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 68 

Abstract 69 

Background Alzheimer’s disease (AD) has a high heritable component characteristic of 70 

complex diseases, yet many of the genetic risk factors remain unknown. We combined genome-71 

wide association studies (GWAS) on amyloid endophenotypes measured in cerebrospinal fluid 72 

(CSF) and positron emission tomography (PET) as surrogates of amyloid pathology, which 73 

may be helpful to understand the underlying biology of the disease. 74 

Methods We performed a meta-analysis of GWAS of CSF Aβ42 and PET measures combining 75 

six independent cohorts (n=2,076). Due to the opposite effect direction of Aβ phenotypes in 76 

CSF and PET measures, only genetic signals in the opposite direction were considered for 77 

analysis (n=376,599). Polygenic risk scores (PRS) were calculated and evaluated for AD status 78 

and amyloid endophenotypes. We then searched the CSF proteome signature of brain 79 

amyloidosis using SOMAscan proteomic data (Ace cohort, n=1,008) and connected it with 80 

GWAS results of loci modulating amyloidosis. Finally, we compared our results with a large 81 

meta-analysis using publicly available datasets in CSF (n=13,409) and PET (n=13,116). This 82 

combined approach enabled the identification of overlapping genes and proteins associated 83 

with amyloid burden and the assessment of their biological significance using enrichment 84 

analyses.  85 

Results After filtering the meta-GWAS, we observed genome-wide significance in the 86 

rs429358-APOE locus and nine suggestive hits were annotated. We replicated the APOE loci 87 

using the large CSF-PET meta-GWAS and identified multiple AD-associated genes as well as 88 

the novel GADL1 locus. Additionally, we found a significant association between the AD PRS 89 

and amyloid levels, whereas no significant association was found between any Aβ PRS with 90 

AD risk. CSF SOMAscan analysis identified 1,387 FDR-significant proteins associated with 91 

CSF Aβ42 levels. The overlap among GWAS loci and proteins associated with amyloid burden 92 

was very poor (n=35). The enrichment analysis of overlapping hits strongly suggested several 93 

signalling pathways connecting amyloidosis with the anchored component of the plasma 94 

membrane, synapse physiology and mental disorders that were replicated in the large CSF-PET 95 

meta-analysis.  96 
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Conclusions The strategy of combining CSF and PET amyloid endophenotypes GWAS with 97 

CSF proteome analyses might be effective for identifying signals associated with the AD 98 

pathological process and elucidate causative molecular mechanisms behind the amyloid 99 

mobilization in AD. 100 

Keywords: Aβ42; CSF biomarkers; PET tomography; GWAS; Proteome. 101 

 102 

Abbreviations: AD=Alzheimer’s disease; ADNI=Alzheimer’s Disease Neuroimaging 103 

Initiative; ASD=autism spectrum disorder; Aβ=amyloid; Aβ42=amyloid beta 42; 104 

AV45=Florbetapir; CADD=Combined Annotation Dependent Depletion; CDR=Clinical 105 

Dementia Rating; CI=Confidence interval; eQTL=expression quantitative trait loci; 106 

FBB=Florbetaben; FDR=false discovery rate; FUMA=Functional Mapping and Annotation of 107 

Genome-Wide Association Studies; GPI=glycosylphosphatidyl inositol; GWAS=Genome-108 

wide association studies; HC=Healthy Control; LP=lumbar puncture; MAC=minor allele 109 

count; MAF=minor allele frequency; MCI=Mild Cognitive impairment; MMSE=Mini-Mental 110 

State Exam; n=Sample size; NIA-AA=National Institute on Aging and Alzheimer’s 111 

Association; NINCDS/ADRDA=National Institute of Neurological and Communicative 112 

Disorders and Stroke and Alzheimer’s Disease and Related Disorders Association; OR=Odds 113 

ratio; P=p-value; p-tau=phosphorylated tau in Thr 181; PAD=publicly available datasets; 114 

PET=Positron Emission Tomography; PCA=principal component analysis; PCs=Principal 115 

components; pQTL=protein quantitative trait loci; PRS=Polygenic risk scores; RFU=relative 116 

fluorescent units; SCD=subjective cognitive decline; SNP=single nucleotide polymorphisms; 117 

t-tau=total tau; λ=genomic inflation factor. 118 
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Background 127 

Alzheimer’s disease (AD) is the most common cause of dementia. AD is a growing epidemic 128 

with an expected doubling of annual new diagnosis in the next 20 years prevalence and a major 129 

socioeconomic impact with a projected direct economic cost of $2 trillion by 20301–3. In this 130 

sense, increasing the knowledge of AD aetiology and biomarker development would be an 131 

interesting approach to developing a clear understanding of the disease physiopathology and 132 

future drug developments. Genome wide association studies (GWAS) have permitted the 133 

discovery of more than 80 genetic variants associated with AD risk4,5. Despite the continued 134 

efforts led by international consortia, a large fraction of AD heritability remains to be 135 

elucidated since only 31% of AD genetic variance is explained by single-nucleotide 136 

polymorphisms (SNPs)6.  137 

The analysis of heritable quantitative traits tightly linked to disease pathology, called 138 

endophenotypes, has become a promising approach in genetic studies7–9. These intermediate 139 

phenotypes might be influenced by the same genetic factors that confer risk to AD development 140 

and might have low genetic complexity. Compared to disease phenotypes, there are fewer 141 

genes or environmental influences affecting the genetic components of endophenotypes which 142 

facilitate finding a genuine association between these phenotypes and AD7,8,10.  143 

The most common endophenotypes for AD are levels of amyloid beta (Aβ42), total tau (t-tau) 144 

and phosphorylated tau in threonine 181 (p-tau) in CSF10–12. Moreover, Positron Emission 145 

Tomography (PET) using several radiotracers for measuring amyloid and tau burden has been 146 

used as AD endophenotypes11,13,14. These biomarkers are surrogates of AD brain pathology and 147 

understanding their biology might provide insights into novel mechanisms of AD15,16. To date, 148 

relatively few AD loci have been identified using the endophenotype approach9,13. Moreover, 149 

GWAS analyses of PET and CSF endophenotypes are commonly analysed separately and 150 

comparisons between them have been overlooked. 151 

In this study, we combined GWAS of Aβ CSF levels from four different AD cohorts with two 152 

GWAS of Aβ-burden measured using PET radiotracers. We used this strategy of combining 153 

both Aβ endophenotypes (CSF and PET) to identify novel genetic variants associated with AD 154 

and to replicate known AD signals. We then tested polygenic risk scores (PRS) derived from 155 

large studies in our datasets, dissected the CSF proteome signature associated with brain 156 
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amyloidosis in a sizable CSF collection, and checked the overlapping of genomic meta-157 

analyses and proteomic results. 158 

 159 

Materials and methods 160 

GWAS Cohorts 161 

This study comprised a total of 2,076 individuals from Ace, Valdecilla and ADNI cohorts and 162 

had data for different Aβ CSF or PET endophenotypes (Supplementary Fig. 1 and 163 

Supplementary Table 1). To avoid overlap of subjects between the CSF and PET cohorts, we 164 

used only datasets with genotype-level information available. 165 

 166 

a. Ace Alzheimer Center Barcelona 167 

The Ace cohort comprised 1,189 individuals with brain amyloidosis measurements obtained 168 

using CSF or PET imaging, divided into three independent and non-overlapping cohorts. 169 

