttime versus daytime

sleep opportunity on accuracy was partially explained by age and sleep efficiency. The effect on

specificity was partially explained by sleep efficiency.

Table 3: Epoch-by-epoch performance of Withings Sleep Analyzer versus polysomnography.

Accuracy % Sensitivity % Specificity %
Predictor Estimate p Estimate p Estimate p
Sleep Disorder Status

Sleep Disorder 1.95 .271 4.38 .031 -9.73 .046
Age -0.10 .042 -0.01 .844 -0.41 .002

Body Mass Index -0.18 .018 -0.12 .142 -0.12 .550
Sleep Efficiency 0.49 <.001 -0.08 0121 0.02 .896

Sleep Opportunity Timing
Daytime -5.50 <.001 -0.86 .252 -20.95 <.001

Age -0.16 .002 -0.00 .941 -0.31 .071
Body mass index 0.12 .328 0.09 .385 0.06 .896
Sleep Efficiency 0.56 <.001 0.02 .458 -0.20 .020

Sleep Characteristics

Sleep characteristics as measured by polysomnography and estimated by the WSA are found in

Table 4, including subsets of data for secondary analyses. Overall, the WSA significantly

overestimated TST, SE, SOL, and significantly underestimated WASO, compared to

polysomnography. This was also reflected in sleep stages, where light, deep and REM sleep are
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typically underestimated, and wake is overestimated.

Participants had lower TST, SE, SOL and higherWASO in daytime sleep opportunities compared

to nighttime sleep opportunities, and healthy participants had higher TST, SE, and lower WASO

compared to those with a diagnosed or suspected sleep disorder. There were significant device

by sleep opportunity timing interactions for all but SOL and REM sleep duration, where metrics

were over or underestimated to a greater degree during daytime sleep opportunities. There were

also significant device by sleep disorder status for light, deep, and REM sleep duration, where

light sleep was overestimated and deep and REM sleep was underestimated to a greater degree

in individuals with a sleep disorder, compared to healthy individuals. A detailed breakdown of

interactions can be found in Supplementary Table S4.

Bland-Altman plots in Figure 1 highlight the significant increase in mean bias for TST and SE

estimates, and decrease for WASO estimates, during daytime versus nighttime sleep

opportunities. Furthermore, these plots show the significant proportional bias that was evident in

daytime and nighttime estimated TST, SOL, and WASO, as well as daytime SE. Bland-Altman

plots of healthy sleepers compared to those with a diagnosed or suspected sleep disorder did

not show notable differences, as found in supplementary Figure .5.
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Table 4: Sleep characteristics of Withings Sleep Analyzer versus polysomnography during
nighttime and daytime recordings.

PSG WSA Difference (WSA - PSG)
Overall
Total Sleep Time 413.1 (84.4) 460.6 (75.3) 47.5 (81.2)*

Sleep Efficiency (%) 79.3 (14) 88.5 (11.5) 9.2 (14.8)*
Sleep Onset Latency 17.9 (30.6) 24.2 (29.7) 6.4 (26.1)*

Wake After Sleep Onset 90.1 (71.8) 36.2 (59.6) -53.9 (77.9)*

Wake 108 (76.2) 60.4 (67.3) -47.6 (81.2)*
Light Sleep 214.2 (63.3) 238 (67.2) 23.8 (86.4)*
Deep Sleep 113.7 (44.7) 119.4 (52.4) 5.7 (60)*
REM Sleep 84.7 (35) 102.7 (49.2) 18 (45.4)*

Healthy Sleep - Nighttime
Total Sleep Time 436 (81) 472 (70.1) 36 (45.9)*

Sleep Efficiency (%) 82.3 (12) 89.2 (9.4) 7 (8.6)*
Sleep Onset Latency 30 (38.9) 34.1 (39) 4.1 (20.6)

Wake After Sleep Onset 64.3 (56) 24.1 (37.8) -40.2 (42.5)*

Wake 94.3 (68.9) 58.3 (56.8) -36 (45.9)*
Light Sleep 253.5 (57) 236.1 (67.2) -17.4 (68.8)
Deep Sleep 98.1 (35.8) 129.8 (48) 31.8 (51.2)*
REM Sleep 84.2 (34) 105.9 (38.4) 21.7 (30.9)*

