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Abstract  

Background: Synucleinopathies manifest as a spectrum of disorders that vary in features and 

severity, including idiopathic/isolated REM sleep behaviour disorder (iRBD) and dementia with 

Lewy bodies. Patterns of brain atrophy in iRBD are already reminiscent of what is later seen in 

overt disease and are related to cognitive impairment, being associated with the development of 

dementia with Lewy bodies. However, how brain atrophy begins and progresses remains unclear.  

Methods: A multicentric cohort of 1,134 participants, including 538 patients with 

synucleinopathies (451 with polysomnography-confirmed iRBD and 87 with dementia with Lewy 

bodies) and 596 healthy controls, was recruited from 11 international study centres and underwent 

T1-weighted MRI imaging and longitudinal clinical assessment. Scans underwent vertex-based 

cortical surface reconstruction and volumetric segmentation to quantify brain atrophy, followed by 

parcellation, ComBAT scan harmonization, and piecewise linear z-scoring for age and sex. We 

applied the unsupervised machine learning algorithm, Subtype and Stage Inference (SuStaIn), to 

reconstruct spatiotemporal patterns of brain atrophy progression and correlated the distinct 

subtypes with clinical markers of disease progression.  

Results: SuStaIn identified two unique subtypes of brain atrophy progression: 1) a “cortical-first” 

progression subtype characterized by atrophy beginning in the frontal lobes followed by the 

temporal and parietal areas and remaining cortical areas, with the involvement of subcortical 

structures at later stages; and 2) a “subcortical-first” progression subtype, which involved atrophy 

beginning in the limbic areas, then basal ganglia, and only involving cortical structures at late 

stages. Patients classified to either subtype had higher motor and cognitive disease burden and were 

more likely to phenoconvert to overt disease compared with those that were not classifiable. Of the 
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84 iRBD patients who developed overt disease during follow-up, those with a subcortical-first 

pattern of atrophy were more likely to phenoconvert at earlier SuStaIn stages, particularly to a 

parkinsonism phenotype. Conversely, later disease stages in both subtypes were associated with 

more imminent phenoconversion to a dementia phenotype.  

Conclusions: Patients with synucleinopathy can be classified into distinct patterns of atrophy that 

correlate with disease burden. This demonstrates insights into underlying disease biology and the 

potential value of categorizing patients in clinical trials. 

 

Keywords 

REM sleep behaviour disorder, Parkinson’s disease, dementia with Lewy bodies, MRI, 

subtyping, machine learning.  
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Background 

Synucleinopathies are pathologically defined by the misfolding and aggregation of alpha-synuclein 

[1]. During the prodromal phases of disease, patients manifest a variety of deficits in multiple 

clinical domains, including cognitive and motor abnormalities, olfactory dysfunction, constipation, 

dysautonomia, and sleep disorders [2]. One highly studied prodromal phenotype is 

idiopathic/isolated REM sleep behaviour disorder (iRBD), a parasomnia characterized by dream 

enactment behaviours during REM sleep [3]. The vast majority of patients with iRBD will 

eventually develop an overt and clinically-defined disorder, mainly dementia with Lewy bodies 

and Parkinson’s disease, and less frequently multiple system atrophy [4].  

 

As a prodromal synucleinopathy, clinical changes and patterns of brain atrophy in iRBD are already 

reminiscent of what is seen in overt disease [4–6]. In particular, iRBD patients with concomitant 

mild cognitive impairment have more extensive cortical and subcortical abnormalities compared 

to those without mild cognitive impairment, with the severity of atrophy predicting subsequent 

development of dementia with Lewy bodies [7–9]. This supports the notion that substantial 

variability exists between iRBD patients during this prodromal phase, with some destined to 

develop dementia earlier in their disease course than others [10]. In silico modelling of atrophy in 

iRBD, based on computational spreading models of alpha-synuclein [11–13], has demonstrated 

that gene expression and structural connectivity jointly influence brain neurodegeneration [5]. 