Because we used different methods to quantify CSF AB42, we decided to analyse the GWAS 170 

in two independent groups (536 individuals tested using Innotest ELISA kits and 472 171 

individuals tested using the Lumipulse automated platform17). We included a third dataset of 172 

181 individuals with subjective cognitive decline (SCD) tested using PET Florbetaben 173 

measures from the Fundació ACE Healthy Brain Initiative (FACEHBI) study18. The clinical 174 

protocols of the Ace Alzheimer Center have been previously published17–19. Briefly, syndromic 175 

diagnosis of all subjects was established by a multidisciplinary group of neurologists, 176 

neuropsychologists, and social workers. We assigned to healthy controls (HCs) including SCD 177 

diagnosis to Clinical Dementia Rating (CDR) of 0 individuals, and mild cognitive impairment 178 

(MCI) individuals a CDR of 0.5. For MCI diagnosis, the classification of López et al., and 179 

Petersen’s criteria were also used20–23. We employed the 2011 National Institute on Aging and 180 

Alzheimer’s Association (NIA-AA) guidelines for AD diagnosis24. We performed a lumbar 181 

puncture (LP) to obtain CSF following consensus recommendations 25. The CSF obtained was 182 

centrifuged (2000 x g for 10 min at 4°C) and stored at -80°C. For Aβ42 analysis, CSF was 183 

defrosted at room temperature (20°C), vortexed and protein levels measured using the 184 

commercial ELISA kit Innotest β-AMYLOID (1-42) in 536 individuals and the 185 

chemiluminescent enzyme-immunoassay LUMIPULSE G600II automated platform (Fujirebio 186 
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Europe, Belgium) in 472 individuals17. FACEHBI patients were assessed for brain amyloid 187 

deposition by PET imaging using the florbetaben [18F] radiotracer (FBB) (NeuraCeq©). A 188 

single slow intravenous bolus of 300 Mbq of FBB (6 sec/mL) (>10 mL during 20 min) was 189 

administered. After 90 min, PET images were acquired18.  190 

 191 

b. Valdecilla cohort for the study of memory and brain aging  192 

The Valdecilla cohort comprised 97 individuals who were older than 55 years and extensively 193 

phenotyped. Biological samples were collected at baseline and several tests were performed to 194 

evaluate early signs of AD. Moreover, core biomarkers in CSF were analysed and a 195 

neuropsychological battery including The Free and Cued Selective Reminding Test26, the 196 

Spanish version of the Face-Name Associative Memory Exam27, and the Logical Memory Test 197 

of the Wechsler Memory Scale-III28 and depression symptoms by the Geriatric Depression 198 

Scale29. HC (CDR=0), MCI (CDR=0.1) and dementia individuals (NIA-AA guidelines) were 199 

included in this analysis30. In the Valdecilla cohort, the Aβ42 biomarker was quantified by 200 

Lumipulse G600II which were interpreted according to previously established cut-off points31. 201 

Further information about phenotype assessment was presented elsewhere32. 202 

 203 

c. Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort 204 

Launched in 2003, ADNI is a longitudinal multicentre cohort for AD research based on United 205 

States and Canada33,34. The primary goal of ADNI has been to test whether biological markers, 206 

clinical and neuropsychological assessments can be combined to study the progression of MCI 207 

and early AD. We selected individuals from two separate ADNI databases: 1) the ADNI1 208 

cohort with 378 individuals with available Aβ42 in CSF and 2) the ADNI2GO cohort with 412 209 

individuals with available PET centiloid measures. In ADNI, syndromic diagnoses were based 210 

on a specific cut-off in the WMS-II LM test, education attainment, the Mini-Mental State Exam 211 

(MMSE) and CDR score. For HC and those with SCD, an MMSE score of 24–30 and a CDR 212 

of 0 were used. For those with MCI, a CDR of 0.5 and MMSE score of 24–30 were used. For 213 

those with AD, a CDR of 0.5–1 and an MMSE score of 20–26 were used. For the AD diagnosis, 214 

the National Institute of Neurological and Communicative Disorders and Stroke and 215 

Alzheimer’s Disease and Related Disorders Association (NINCDS/ADRDA) criteria for 216 

probable AD were considered35. In ADNI individuals, Aβ42 CSF biomarker was measured 217 

using the Luminex xMAP platform (Luminex Corp, Austin, TX) for multiplexing with 218 
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Innogenetics immunoassay reagents (INNO-BIA AlzBio3, Ghent, Belgium)36,37. ADNI2GO 219 

patients were screened for brain amyloid deposits using the Florbetapir [18F] (AV45) 220 

radiotracer. After the injection of 370 MBq (10 mCi), four 5 min scans were acquired 50-70 221 

min after the injection36. Further information about PET data acquisition can be found 222 

elsewhere38.  223 

 224 

PET imaging acquisition, harmonization and analysis 225 

As FACEHBI and ADNI cohorts had different radiotracers, PET centiloid measures were used 226 

to perform a meta-analysis. Centiloids were calculated using equation (1), which was described 227 

for the conversion of FBB measures in the FACEHBI cohort39 and equation (2), which was 228 

described for the conversion of AV45 in ADNI40.  229 

𝐶𝑒𝑛𝑡𝑖𝑙𝑜𝑖𝑑𝐹𝐴𝐶𝐸𝐻𝐵𝐼 = (153.4 × 𝑆𝑈𝑉𝑅𝐹𝐵𝐵) − 154.9   (1) 230 

𝐶𝑒𝑛𝑡𝑖𝑙𝑜𝑖𝑑𝐴𝐷𝑁𝐼 = (196.9 × 𝑆𝑈𝑉𝑅𝐴𝑉45 ) −  196.03   (2) 231 

 232 

Genotyping, quality control and imputation 233 

Ace and Valdecilla DNA samples were genotyped using the Axiom 815K Spanish Biobank 234 

Array (Thermo Fisher). The genotyping was performed by the Spanish National Center for 235 

Genotyping (CeGen, Santiago de Compostela, Spain). Genotyping procedures have been 236 

previously published elsewhere5,19. For the ADNI samples, the Illumina Human610-Quad 237 

BeadChip platform was used for genotyping in ADNI1, and the Illumina HumanOmniExpress 238 

BeadChip was used for ADNI2GO41. 239 

Common quality control was applied to all GWAS datasets. Briefly, individuals with low-240 

quality samples, excess of heterozygosity, sample call rate below 97%, sex discrepancies, 241 

variants call rate below 95% or a deviation from the Hardy–Weinberg equilibrium (P>1e-06) 242 

were excluded from the analysis. In addition, familial relatedness (PI-HAT>0.1875) or ancestry 243 

outliers based on principal component analysis (PCA) were also removed. The imputation was 244 

performed using the Haplotype Reference Consortium panel in the Michigan Imputation 245 

Server42. Only the common markers (MAF>1%; MAC=20) and high imputation quality 246 

(R2>0.3) were selected for the subsequent analyses (GRCh37/hg19 reference assembly).  247 
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SOMAscan Proteomic Assay 248 