Healthy Sleep - Daytime
Total Sleep Time 420.6 (84.5) 486.8 (58.4) 66.2 (79)*

Sleep Efficiency (%) 78.9 (14.5) 91.5 (9.4) 12.7 (13.6)*
Sleep Onset Latency 5.3 (5.1) 13.5 (11.2) 8.3 (10)*

Wake After Sleep Onset 107.4 (78.2) 32.9 (61.4) -74.5 (79.2)*

Wake 112.7 (78.4) 46.3 (62.5) -66.4 (78.9)*
Light Sleep 192.3 (50.1) 239.9 (60.2) 47.6 (77.1)*
Deep Sleep 132.1 (34.2) 125.2 (38.3) -6.9 (46.3)
REM Sleep 95 (30.6) 120.7 (45.3) 25.7 (47.1)*

Sleep Disorder - Nighttime
Total Sleep Time 384.6 (79.5) 412.7 (79.2) 28.1 (97.9)*

Sleep Efficiency (%) 77.9 (14.6) 83.5 (14.1) 5.7 (18.8)*
Sleep Onset Latency 27.6 (38) 32.9 (35.2) 5.2 (41.8)

Wake After Sleep Onset 83.5 (65.5) 50.2 (67.4) -33.4 (88.4)*

Wake 111.2 (77.3) 83.1 (75.5) -28.1 (97.9)*
Light Sleep 217.4 (70.7) 236.5 (77.1) 19.2 (98.6)
Deep Sleep 97.7 (53.6) 102.9 (68.1) 5.2 (76.4)
REM Sleep 69.5 (36.5) 73.2 (48.4) 3.8 (48.7)

Note: Data reflects mean (SD) and units are minutes unless otherwise indicated
p<.05 in mixed model analyses between Withings Sleep Analyzer and polysomnography
REM=rapid eye movement; SD=standard deviation
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Figure 1: Bland-Altman plots of TST, SE, SOL, andWASO during nighttime (left) and daytime (right)
sleep opportunities.

Note: Red solid lines indicate mean bias, with dashed red 95% CIs. Grey solid lines indicate LOAs
(Mean bias ±1.96 standard deviation), with dashed grey 95% CIs.
TST=total sleep time; SE=sleep efficiency; SOL=sleep onset latency; WASO=wake after sleep onset
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Sleep Stages

Confusionmatrices in Figure 2 demonstrate that during nighttime sleep opportunities with healthy

sleepers, the WSA accurately classified 50% of wake and 91% of sleep epochs. For daytime sleep

opportunities, the WSA accurately classified 27% of wake and 90% of sleep. Sensitivity for sleep

stage classification ranged from 62-75% during nighttime sleep opportunities, and 60-69% during

daytime sleep opportunities. For individuals with a diagnosed or suspected sleep disorder, the

WSA accurately classified 43% of wake and 78% of sleep, with sleep stage accuracy ranging from

45-59%.

Figure 2: Confusion matrices showing Withings Sleep Analyzer versus polysomnography four-
stage classification for healthy sleepers during nighttime and daytime recordings, and people with
a sleep disorder during nighttime recordings.

WSA versus Fitbit accuracy

Data from a subset of 22 healthy participants (nighttime recordings=35, daytime=160, mean[SD]

age=31.3[12.4], 10 male, 12 female) were used to compare sleep estimation performance of the

WSA and Fitbit versus polysomnography. Figure 3 shows the sleep-stage classification

confusion matrices between devices for both nighttime and daytime sleep opportunities. There

was a significant interaction effect of device by timing of sleep opportunity for accuracy,

F(363.5)=6.5, p=.01, marginal R2=0.08, and specificity, F(365.3)=4.3, p=.04, marginal R2=0.17,

whereby the Fitbit showed significantly higher accuracy (5% ±1%) and specificity (19.1% ±2.2%)

than the WSA during daytime sleep opportunities, but did not significantly differ during nighttime

sleep opportunities. In addition, the WSA had significantly poorer accuracy (8.7% ±1.7%) and

specificity (15.7% ±3.6%) during daytime sleep opportunities, compared to night, while the Fitbit

did not. This effect is evident in the confusion matrices, where daytime sleep opportunities saw

a larger reduction in wake classification accuracy for the WSA (43% to 28%) compared to the
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Fitbit (53% to 47%). The interaction effect of device by timing of sleep opportunity was also

significant, p=.006, but post-hoc analyses revealed no significant comparisons.