Notably, a closer match between the in silico atrophy pattern and the patient’s actual atrophy 

pattern correlates with increased cognitive impairment but not motor impairment in iRBD [5]. 

Identifying patterns in this variability might be useful for prognostic purposes and allow more 
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precise selection of patients for future therapeutic trials [3]. However, the changes in brain 

morphology that begin during iRBD and eventually progress toward the development of dementia 

remain unclear.  

 

To better understand the relationships between interindividual variability within iRBD patients and 

their subsequent transition to dementia and parkinsonism, a systematic investigation of the specific 

sequential brain changes leading to dementia with Lewy bodies is needed. Several studies have 

documented the longitudinal brain changes taking place over time in iRBD [9,14,15], but these 

have been restricted by a limited number of patients, the high level of inter-assessment variability 

in imaging techniques, and the extended follow-up delay between the diagnosis of iRBD and 

phenoconversion.  

 

In this study, we performed a comprehensive quantification of brain atrophy in iRBD and dementia 

with Lewy bodies and reconstructed the subtypes of spatiotemporal changes in brain atrophy 

progression from cross-sectional data to understand their associations with clinical disease 

progression. We compiled the largest collection of structural brain MRI data acquired to date in 

patients with iRBD (n=451 from 11 international study centres). To derive atrophy-driven subtypes 

of iRBD and their associated patterns of progression, we performed vertex-based cortical surface 

analysis of thickness and subcortical volume quantification on the complete dataset and applied the 

Subtype and Stage Inference (SuStaIn) model, an unsupervised machine learning algorithm that 

uses a combined disease progression modelling and clustering approach on cross-sectional scans 

of patients at different stages of a clinical continuum [16]. Finally, we describe the clinical 

characteristics and phenoconversion status of the resulting data-driven subtypes to gain an 
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understanding of the relationship between patterns of atrophy in iRBD and the development of 

dementia and parkinsonism.  

Methods 

Participants 

A total of 1134 participants were recruited for this study and underwent T1-weighted brain MRI 

imaging and clinical assessments (see Figure 1 for an overview of the study protocol). Of these, 

451 had polysomnography-confirmed iRBD, 87 had dementia with Lewy bodies, and 596 were 

healthy controls recruited in every centre. 

 

Participant recruitment by study centre and disease group are detailed in Supplementary Table 1. 

Participants were recruited from Newcastle University (n=188), the Oxford Parkinson’s Disease 

Centre (n=147), the Department of Neurology at Charles University (n=140), the Movement 

Disorders clinic at the Hôpital de la Pitié-Salpêtrière (n=130), the Centre for Advanced Research 

on Sleep Medicine at the Hôpital du Sacré-Cœur de Montréal (n=125), the COMPASS-ND Study 

from the Canadian Consortium on Neurodegeneration in Aging (CCNA; n=71)[17–19], the 

Parkinson’s Disease Research Clinic at the University of Sydney (n=56), the Department of 

Neurology at the University of Cologne (n=47), Aarhus University Hospital (n=38), the IRCCS 

Ospedale Policlinico San Martino in Genoa (n=29), as well as part of the  Parkinson's Progression 

Markers Initiative (PPMI; n=305)[20]. A subset of the iRBD patients (n=182, 40%) included in 

this study were part of previous studies investigating prodromal atrophy in synucleinopathies [5,6]. 
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Patients with iRBD were diagnosed using the International Classification of Sleep Disorders, third 

edition diagnostic criteria [21], including video-polysomnography, and underwent clinical 

assessments to confirm absence of dementia with Lewy bodies, Parkinson’s disease, and multiple 

system atrophy at the closest examination in time to the MRI acquisition. Patients with iRBD were 

followed longitudinally approximately every 6-12 months in every centre to assess for the 

development of dementia and parkinsonism (phenoconversion). Clinical assessments used at all 

sites included cognitive testing with either the Montreal Cognitive Assessment (MoCA) or the 

Mini-Mental State Examination (MMSE), and motor examination using the Movement Disorders 