A subset of 1,008 CSF samples (Ace CSF cohort) was analysed using the SOMAscan panel 249 

measuring more than 7,000 proteins (SomaLogic, Boulder, Colorado). Briefly, this multiplex 250 

proteomic assay uses a 50 µL CSF sample and modified DNA aptamers to measure protein 251 

abundance. First, proteins are bound to immobilized aptamers using streptavidin beads and 252 

tagged with fluorescent markers. After washing unbounded proteins, the streptavidin beads are 253 

released using ultraviolet light, and the protein–aptamer complex is re-captured by monomeric 254 

avidin. To select only specific complexes, the protein–aptamers are exposed to an anionic 255 

competitor and then, hybridized in a conventional DNA array for analysis as described in Gold 256 

et al43. Finally, the protein level measures expressed in relative fluorescent units (RFU) are 257 

normalized using the adaptive normalization by maximum likelihood method further described 258 

in Candia et al44. 259 

 260 

Statistical analysis 261 

 262 

a. GWAS and meta-GWAS 263 

We harmonized CSF and PET endophenotypes measures performing a log10 transformation to 264 

adjust to a normal distribution, and Z-score values were determined using the scale R function 265 

(center=TRUE, scale=TRUE) (Supplementary Fig. 2). We used R software version 4.1.1.  266 

The GWAS on each dataset was run using a generalized linear model in the software PLINK245. 267 

The statistical model considered population microstratification (four PCs), sex, age, and 268 

dementia status for the association analysis. We then performed an inverse-variance weighted 269 

meta-analysis on each amyloid burden endophenotype separately, Aβ42 (n=1,483) in CSF and 270 

amyloid PET imaging (n=593).  271 

Thereafter, both Aβ endophenotypes were further combined into a single meta-analysis 272 

(n=2,076) using the sample size weighted method in METAL software. This approach 273 

integrates p-values from different studies, weighting them by the sample size of each cohort, 274 

which provides a way to combine evidence across studies without relying on the effect size 275 

direction46. This is particularly useful when dealing with datasets where the effect sizes are not 276 
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directly comparable or when different methods are used to measure the same biological 277 

outcome, as is the case with PET and CSF amyloid measurements. 278 

We chose this meta-analysis of p-values approach because the effect directions and methods 279 

applied to measure amyloid burden differ between PET and CSF assessments. Specifically, in 280 

AD, the two measurements exhibit opposite biological directions: decreased levels of CSF 281 

Aβ42 are associated with increased amyloid plaque deposition in the brain, as observed through 282 

PET imaging. PET measures amyloid burden through radiotracer retention, while CSF 283 

measures it through soluble Aβ42 levels, which decrease as amyloid plaques accumulate in the 284 

brain. Thus, directly comparing effect sizes across these methods could be misleading46,47. 285 

By combining p-values, focusing on the statistical significance and opposite effect size 286 

direction, this approach accounts for the differing biological contexts and measurement 287 

techniques, enabling a more robust and generalized analysis of amyloid burden across different 288 

datasets. The genetic markers evaluated in the meta-analysis were filtered considering the 289 

opposite effect direction in each CSF and PET endophenotype-independent GWAS and its 290 

presence in at least half of the datasets to select SNPs for further analysis. 291 

Additionally, we performed another CSF-PET meta-analysis considering the largest publicly 292 

available datasets for CSF Aβ42 (n=13,116)9 and amyloid PET (n=13,409)48 (publicly 293 

available datasets; PAD analysis). To homogenize the results with our primary analysis, those 294 

datasets were converted to the GRCh37 assembly using the UCSC LiftOver software49. 295 

Because we did not have access to genotype-level information for all cohorts included in these 296 

studies, we were unable to prune potential overlapping subjects between both meta-analyses. 297 

Therefore, the results of combining these large meta-GWAS should be interpreted cautiously 298 

and are considered primarily for generating additional evidence about the pathways observed 299 

in our main analysis, where subject overlap was checked at the genotype level and removed to 300 

create two genuinely independent datasets (CSF and PET). 301 

Finally, we attempted to replicate previously published genes for AD described in Bellenguez 302 

et al4, the significant signals associated with amyloid burden reported by the EADB 303 

consortium9 and significant markers associated with neuropathological features described in 304 

Beecham et al50 (Supplementary Table 2, Supplementary Table 3, Supplementary Table 4, and 305 

Supplementary Material 1).  306 

 307 
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b. Functional examination of identified sentinel SNPs and linked 308 

genomic regions  309 

Clumping and annotation of suggestive signals (P<1e-05) were performed using the software 310 

PLINK1.951. Additional annotations of biological function and gene-mapping were performed 311 

using meta-analysis summary statistics using the online tool Functional Mapping and 312 

Annotation of Genome-Wide Association Studies (FUMA)52. We set the threshold for 313 

independent significant SNPs at P<1e-05, R2<0.05, separated by over 250 kb, and we used the 314 

1000G Phase3 reference panel to analyse suggestive signals in European population. For 315 

functional annotation, SNPs were matched to available databases such as ANNOVAR, 316 

Combined Annotation Dependent Depletion (CADD) scores, RegulomeDB and chromatin 317 

states based on a hidden Markov model from the Roadmap Epigenomics Project. Significant 318 

hits were mapped to genes according to 3 methods: 1) Physical distance with a maximum of 319 

10 kb from nearby genes in the  reference assembly, 2) expression quantitative trait loci (eQTL) 320 

associations assigned to SNP in blood, vascular, heart, brain tissues and embryonic stem cell 321 

derived cells, and 3) three-dimensional DNA interactions with SNPs and other gene regions 322 

where promoters were considered to be 250 bp upstream and 500 bp downstream of the 323 

transcription starting site for chromatin interaction. Moreover, a gene-based analysis was 324 

performed using MAGMA v1.08 that assigned exclusively protein-coding genes (Ensembl 325 

build 85) to the top SNPs found. Only 11,807 genes were mapped, and the gene-wide 326 

significance was defined at P=0.05/11,807=4.235e-06. We also conducted FUMA annotations 327 

in the amyloid burden meta-analysis considering the largest meta-GWAS for amyloid PET and 328 

CSF reported to date9,48.  329 

 330 

c. Polygenic Risk Scores (PRS) 331 

We computed the AD PRS described in Bellenguez et al that considered 83 loci. However, 332 

some SNPs were not imputed or had a low imputation quality (R2<0.3), and we decided to 333 

calculate the AD PRS including genetic variants found in all imputed datasets (n=76; 334 

Supplementary Table 5). For PRS calculation, we added the gene dosages of these SNPs 335 

weighting by their effect size (beta coefficients); the allele analysed was matched to the 336 

reported allele (A1) by Bellenguez et al 4. Because some control samples were included in the 337 

first stage of the AD GWAS, we considered the independent effects reported in the second 338 

stage for the PRS calculation. Additionally, due to the large effect on AD risk and its well-339 
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established association with most AD endophenotypes, the APOE locus was excluded from all 340 

these PRS. We then tested its association with AD case-control status, CSF Aβ42 and p-tau 341 

endophenotypes, and PET amyloid burden measurements. We considered as a covariate the 342 

age, sex, and disease status only in associations with biomarkers. These analyses were 343 

performed separately in each cohort except for Valdecilla which was excluded due to reduced 344 

sample size, while Ace PET cohort was excluded in the case-control analysis because all 345 

individuals were cognitively unimpaired. Additionally, we considered the fixed effect meta-346 

analysis model considering the heterogeneity threshold (I2) of 75% as high53.  347 