Figure 3: Confusion matrices showing four-stage classification, compared to polysomnography,
for Withings Sleep Analyzer versus Fitbit.

Note: Sleep stage classification compared four-stage estimation (Device ’wake’ = PSG wake,
device ’light’ = PSG N1, device ’deep = PSG N2 + N3, device ’REM’ = PSG REM).
N1=non-REM stage 1; N2=non-REM stage 2; N3=non-REM stage 3; PSG=polysomnography;
REM=rapid eye movement; WSA=Withings Sleep Analyzer

Comparisons were conducted between WSA and Fitbit estimations of TST, SE and WASO,

with mean (SD) values seen in Figure 5. Main effects of sleep opportunity timing and device were

significant for all sleep outcomes (ps<.05), but there were no significant interactions between

timing of sleep opportunity and device. Post-hoc analyses revealed that both the WSA and Fitbit

overestimated TST and SE, and underestimated WASO, while only the WSA significantly

overestimated SOL (ps<.05). Post-hoc analyses also showed that the Fitbit was significantly

closer than the WSA to polysomnography in estimates of TST by 20 (±8.1) minutes, p=.04, SE by

3.5% (±1.3%), p=.03, and WASO by 21.5 (±7.5) minutes, p=.01.
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Table 5: Sleep characteristics of Withings Sleep Analyzer and Fitbit versus polysomnography
during nighttime and daytime recordings.

PSG WSA WSA-PSG Fitbit Fitbit-PSG WSA-Fitbit
Overall

TST 426.1 (82.9) 486.3 (57) +60.2 (77.4) 467.1 (68.6) +41 (57.5) +9.6 (33.6)
SE 79.9 (14.2) 91.4 (9.2) +11.5 (13.3) 88 (10.6) +8.2 (11.1) +1.7 (5.3)

SOL 8.8 (11.8) 17 (15.8) +8.2 (12.6) 11.6 (23.8) +2.8 (20.6) +2.7 (10.6)
WASO 98.7 (77.8) 30.2 (60.1) -68.5 (78.3) 52.3 (52.5) -46.5 (57.1) -11 (31)
Night

TST 454.9 (57.5) 494.5 (30.9) +39.6 (42.1) 473.4 (51.1) +18.5 (52.7) +10.6 (22.4)
SE 84.7 (10.8) 92 (5.8) +7.4 (7.9) 88.3 (8.6) +3.7 (9.3) +1.9 (3.7)

SOL 23.1 (20.2) 29.1 (24.1) +6 (19.7) 27.4 (41.9) +4.3 (37.2) +0.9 (19.2)
WASO 59.4 (54) 13.8 (18.2) -45.6 (45.1) 34.5 (25.8) -24.9 (49.7) -10.4 (11.7)
Day

TST 419.8 (86.3) 484.5 (61.2) +64.8 (82.6) 465.7 (71.9) +45.9 (57.5) +9.4 (35.6)
SE 78.8 (14.6) 91.2 (9.8) +12.4 (14) 87.9 (11) +9.1 (11.3) +1.6 (5.6)

SOL 5.7 (5.2) 14.4 (11.9) +8.7 (10.5) 8.2 (15.9) +2.5 (14.9) +3.1 (7.6)
WASO 107.3 (79.6) 33.8 (65.3) -73.5 (83.1) 56.1 (56) -51.2 (57.7) -11.1 (33.9)

PSG=polysomnography; SD=standard deviation; SE=sleep efficiency; SOL=sleep onset latency;
TST=total sleep time; WASO=wake after sleep onset; WSA=Withings Sleep Analyzer

Data Loss

Within the subset where both devices were used (n=25, 248 possible recordings), a total of 17

recordings (mean [SD] = 0.68 [0.9] per participant) were lost with the WSA compared to 53 (2.12

[3.38] per participant) with the Fitbit. The paired-samples t-test confirmed that this was a

significant difference, t(24) = 2.42, p = .02, d = 0.58. WSA data loss occurred entirely due to mats

being unintentionally left unpowered from prior sleep studies. Fitbit data loss occurred due to

improper charging (both user and mechanical error), syncing errors, and improper wear.