Society – Unified Parkinson’s Disease Rating Scale, part III (MDS-UPDRS-III) or the original 

1987 version (UPDRS-III). Patients with probable dementia with Lewy bodies were diagnosed 

using previously published criteria [22]. The iRBD and dementia with Lewy bodies patients were 

used for the main modelling findings of this study since previous studies have shown that brain 

atrophy in iRBD is strongly associated with cognitive impairment and predicts dementia with Lewy 

bodies compared to Parkinson’s disease [5,7,8]. Including dementia with Lewy bodies therefore 

provided atrophy measurements from the later stages of brain disease progression when iRBD 

converts to dementia with Lewy bodies. However, to ensure that this did not drive the subtyping in 

iRBD, we repeated the analyses using a sample of 142 Parkinson’s disease patients with probable 

RBD. These patients were recruited from the PPMI baseline cohort, and the presence of probable 

RBD was defined by a cut-off score ≥5 on the RBD Screening Questionnaire [23]. 

 

Ethics approval was obtained from the local institutional boards of each centre with subject consent 

in accordance with the Declaration of Helsinki. The current study was approved by the Research 
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Ethics Board of the McGill University Health Centre and the Centre intégré universitaire de santé 

et de services sociaux du Nord-de-l’Île-de-Montréal. 

 

MRI acquisition and processing 

Structural T1-weighted brain MRI scans were acquired at each site and are detailed in 

Supplementary Table 1. T1-weighted scans underwent cortical reconstruction and volumetric 

segmentation using the FreeSurfer 7.1.1 image analysis suite (http://surfer.nmr.mgh.harvard.edu). 

The technical details of the FreeSurfer procedure have been described previously [5]. Briefly, this 

processing included motion correction, removal of non-brain tissue using a hybrid 

watershed/surface deformation procedure, automated Talairach transformation, segmentation of 

the subcortical white matter and deep grey matter volumetric structures, intensity normalization, 

tessellation of the grey matter white matter boundary, automated topology correction, and surface 

deformation following intensity gradients to optimally place the grey/white and grey/CSF borders 

at the location where the greatest shift in intensity defines the transition to the other tissue class. 

Once the cortical models were complete, deformable procedures were performed including surface 

inflation, registration to a spherical atlas based on individual cortical folding patterns to match 

cortical geometry across patients, parcellation of the cerebral cortex into units with respect to gyral 

and sulcal structure, and creation of a variety of surface-based data. This method used both intensity 

and continuity information from the entire MRI volume in segmentation and deformation 

procedures to produce representations of cortical thickness, calculated as the closest distance from 

the grey/white boundary to the grey/CSF boundary at each vertex on the tessellated surface. The 
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maps were created using spatial intensity gradients across tissue classes and were therefore not 

simply reliant on absolute signal intensity.  

 

All surface maps were inspected visually by a trained rater (S.R.) and scored from 1-4 based on 

published guidelines [24,25]. Scans with major artefacts or reconstruction errors (score >2) were 

excluded from further analyses. Due to the significant atrophy found on dementia with Lewy bodies 

scans and the impact on surface reconstruction, the cortical surfaces from dementia with Lewy 

bodies patients and associated controls were manually edited slice-by-slice (S.J., S.R., A.De.) and 

reprocessed. Cortical thickness, cortical volume, and subcortical volume measurements were next 

extracted from the resulting maps using the bilateral 83-region Desikan-Killiany atlas (68 cortical 

regions and 15 subcortical regions, namely the bilateral thalamus, caudate, putamen, pallidum, 

hippocampus, amygdala, nucleus accumbens, and brainstem). These metrics were all extracted 

because they were shown to be differentially affected in iRBD [5,26]. Given that volume scales 

with head size [27], volume values were normalized by dividing values by the estimated total 

intracranial volume. To reduce the number of input features when modelling subtypes and preserve 

sufficient power, the labels of each individual parcellation were fused together inside FreeSurfer 

to yield lobar measurements of cortical thickness for the frontal, parietal, temporal, occipital, and 

cingulate lobes, as done previously [16,28,29]. To control for the differences in scanner 

acquisitions, we next applied NeuroComBAT on the regional measurements, a batch-correcting 

tool widely used in multisite MRI studies that removes scanner-dependent variations while 

preserving the biological variance of interest, using age, sex, and disease group as covariates [30–