We also calculated another PRS for A) AD4 (n=76 SNPs; Supplementary Table 5), B) CSF 348 

Aβ42 levels (n=30 SNPs; Supplementary Table 6) considering the genetic variants with a 349 

P<1e-05 described in Jansen et al 9, and C) an amyloid burden PRS considering suggestive 350 

variants found in our meta-analysis (combining endophenotypes filtering according to the 351 

effect size direction; n=9 SNPs; Supplementary Table 7) in GR@ACE cohort individuals, 352 

including 8,110 cases and 9,640 controls the same way as described above. Further information 353 

about the cohort has been previously published5,19. For PRS computation, the effect (beta 354 

coeffcients) and standard errors were estimated using the equations described by Zhu et al54. 355 

Again, we associated these scaled PRS with case-control data in non-overlapping individuals 356 

to assess if Aβ genetic determinants are also related to disease risk.  357 

 358 

d. Association between biomarker levels and SOMAscan proteomics 359 

We assessed the association between SOMAscan 7k proteomic panel and CSF Aβ42 levels 360 

(n=1,008) in the Ace CSF cohort. Briefly, SOMAscan proteomic measures were log10 361 

transformed, outliers were removed at ±3 standard deviations from the mean and standardized 362 

using the scale R function with centring and scaling. For further analysis, we selected 2,682 363 

proteins based on correlations between: 1) two independent SOMAscan assay analysing the 364 

same samples, and 2) comparing aptamer- and antibody-based proteomic platforms55,56. To 365 

identify proteins associated to CSF Aβ42, a linear regression model was performed on scaled 366 

CSF Aβ42 levels and proteomic measures. We considered disease status, sex, age, and the CSF 367 

biomarker technique as covariates. Subsequently, the top 500 ranking of significant proteins 368 

associated with CSF Aβ42 (False discovery rate; FDR<1.864e-05) was analysed in the WEB-369 

based GEne SeT AnaLysis Toolkit (WebGestalt)57 to perform an over-representation analysis 370 

(ORA) considering several functional databases and the whole genome as built-in reference 371 
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gene list following the idea of investigating the complete genome (GWAS and gene-based 372 

analyses) (Supplementary Table 8). We also performed an enrichment analysis on the complete 373 

subset of valid SOMAscan proteins (n=2,682) to evaluate the impact of platform analyte 374 

preselection and quality control process on the results obtained.   375 

To explore the biological significance of the GWAS results, we displayed the overlap between 376 

loci controlling amyloidosis and the proteins significantly associated with CSF Aβ42 in the 377 

Ace CSF cohort using Venn diagrams. The top 500 proteome and genome hits selected from 378 

the CSF Aβ42 meta-GWAS described in Jansen et al, the meta-analysis of CSF-PET 379 

endophenotypes filtered by opposite effect size direction, and the gene-based MAGMA 380 

analysis performed by FUMA were identified and annotated. The top rankings were reduced 381 

to 345, 339, 457, 361 and 465 loci for the meta-GWAS by Jansen et al, our current CSF-PET 382 

meta-analysis and its gene-based MAGMA analysis, the PAD CSF-PET meta-GWAS and its 383 

gene-based MAGMA analysis9,48, respectively. These reductions were due to the presence of 384 

SNPs that were not annotated and could not be matched to UniProt codes (Supplementary 385 

Table 9, Supplementary Table 10, Supplementary Table 11, Supplementary Table 12 and 386 

Supplementary Table 13). The top rankings were compared and the overlap between genomic 387 

and proteomic analysis was identified and evaluated using WebGestalt tool as described above.  388 

 389 

Results 390 

Meta-analysis of Aβ endophenotypes 391 

The genome-wide meta-analysis of CSF endophenotypes involved 4 independent AD cohorts 392 

with Aβ42 measures (n=1,483; λ=1.009). The genomic inflation factor (λ) suggested no gross 393 

bias or stratification. As it was expected, we observed a consistent genome-wide significant 394 

association with rs429358-APOE locus as a sentinel variant (Effect=-0.58 [-0.658, -0.503]; P= 395 

8.36e-49). We detected 19 additional suggestive pQTL signals for Aβ42 levels in CSF 396 

(Supplementary Table 14). Similarly, the meta-analysis of amyloid PET endophenotype 397 

(n=593; λ=1.013), revealed a genome-wide significant association in the same sentinel variant 398 

in the opposite direction (rs429358-APOE locus; Effect=0.684 [0.555, 0.813]; P= 2.00e-25). 399 

An additional novel hit at rs72737013 close to the ANXA1 gene (Effect=0.813 [0.528, 1.099]; 400 

P=2.39e-08) was detected. This gene is related to anti-inflammatory reactions, innate immune 401 
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response, and inflammatory processes58, psychiatric disorders, brain volume59,60, and the 402 

degradation of Aβ species61. Additionally, there were 43 additional independent suggestive 403 

signals annotated for amyloid burden measured using PET (Supplementary Table 15).  404 

We combined the summary statistics from both CSF and PET Aβ meta-analyses without 405 

considering the effect direction (n=2,076). Again, we confirmed the sentinel variant rs429358 406 

to be the most significant locus in the APOE region. Other genetic variants emerged as GWAS-407 

significant in this new meta-analysis. However, none of them were inversely associated with 408 

CSF and PET endophenotypes in all studies except for the rs429358-APOE marker. We 409 

considered these hits as false positive signals (Supplementary Table 16).  410 

In looking for new suggestive signals beyond APOE, we extracted the subset of 376,599 SNPs 411 

with consistent opposite effect in CSF and PET analyses. After the SNP selection in the 412 

combined Aβ meta-analysis, the rs429358-APOE variant (P=9.50e-67) remained as the only 413 

GWAS-significant hit (Fig. 1A, upper) but nine additional suggestive consistent variants were 414 

identified in genes such as NPY5R, TIAM2 or MAGI2, among others (Table 1). Additionally, 415 

the combination of Aβ endophenotypes enhanced the significant replication of several genetic 416 

markers previously described for AD4, CSF Aβ42 levels9 and neuropathological features50 417 

(Supplementary Material 1, Supplementary Table 2, Supplementary Table 3, Supplementary 418 

Table 4).  419 

However, the PAD CSF-PET meta-analysis9,48 (effective sample size n=23,532) identified 420 

several markers previously associated with AD and its endophenotypes. These significant 421 

markers were identified on chromosome 19 including the rs429358-APOE (P=5.94e-601), as 422 

well as, the rs4844610-CR1 (P=5.76e-18), rs7982-CLU (P=7.81e-11), rs12151021-ABCA7 423 

(P=3.92e-10), rs6733839-BIN1 (P=1.02e-08), rs117834516-FERMT2 (P=4.82e-08) and the 424 

novel rs4955351-GADL1 (P=3.19e-08) which was not previously associated to AD or amyloid 425 

levels (Fig. 1A lower, Supplementary Table 17). Additionally, the PAD analysis replicated the 426 

rs115822934-NPY5R variant (P=3.21e-04) originally found suggestive in our CSF-PET meta-427 

analysis (Supplementary Table 18). Importantly, we also observe concordances between our 428 

local effort (amyloid burden CSF-PET meta-GWAS) and the PAD. Specifically, we detected 429 