Multi-night Performance

For participants with more than one recording (n=49, 282 nights), variability in accuracy,

sensitivity, and specificity is demonstrated in Figure 4. Mixed models showed significantly

greater variability (represented as the mean coefficient of variation) in accuracy, 2.33±2.59%,

p = .03, and specificity, 6.03±6.85%, p < .001, for daytime compared to nighttime sleep

opportunities. Sensitivity was more variable in individuals with a sleep disorder, 2.42±3.02%,

p = .02. The Levene’s test also indicated that the distribution of sensitivity variability differed,

6.12, p = .02, seen in Figure 4 as the wider distribution of variability for individuals with

disordered sleep. No other significant differences in distribution were found.
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Figure 4: Withings Sleep Analyzer versus polysomnography variability in accuracy for a) daytime
versus nighttime sleep opportunities, and b) individuals with healthy versus disordered sleep.

Note: Larger mean coefficients of variation reflect greater multi-night variability in Withings Sleep
Analyzer performance. Wider plots reflect a greater range of variability in performance across
individuals in each category.
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Discussion

This study comprehensively evaluated the performance of the WSA to estimate sleep and wake

compared to polysomnography. Appropriate use of such consumer sleep technology requires

adequate performance evaluation [24]. Here, we completed one of the largest independent

performance evaluations of a consumer sleep tracker to date. Results indicate that the WSA was

accurate compared to polysomnography to classify sleep and wake states, with

moderate-to-poor accuracy for sleep staging, that was comparable to existing wearable devices

[8, 29]. The WSA systematically overestimated TST, SE and SOL, and underestimated WASO,

compared to polysomnography. Accuracy and specificity was comparable to existing devices

during nighttime sleep opportunities with healthy sleepers, but poorer during daytime sleep

opportunities and poorer to estimate sleep in people with sleep disorders. These effects were

partially explained by lower polysomnography-derived sleep efficiency during these instances.

Overall, the WSA demonstrates relatively minimal bias in TST and SE estimates that is

comparable to other validated consumer sleep tracking devices [8, 22], but performance was

worse for sleep periods with more wakefulness.

These data are consistent with previous studies in which movement-based sleep trackers

often misclassify motionless wake as sleep [30]. However, few studies have investigated

circumstances where poorer than normal sleep is likely to impact reliable sleep estimation.

Compared to one study with actigraphy devices [31], the WSA performs relatively poorly for

reliably detecting wake during daytime recordings, with 72% of wake misclassified as sleep.

However, in the subset of participants with a diagnosed or suspected sleep disorder, the lower

accuracy was driven by a reduction in sensitivity (i.e., relatively more sleep being misclassified as

wake). This may be due to the especially high misclassification of light sleep by the WSA as

wake or deeper sleep, and the relatively high proportion of such sleep in people with a sleep

disorder (OSA in particular) [32–34]. This suggests that the WSA, and likely other sleep tracking

devices [18, 35–37], are less accurate to classify sleep and wake in individuals with a sleep

disorder. Whether these devices are accurate enough for a given purpose is difficult to determine

from the accuracy data alone. Performance evaluation, together with investigation into the

potential utility of such sleep estimations, is required to make this judgement. We have shown

that the WSA has utility to estimate cognitive performance under simulated shift work conditions
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[38], and other studies have found associations between wearable device estimations of sleep

and cognitive fatigue or associated outcomes[39, 40]. Thus, further work is needed to test how

the proportion of sleep misclassification observed in the current study may impact the device

utility in clinical, occupational, and related contexts.