32]. We expressed each regional measurement as a piecewise linear z-score normalized to the 

control population using age and sex as regression covariates as previously described (see 
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Supplemental Table 2 for group descriptives) [16]. This allowed the brain measurements from each 

patient to reflect deviations from what was expected for age and sex, thereby ensuring that the 

identified progression patterns were not merely reflective of normal aging. Regions of interest were 

averaged between hemispheres; paired t-tests between left and right regions determined that there 

was no statistically significant difference between them (all p-values > 0.084). The 

NeuroComBAT-corrected, z-scored regional measurements served as the input for the analyses 

involving the reconstruction of transdiagnostic brain atrophy subtypes in synucleinopathies. 

 

Brain atrophy subtype and stage inference modelling 

To reconstruct brain atrophy subtypes and stages from cross-sectional imaging data, we used the 

SuStaIn algorithm implemented in Python [16,33]. In contrast to conventional analyses, which 

would generate subtypes exclusively based on temporal progression, the SuStaIn algorithm 

considers both temporal and spatial information in order to define synucleinopathy groups with 

distinct patterns of progression (subtypes) and assigns a disease stage for each participant, thereby 

allowing for the identification of transdiagnostic trajectories of brain neurodegeneration. We ran 

SuStaIn using 25 start points and 1,000,000 Markov Chain Monte Carlo iterations. The optimal 

number of subtypes was determined using the cross-validation information criterion calculated 

through 10-fold cross-validation [16]. The SuStaIn algorithm subtyped individuals by calculating 

the maximum likelihood they belong to each subtype, and staged individuals by calculating their 

average stage weighted by the probability they belonged to each stage of each subtype. Individuals 

that were assigned a stage of 0 were determined to be “non-classifiable”, whereas individuals with 

a higher probability of belonging to a SuStaIn subtype were determined to be “classifiable”. To 
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compare the subtype progression patterns between different neuroimaging metrics (i.e. cortical 

thickness versus cortical volume) and across cross-validation folds (i.e., the cross-validation 

similarity metric), we calculated the Bhattacharyya coefficient [34] between the position of each 

biomarker event in the two subtype progression patterns, averaged across biomarker events and 

Markov Chain Monte Carlo samples, as previously described [16]. To ensure the robustness of our 

subtypes and to confirm that the solution from SuStaIn was not due to having included iRBD and 

dementia with Lewy bodies patients, we repeated the same analyses after including a cohort of 

patients with Parkinson’s disease and probable RBD, processed in the same way as the other 

patients. We also repeated the analyses in the group of iRBD patients alone. The Bhattacharrya 

coefficient [34] was used to assess the similarity of these brain atrophy progression patterns 

compared to the initial model involving only iRBD and dementia with Lewy bodies patients. 

SuStaIn models were visualized using Brainpainter software [35]. 

 

Statistical analyses 

Statistical analyses were performed in R (version 4.3.2). MMSE scores were converted to MoCA 

scores, which involved 73 dementia with Lewy bodies and 18 iRBD patients [36]. UPDRS-III 

scores were converted to MDS-UPDRS-III scores in 43 iRBD patients as previously described [4]. 

Demographics and clinical variables were compared between patients and controls using ANOVA 

with post-hoc Tukey HSD testing and χ2  testing with post-hoc pairwise comparisons. Comparisons 

between subtypes used t-tests for continuous variables and χ2 tests for categorical variables. The 

progression of clinical variables with respect to stages was assessed by linear regression using age, 

sex, stage, subtype, and probability of subtype as covariates (i.e., clinical variable ~ subtype + stage 
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+ age + sex + probability of subtype). Logistic regression was also used to predict phenoconversion 

between subtypes (i.e., phenoconversion ~ subtype * stage + age + sex). The phenoconversion risk 

for each iRBD patient was calculated using this logistic regression and used for investigating the 

relationship with SuStaIn subtypes and stages. 