15 overlapping sentinel markers in the top 500 ranking of the amyloid burden meta-GWAS 430 

from both the PAD and our current meta-analysis (Fig.1B), as well as 67 overlapping genes in 431 

the PAD and our gene-based top 500 ranking (Fig.1C).  432 
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To link the variants of interest to specific genes and obtain relevant functional information 433 

about these loci, we applied FUMA to the suggestive signals from the Aβ meta-analysis that 434 

were filtered based on opposite direction in CSF and PET (Table 1). There were 125 prioritized 435 

genes mapped using at least two strategies (positional mapping, eQTL or chromatin 436 

interactions) and 45 genes were selected based on the three strategies described in methods. As 437 

expected, the majority of the prioritized genes were related to the rs429358-APOE. Excluding 438 

chromosome 19, we prioritized 23 genes mapped (6 SNPs) with a CADD score > 12.37 439 

suggesting a potential deleterious effect (Supplementary Table 19)62. In contrast to the 440 

univariate SNP analysis, the gene-based analysis performed using MAGMA revealed 15 study-441 

wise significant loci (P<4.235e-06) excluding the APOE region (Table 2, Supplementary Fig. 442 

3). Interestingly, the identified genetic variants in some of these genes (TENM3, TMEM132D, 443 

PTPRD, CNTN5, RBFOX1, CSMD1, TIAM2, RORA and WWOX) have been previously related 444 

to neuroimaging endophenotypes63–65, extreme AD PRS measures66, AD endophenotypes (CSF 445 

Aβ42 or p-tau levels13,67–70), mental disorders71,72 and cognitive decline in AD64,73,74. 446 

Additionally, the gene-based analysis of the PAD amyloid burden meta-GWAS revealed genes 447 

previously associated to AD such as APOE (P=2.09e-13), CLU (P=2.13e-07), FERMT2 448 

(P=3.49e-07) and the CR1 locus (P=3.64e-06), which reached borderline gene-wide 449 

significance threshold at P<2.717e-06 (Supplementary Table 20). 450 

 451 

Association between AD PRS with AD endophenotypes and other 452 

clinical features 453 

We observed a significant result in the meta-analysed associations between the AD PRS and 454 

Aβ levels (CSF Effect =-0.05 [-0.10, -0.00]; P=3.43e-02 and PET Effect =0.10 [0.02, 0.17]; 455 

P=1.30e-02). These results suggest that genes involved in AD risk indeed modulate amyloid 456 

levels (Fig. 2A, Fig. 2B).  457 

As expected, we observed a significant result in the association meta-analysis of the AD PRS 458 

with case-control dementia status in all 3 endophenotype datasets (OR=1.18 [1.05, 1.32]; 459 

P=5.29e-03). These results suggest that these genes modulate the disease status as previously 460 

reported4 (Fig. 3). Even though ADNI2GO did not reach statistical significance, it had a similar 461 

effect size and direction, possibly due to the low proportion of AD cases in this cohort (6.55 462 

%).  463 
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Association between genetic variants of amyloid endophenotypes 464 

with case-control status 465 

To assess whether CSF Aβ42 genetic modulators are also related to AD risk, we constructed 466 

different PRS including variants detected in our study and previous meta-GWAS4. We then 467 

checked the association of calculated PRS in the GR@ACE case-control study5. We did not 468 

observe any significant association for any calculated PRS for amyloid (Fig. 4) which could be 469 

due to the reduced set of independent markers reported for these phenotypes (P<1e-05) or not 470 

having an impact on AD pathology. As expected, the AD PRS was highly associated with the 471 

case-control (OR=1.35 [1.30, 1.40]; P=3.02e-49), thus confirming that the AD genes 472 

previously described by us and the EADB consortium4,5 truly modulate disease risk in the 473 

GR@ACE/DEGESCO cohort.  474 

 475 

CSF proteome signatures associated with the Aβ42 CSF levels 476 

We regressed the CSF Aβ42 peptide levels on CSF SOMAscan aptamer levels to identify the 477 

proteomic signature associated with amyloid burden (Fig. 5A). We identified 1,387 study-wide 478 

significant proteins in the linear model of CSF Aβ42 (FDR<1.864e-05) (Supplementary Table 479 

21). Notably, we observed a marked asymmetry in the effect of SOMAmers on CSF Aβ42 480 

levels, with the majority showing estimates greater than 0, suggesting a positive correlation 481 

contributing to increased CSF Aβ42 levels (Fig. 5A). Thus, the top 100 ranks of significant 482 

associations have an estimate range between 0.449 and 0.317, which contributes to an increase 483 

of this magnitude in CSF Aβ42 levels, and the variance explained by these highly associated 484 

proteins ranges of between 0.202 and 0.297. Importantly, we observed multiple proteins that 485 

have been associated with the CSF levels of Aβ species or its mechanisms in previous studies, 486 

such as MTMR7, LMOD4, GD3S, SERA/PHGDH, SELS, ATE1, NPTXR, and the 14-3-3 eta 487 

protein, among others75–81. 488 

An enrichment analysis performed for significant proteins associated with CSF Aβ42 levels 489 

revealed genes involved in neuronal projection guidance (enrichment ratio=11.034; 490 

FDR<2.2e-16), synaptic structure and activity (enrichment ratio=10.868; FDR<2.2e-16), cell–491 

cell adhesion by plasma membrane molecules (enrichment ratio=7.660; FDR<2.2e-16), 492 

peptidyl-tyrosine modifications (enrichment ratio=6.174; FDR<2.2e-16), regulation of cell 493 

morphogenesis (enrichment ratio=5.786; FDR<2.2e-16) and angiogenesis (enrichment 494 
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ratio=5.617; FDR<2.2e-16) which are mainly driven by the large proportion of proteins with a 495 

positive effect (n=1,300; 93.73%) (Fig. 5B; Supplementary Table 22, Supplementary Table 496 

23). Furthermore, when comparing the enrichment results from the ORA analysis between the 497 

entire set of valid SOMAscan proteins and the proteins significantly associated with Aβ42 498 

levels, we observed a complete lack of overlap, reinforcing the validity of our findings 499 

(Supplementary Fig. 4).  500 

To identify those genes that were commonly associated with CSF Aβ42 levels in genomic and 501 

proteomic analyses, we compared the top 500 common list of signals in the following four 502 

analyses: meta-GWAS by EADB4, our meta-analysis of CSF-PET, gene-based MAGMA, and 503 

SOMAscan protein analysis. We found three genes/proteins (CHST1, PTPRD and 504 

TMEM132D) present in all four analyses, representing only 0.2% of the total loci/proteins 505 

analysed (full overlap). In addition, 32 other proteins overlapped between the SOMAscan 506 

proteomics and any genomic analysis, including four proteins represented in 3 different 507 

analyses (Fig. 6A, Supplementary Table 24). Similar results were obtained in investigating the 508 

top rankings of the SOMAscan analysis, the PAD CSF-PET meta-GWAS and its gene-based 509 

analysis; only the TMEM132D was represented in all analyses (Fig. 6B). Interestingly, we 510 

found that 10 of the 23 loci/proteins observed were also overlapping with the ranking 511 

considering our main CSF-PET meta-GWAS results. This overlapping with PAD CSF-PET 512 

meta-GWAS support the validity of our approach (Supplementary Fig. 5, Supplementary Table 513 