This study also showed that that the Fitbit had more reliable sleep classification accuracy

than the WSA. Specifically, the Fitbit showed higher accuracy and specificity (more accurate

wake classification) during daytime sleep opportunities. This was further evidenced in sleep

characteristics, where the Fitbit overestimated TST by around 20 minutes less, overestimated SE

by about 4% less, and underestimated WASO by around 20 minutes less than the WSA. This may

be due to limitations in the modality of the two devices, where relatively motionless wake could

be interpreted more accurately by a wrist-worn device than an under-mattress sensor. It may be

possible that, given perceived restriction to movement imposed by polysomnography equipment,

participants were less inclined to change position or move during wake. This effect would likely

be more prominent in chest movement, as the WSA primarily estimates, than in wrist movements

measured by the Fitbit. Other differences between device algorithms may also account for the

differences between WSA and Fitbit accuracy, particularly in the incorporation of heart rate and

breathing signals. Overall, the Fitbit device was more accurate at classifying sleep than the WSA,

particularly during daytime sleep opportunities, but further comparisons are warranted to

examine whether this is maintained in a naturalistic environment.

There are additional considerations that should be noted when critically evaluating sleep

tracking devices. The WSA, unlike wrist-worn devices, does not need charging or manual

synchronization of data. As such, in the study used for the sub-sample device comparison, we

found a data-loss rate of 7% (compared to 21% data loss with the Fitbit). As opposed to the

laboratory environment with technicians ensuring suitable device setup and suitable use to

protect data fidelity, data loss would be expected to be higher in a naturalistic environment. This

greater data loss may be higher for the Fitbit device than the WSA, given that, once set up, the

WSA does not require user input or effort to continue recording whereas wrist-worn devices must

be charges, worn correctly, and routinely synchronized for lossless data capture. Additionally, the

WSA has been found to be highly accurate at bed occupancy timing (i.e., in/out of bed times) and

duration compared to polysomnography with video [10], which wearable devices are typically

less accurate at detecting in home environments [22, 41, 42]. Thus, the WSA has practical
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advantages over other forms of sleep tracking devices that should be taken into consideration

when selecting a device for use, alongside its accuracy for sleep/wake detection.

Although there are strengths to the large sample size, there are still limitations to this study.

Some of the included research studies with individuals with a diagnosed or suspected sleep

disorder had pre-sleep events that may have impacted sleep, such as drug vs. placebo

interventions and respiratory testing. Given that sleep efficiency partially explained WSA

performance compared to polysomnography (by about 30-35%) the direct effects of such

covariates on sleep quality likely account for some variability in WSA classification performance.

However, the extensive and heterogeneous sample provides opportunity to evaluate

performance with the expected variability in real-world use (e.g., variable continuout positive

airway pressure use, acute sedative use, noise disruptions, etc.). It should also be considered

that this study was conducted using data from entirely in-laboratory sleep research protocols,

and performance in a naturalistic setting may differ. Finally, there were insufficient numbers to

compare device accuracy between individual sleep disorders, and this should be elucidated in

further work.

Conclusions

This study extensively compared the WSA to polysomnography in a large sample of healthy

individuals and people with a diagnosed or suspected sleep disorder during nighttime and

daytime sleep opportunities to provide novel insights into performance characteristics. Overall,

the WSA was accurate at sleep and wake detection during nighttime recordings compared to

other consumer sleep trackers but was less accurate at wake classification during daytime

recordings. The WSA was also less accurate at sleep classification in people with a suspected or

diagnosed sleep disorder. The WSA overestimated TST, SE, SOL, and underestimated WASO to

comparable levels seen with other consumer sleep trackers [8, 29]. Lower

polysomnography-derived sleep efficiency was associated with worse WSA wake classifications,

but this only partially explained the effect of wake on classification accuracy. In a subset of

participants, the Fitbit was highly comparable to the WSA during nighttime recordings, but

consistent with better wake classification performance, was more accurate during daytime

recordings. Ultimately, the WSA may be suitable to estimate sleep and wake in a variety of
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naturalistic environments, and the final choice should depend on the performance, logistics, and

pragmatic needs of the clinical practice or research study. The current study findings provide

important novel data in which to inform these key decisions.
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