25). However, there was a reduced consistency between the top 500 SOMAscan proteins 514 

associated with CSF Aβ42 and any genomic results with less than 2.5% of overlapping 515 

proteins. These results suggest that the Aβ42-related protein signature in CSF might not be 516 

closely linked to amyloid genetic modulators, indicating that the proteome signature associated 517 

with Aβ42 burden in the brain primarily reflects general disease processes largely unrelated to 518 

the genetic elements controlling amyloid production. 519 

Finally, to gain insight into the few commonalities identified by comparing genetic and 520 

proteome signatures associated to the amyloid burden in the brain, we conducted a new 521 

enrichment analysis. Despite the reduced overlapping hits among proteome and genome 522 

studies, several significant mechanisms related to the synthesis of glycosylphosphatidyl inositol 523 

(GPI)-anchored proteins by post-translational modifications were identified (enrichment 524 

ratio=48.070; FDR=1.86e-04) and the anchored component of the membrane (enrichment 525 

ratio=31.778; FDR=1.32e-04), cell–cell adhesion via plasma membrane molecules 526 

(enrichment ratio=26.207; FDR=3.42e-06), mental disorders (enrichment ratio=12.853; 527 
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FDR=3.42e-06) such as autism (enrichment ratio=18.556; FDR=0.002) and anxiety 528 

(enrichment ratio=23.524; FDR=0.004), and regulation and development of neuron projections 529 

(enrichment ratio=13.035; FDR=0.002) among others (FDR<0.05). Interestingly, six of these 530 

mechanisms were also represented in the enrichment analysis of the PAD CSF-PET meta-531 

analysis, which confirms our main results (Fig. 6C, Supplementary Table 26, Supplementary 532 

Table 27, Fig.6D, Supplementary Table 28, Supplementary Table 29).  533 

 534 

Discussion 535 

For the first time, we have combined meta-GWAS results obtained from analysing amyloid 536 

PET and CSF Aβ42 levels. Our innovative experimental approach identified novel genetic 537 

variants associated with amyloid burden endophenotypes. This meta-analytic approach 538 

benefited from combining endophenotypic information from six cohorts thereby increasing our 539 

statistical power. As expected, we identified a genome-wide significant hit at the rs429358-540 

APOE loci. We also observed a novel genome-wide significant hit near the ANXA1 locus 541 

exclusively associated with PET amyloid. SNPs in this locus were previously linked to 542 

psychiatric disorders, brain volume59,60, and the degradation of Aβ species61. However, neither 543 

the large PET meta-GWAS available nor the PAD meta-analysis conducted by us replicated 544 

this finding. For these reasons, we believe that this signal could be a false positive. We attribute 545 

the lack of additional hits to the relatively small sample size of our CSF-PET meta-GWAS. By 546 

repeating this strategy with a larger sample size, we expect to identify more genetic modulators 547 

of Aβ42 peptide expression in the brain. Indeed, using a similar approach with currently 548 

available summary statistics (PAD study), we were able to detect several sentinel markers 549 

surpassing the GWAS significance threshold. Specifically, the PAD CSF-PET meta-analysis 550 

identified several significant genes that have been previously related to AD (CR1, BIN1, CLU, 551 

ABCA7, FERMT2 and APOE4,82–85) or amyloid proteins (CR1, CLU, APOE and 552 

FERMT29,86,87), as well as PICALM and GPC5 suggestive genes84,88. Notably, we identified 553 

the novel GADL1 locus, which encodes for a protein from the glutamate decarboxylase family, 554 

suggesting that it might have a glutamate decarboxylase activity in the CNS89,90. 555 

In AD, the glutamate excess generates a continuous glutamatergic activity, impairing neuronal 556 

plasticity and long-term potentiation leading to excitotoxicity. Therefore, using receptor 557 
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antagonists such as memantine, which has shown neuroprotective effects, could be a crucial 558 

therapeutic intervention91,92.  559 

Importantly, these results should be interpreted with extreme caution because PAD analysis is 560 

not entirely independent as various cohorts were represented in both summary statistics of the 561 

PAD analysis (Supplementary Table 30). This overlapping samples (11.284%) could lead to 562 

overestimated effects and increased proportion of false positive findings. Compared to our local 563 

effort, where we eliminated any potential overlap between CSF and PET cohorts, we remain 564 

very cautious about the PAD results due to the potential overlap of subjects among studies. 565 

Future efforts are necessary to confirm the findings from the PAD analysis. Nevertheless, the 566 

PAD analysis replicated the rs115822934-NPY5R marker, alongside the rs429358-APOE, 567 

originally identified in our CSF-PET meta-analysis. These results might suggest that NPY5R 568 

could be genuinely involved in amyloid pathology, as well as panic disorders93,94. Again, 569 

further completely independent studies, expanding the sample size of these analysis, are needed 570 

to validate our observation and working hypothesis.    571 

In spite of these limitations, our experimental strategy permitted us to evaluate common 572 

pathways potentially associated to CSF-soluble Aβ42 (circulating amyloid)95 and brain 573 

amyloid species detected by PET (insoluble species such as amyloid plaques or cerebral 574 

amyloid angiopathy)96 and proteome signature associated to CSF Aβ42 peptide levels. To 575 

assess the relationship between genetic modulators and protein levels, we analysed the overlap 576 

between loci-controlling amyloid levels and significant proteins associated with CSF Aβ42 577 

levels. Importantly, three genes/proteins (CHST1, PTPRD and TMEM132D) were identified 578 

and prioritized in all analyses, thus suggesting that these modulators might be key drivers 579 

controlling amyloid pathology. Lower TMEM132D levels have been observed in patients with 580 

frontotemporal dementia97, and genetic markers in this gene have been related to anxiety, panic 581 

disorders and the rate of cognitive decline73,98,99. This locus was the only that also overlapped 582 

with all PAD rankings, suggesting that might be a potential modulator of amyloid pathology. 583 

The PTPRD gene, which was also represented in the large meta-GWAS gene-based ranking, 584 

has been significantly associated to synaptic process in schizophrenia100, AD susceptibility, 585 

neurofibrillary tangle and neuritic plaques68. We consider these two loci excellent candidates 586 

for further translational research due to their consistent statistical significance and previous 587 

literature findings. Nevertheless, there is a possibility that we are not capturing pathological 588 

mechanisms occurring similarly in both biofluids due to the opposite direction filtering, which 589 

could be contributing to the accumulation or reduction in both CSF and PET amyloid levels. 590 
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These discordances have been described in previous articles101–103, suggesting that they might 591 

be caused due to the differential sensitivity to amyloid species across the AD continuum. 592 

Further research is needed to elucidate the role of these common and discordant amyloid 593 

mechanisms occurring in brain and their impact on disease development. 594 

In this study, we found a limited overlap between genetic modulators of amyloid burden and 595 

the proteins associated with the CSF levels of Aβ42. This could be interpreted as a result of the 596 

inherent statistical noise in these multiomic analyses, the lack of power in our main analysis, 597 

or it could indicate that the observed discordance is genuine. The poor heritability reported for 598 

CSF traits in previous studies9 supports that common SNPs might not strongly modulate the 599 

CSF amyloid burden. Moreover, no amyloid PRS showed a significant association with the 600 

risk of developing AD, whereas the AD PRS showed a strong association with the AD case-601 

control status and amyloid levels, which is fully consistent with previous studies70,104–106. These 602 

results suggest either a lack of statistical power to detect genuine hits associated with amyloid 603 

burden or a limited causal role of common genetic modulators of amyloid deposits in the 604 

aetiology of clinical AD. Further studies are needed to clarify these discrepancies. Interestingly, 605 

we observed a higher number of loci/proteins overlapped with the SOMAscan protein 606 

associations with CSF Aβ42 levels and the gene-based analysis than in the sentinel SNP-based 607 

GWAS analyses (our meta-analysis n=21). The gene-based approach could be particularly 608 

powerful because the genetic markers summarised at (protein-coding) gene level might reduce 609 

the statistical noise on a full GWAS dataset52. 610 

We also noted a large number of significant CSF SOMAscan proteins associated with CSF 611 

Aβ42 levels. Notably, most of the observed associations were predominantly positive in our 612 

study. Interestingly, Bader et al107 reported a correlation map illustrating high correlations 613 

between CSF proteomic measures suggesting that these measures might lead to multiple 614 

significant associations. The massive abundance of significant proteins might simply reflect a 615 

general neurodegenerative signature that occurs as a result of widespread neuronal cell death 616 

or reactive gliosis. These changes are likely to be epiphenomenal rather than specific to the AD 617 

process. The potential implication of these findings is important for interpreting CSF proteome 618 

results. Indeed, only a minority of proteomic markers associated to Aβ42 might be genuine 619 

mediators modulating the AD-related amyloid endophenotype. Overall, the lack of overlap 620 

between Aβ42 and AD risk GWAS studies suggests that genetic factors modulating amyloid 621 

production may represent only a relatively small component of overall AD causality. These 622 

findings are also in line with several clinical trials targeting amyloid, that have observed a 623 
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reduced association between Aβ reduction and AD progression, as well as only modest control 624 

of AD progression with these monotherapies. This also suggests that both amyloid-dependent 625 

and amyloid-independent mechanisms must be addressed simultaneously to effectively control 626 

disease progression108,109.    627 

Despite the poor overlap, we detected 35 overlapping genes and proteins pointing to a few 628 

enriched mechanisms in our CSF-PET meta-GWAS. We consider these overlapping signals of 629 

special importance because they could point to genuine amyloid-related mechanisms involved 630 

in AD causality and development. We found Aβ burden significantly associated with pathways 631 

controlling the anchored proteins in the membrane, which had also been represented in the 632 

PAD enriched analysis (n=23 loci/proteins). Interestingly, six enriched mechanisms were 633 

represented in both overlapping loci/protein rankings of the PAD and our CSF-PET meta-634 

analysis. These results validate our findings and suggest that the enrichment analysis is more 635 

powerful in detecting genuine associations than analysing individual genes, particularly in the 636 

context of reduced statistical power. 637 

Additionally, the enrichment analysis pointed to synapse molecules and cell adhesion 638 

mechanisms. Neuronal cadherins and integrins have been linked to the synaptic process, 639 

plasticity and long-term potentiation and modulation of Aβ levels110, while their loss has been 640 

correlated to cognitive decline111–113. Furthermore, we detected a link between amyloid levels 641 

and mental disorders, such as anxiety which has been associated with high Aβ deposition across 642 

the AD continuum114–116. On the contrary, autism spectrum disorder (ASD) has been associated 643 

with Aβ processing via the non-amyloidogenic pathway leading to reduced Aβ levels in ASD 644 

patients117. Other overlapping loci and proteins such as ROBO2, CNTN5, OPCML, NRG3, 645 

NGFR or CACNA2D3, have been associated with cognitive performance118,119, age at 646 

onset120,121, schizophrenia122–124 or ASD125,126, AD127,128 and its endophenotypes 129,130.  647 

Considering all these observations, it is difficult to conceive that all of them can be explained 648 

by pure random chance. However, our analysis had important limitations. First, we use a 649 

suboptimal p-value-based meta-analysis method, however, this strategy becomes highly 650 

valuable for integrating diverse studies reporting different estimate metrics and combining 651 

endophenotypes measured by various techniques131,132. Also, the CSF-PET meta-analysis did 652 

not report effect size which were estimated. The restrictive SNP filtering allowed the evaluation 653 

of only 4.9% of genomic markers, likely due to meta-analysing multiple datasets and reducing 654 

marker identification involved in common mechanisms between soluble-CSF and insoluble-655 
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PET amyloid species. Moreover, as mentioned earlier, the PAD analysis was not completely 656 

independent, with an 8.272% and 3.073% of overlapping samples between our main meta-657 

analysis, the CSF9 and PET48 summary statistics, respectively. The PAD CSF-PET meta-658 

analysis should be interpreted with extreme caution due to these overlapping samples among 659 

summary statistics. Because we used publicly available results, we could not confirm the 660 

presence of additional overlapping samples, potentially leading to overfitting. The Ali et al 661 

meta-GWAS conducted a different data harmonisation process, potentially introducing 662 

variability. Furthermore, neuropathological information was not available for these samples, 663 

leaving us unaware of other concomitant pathological changes. Finally, the lack of significant 664 

findings for several PRS associations may suggest that there is insufficient statistical power to 665 

find genetic variants that affect the amyloid endophenotype. These concerns should be 666 

addressed in future research. 667 

In summary, our results demonstrate the feasibility of combining Aβ endophenotypes in CSF 668 

and PET, along with proteome analysis, to gain novel insights into the fundamental biology of 669 

AD. The strong proteomic associations with Aβ endophenotypes could help identify signalling 670 

pathways and molecular mechanisms involved in Aβ and AD pathology, as well as the 671 

overlapping pathways that control the amyloidotic process. Further studies are needed to refine 672 

these observed associations, connecting AD loci and proposed causal pathways with brain 673 

amyloidogenesis. 674 
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 1243 

 1244 

 1245 

Figure 1. Plots of the Aβ burden meta-analysis combining data of CSF-PET endophenotypes. A) (upper) Manhattan plot of 1246 

our CSF-PET meta-analysis (n=2,076). Results were filtered according effect size direction and dataset missingness. 1247 

Suggestive independent markers were annotated with the nearest gene name. Mapped genes coloured in grey represent those 1248 

that were not replicated in the PAD CSF-PET meta-GWAS. (lower) Manhattan plot of the PAD CSF-PET meta-analysis 1249 

filtered (n=23,532). Genome-wide significant independent markers were annotated with the nearest gene name. The Y-axis 1250 

was restricted to visualize suggestive signals. The genome-wide significance threshold was set to P<5e-08 (red line) and the 1251 

suggestive threshold was set to P<1e-05 (blue line). B) Venn diagram representing the overlap between the top 500 ranking 1252 

of independent genetic markers comparing the PAD and our amyloid burden meta-analysis. C) Venn diagram representing 1253 

the overlap between the top 500 ranking of independent genes in the PAD and our gene-based analysis.  1254 

 1255 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 6, 2024. ; https://doi.org/10.1101/2024.09.06.24313124doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.06.24313124
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 
 

 1256 

Figure 2. Forest plot of the meta-analysis association between the AD PRS. A) CSF Aβ42, and B) Aβ PET endophenotypes. 1257 

The significance threshold was set to 0.05. 1258 

 1259 

 1260 

 1261 

Figure 3. Forest plot of the meta-analysis association between the AD PRS and dementia status as case-control. In ACE 1262 

(305 cases and 703 controls, 30.25%), ADNI1 (94 cases and 285 controls, 24.80%) and ADNI2GO cohorts (27 cases and 385 1263 

controls, 6.55%). 1264 

 1265 

 1266 

Figure 4. Forest plot of the association between the AD, Aβ PRS and case-control status. PRS for AD (76 SNPs from 1267 

Bellenguez et al., 2022) and Aβ42 (30 SNPs from Jansen et al., 2022, 9 SNPs from our meta-analysis). The GR@ACE cohort 1268 

included 8110 cases and 9640 controls. 1269 
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 1270 

 1271 

 1272 

 1273 

Figure 5. Associations between CSF SOMAscan and CSF Aβ42 levels. A) Vulcano plot only considering proteins with good 1274 

inter-assay correlation (n=2,682), significant proteins (FDR < 1.864e-05) were highlighted in red (n=1,387). B) Top 10 1275 

results of the enrichment analysis of significant protein associations with CSF Aβ42 levels using the WebGestalt tool. 1276 
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 1277 

Figure 6. Overlapping loci/proteins in genomic and proteomic analysis. A) Venn diagram of the top 500 ranking of CSF 1278 

Aβ42-associated proteins in the SOMAscan panel (orange), our gene-based MAGMA analysis (red), GWAS of CSF Aβ42 1279 

(Jansen et al., 2022) (dark blue) and our amyloid burden meta-analysis of filtered CSF-PET endophenotypes (light blue). B) 1280 

Venn diagram of the top 500 ranking of CSF Aβ42-associated proteins in the SOMAscan panel (orange), PAD gene-based 1281 

MAGMA meta-analysis (red) and PAD amyloid burden meta-analysis of filtered CSF-PET endophenotypes (light blue). C) 1282 

Top 10 enrichment analysis results of the overlapping proteins between our genomic and proteomic analyses. C) Top 10 1283 

enrichment analysis results of the overlapping proteins between proteomic and PAD genomic analyses. The analysis was done 1284 

using the WebGestalt tool. 1285 
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Table1. Results of the genome wide meta-analysis filtered combining CSF and PET endophenotypes (4.9% of total SNPs). 1293 

Bold: significant results P < 5e-08 with consistent effect direction. 1294 

rsID SNP 
Nearest 

Gene 
REF ALT A1 FreqA1 

Call 

Rate 
n Zscore P-value Direction 

rs429358 19:45411941 
APOE  

(0 kb) 
T C C 0.211 

1.000 
2076 -17.259 9.50E-67 ----++ 

rs78402940 2:59125664 
FLJ30838  

(0 kb) 
A G G 0.089 

0.999 
1979 -4.849 1.24E-06 --?-++ 

rs62354504 5:36361976 
RANBP3L  

(59.96 kb) 
G A A 0.027 

0.999 
1262 -4.807 1.53E-06 ?-?-+? 

rs62340552 4:180023617 NA C T T 0.041 0.993 1798 -4.582 4.61E-06 --?-+? 

rs2902373 11:43637563 
MIR129-2  

(34.53 kb) 
C T T 0.222 

0.993 
2076 -4.571 4.84E-06 ----++ 

rs73141455 7:78648931 
MAGI2  

(0 kb) 
G T T 0.038 

0.995 
1798 -4.555 5.24E-06 --?-+? 

rs115822934 4:164308011 
NPY5R  

(34.92 kb) 
G T T 0.032 

0.998 
1798 -4.448 8.65E-06 ++?+-? 

rs1523589 18:30242590 
KLHL14  

(-10.04 kb) 
C A A 0.201 

0.996 
2076 -4.440 8.99E-06 ++++-- 

rs4395536 4:168504316 NA A G G 0.914 0.987 1979 -4.435 9.23E-06 ++?+-- 

rs11963901 6:155436138 
TIAM2  

(0 kb) 
C T T 0.106 

0.999 
1979 -4.434 9.23E-06 --?-++ 

Note: Meta-analysis was performed using a sample size weighted method without considering effect size direction and filtered 

by effect size and data availability in at least half of each endophenotypes cohorts. Reference SNP (rs) code for the SNP: rsID, 

Genetic markers in GRCh37/hg19 genomic assembly: SNP, Reference allele: REF, Alternative allele: ALT, Effect allele: A1, 

Sample size: n.   
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Table 2. Gene-based MAGMA results from FUMA analysis considering genome-wide significant results P<4.235e-06. 1308 

Gene EntrezID UniProtID CHR Start Stop 
n 

SNPS 
Zscore P-value 

NECTIN2 5819 Q92692 19 45349432 45392485 37 7.787 3.442E-15 

APOE 348 P02649 19 45409011 45412650 4 7.282 1.648E-13 

APOC1 341 P02654 19 45417504 45422606 5 6.774 6.278E-12 

CSMD1 64478 Q96PZ7 8 2792875 4852494 929 6.437 6.076E-11 

TOMM40 10452 O96008 19 45393826 45406946 24 6.109 5.000E-10 

WWOX 51741 Q9NZC7 16 78133310 79246564 323 5.566 1.307E-08 

LHPP 64077 Q9H008 10 126150403 126306457 153 5.507 1.822E-08 

BCL3 602 P20749 19 45250962 45263301 6 5.449 2.540E-08 

CNTN5 53942 O94779 11 98891683 100229616 556 5.358 4.217E-08 

TENM3 55714 Q9P273 4 183065140 183724177 114 5.312 5.432E-08 

PTPRD 5789 P23468 9 8314246 10612723 332 5.258 7.272E-08 

TIAM2 26230 Q8IVF5 6 155153831 155578857 60 5.243 7.904E-08 

RBFOX1 54715 Q9NWB1 16 6069095 7763340 382 5.079 1.900E-07 

GPC5 2262 P78333 13 92050929 93519490 275 4.956 3.604E-07 

RORA 6095 P35398 15 60780483 61521518 185 4.827 6.948E-07 

MACROD2 140733 A1Z1Q3 20 13976015 16033842 354 4.787 8.471E-07 

TMEM132D 121256 Q14C87 12 129556270 130388211 205 4.759 9.717E-07 

CDH13 1012 P55290 16 82660408 83830204 315 4.592 2.201E-06 

LRP1B 53353 Q9NZR2 2 140988992 142889270 318 4.549 2.696E-06 

KIR3DX1 90011 Q9H7L2 19 55043909 55057053 9 4.487 3.616E-06 

FAM53B 9679 Q14153 10 126307861 126432838 42 4.479 3.751E-06 

Chromosome: CHR, Number of SNPs: NSNP, Sample size: n, Entrez Gene Identifier: EntrezID, UniProt Swiss Protein 

Identifier: UniProtID. 
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