Results  

Participant demographics 

Of the 1134 participants with T1-weighted imaging, 14 (1.2%) failed the FreeSurfer processing 

step and 157 (13.8%) did not pass surface-based quality control, leading to a final sample for 

analysis of 362 patients with iRBD, 82 with dementia with Lewy bodies, and 519 controls. As 

expected, dementia with Lewy bodies patients were older (76.8 ± 6.45 years), had lower MoCA 

scores (14.4 ± 5.46), and higher MDS-UPDRS-III scores (32.1 ± 18.1) compared to iRBD patients 

and controls. iRBD patients were younger (67.1 ± 6.95 years), with intermediate MoCA (25.7 ± 

3.02) and MDS-UPDRS-III scores (6.04 ± 5.57). Controls were slightly younger than iRBD 

participants (65.6 ± 10.1 years) and had the highest MoCA scores (26.8 ± 2.36) and lowest MDS-

UPDRS-III scores (2.28 ± 4.44). Summarized demographic and clinical information is available in 

Supplementary Table 2. 

 

SuStaIn identifies two brain atrophy subtypes 

First, we used SuStaIn to identify subtypes of brain atrophy progression in the neurodegenerative 

spectrum linking iRBD and dementia with Lewy bodies. Since atrophy has previously been 
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reported to be more prominent in iRBD associated with MCI and since atrophy predicts the 

development of dementia with Lewy bodies, we added dementia with Lewy bodies patients to our 

subtyping approach. These patients allowed SuStaIn to identify the brain atrophy progression 

patterns within the dementing spectrum linking iRBD to dementia with Lewy bodies. Using cortical 

thickness and subcortical volume regions of interest as input, SuStaIn identified a two-subtype 

model as being the best representation of brain atrophy progression in patients (Fig. 2A). This 

subtyping classified 247 (56%) patients with iRBD or dementia with Lewy bodies into one of the 

two subtypes (Fig. 2B-C), each with distinct sequences of atrophy (Fig. 2D): (i) a “cortical-first” 

progression subtype, found in 61% of classifiable patients, characterized by atrophy beginning in 

the frontal lobes followed by the temporal and parietal areas and remaining cortical areas, with the 

involvement of subcortical structures at later stages; and (ii) a “subcortical-first” progression 

subtype, found in 39% of classifiable patients, characterized by atrophy beginning in the limbic 

areas (primarily the amygdala and hippocampus), followed by structures of the basal ganglia and 

only involving cortical structures at later stages. The cortical-first subtype included 150 patients, 

namely 112 (75%) iRBD patients and 38 (25%) dementia with Lewy bodies patients, while the 

subcortical-first subtype included 97 patients, namely 67 (69%) iRBD patients and 30 (31%) 

dementia with Lewy bodies patients (Table 1). The remaining 197 patients with synucleinopathies 

(183 [93%] iRBD and 14 [7%] dementia with Lewy bodies) were categorized as stage 0/non-

classifiable (i.e., assigned to very early SuStaIn stages at which point there is low confidence in the 

subtype assignment or displayed a different atrophy pattern compared to the rest of the sample). 

 

The average similarity between cross-validation folds was >90% for each subtype, indicating high 

reliability of subtype progression patterns with 10-fold cross-validation. Moreover, the 
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identification of two distinct subtypes was recapitulated when using cortical volume (as a measure 

of cortical atrophy instead of cortical thickness) with subcortical volume as input features, with 

86% similarity when comparing the subtypes’ progression patterns (Supplementary Figure 1). To 

ensure the robustness of our subtyping, we performed secondary analyses by including Parkinson’s 

disease patients with probable RBD as inputs into the SuStaIn modeling, as well as by using iRBD 

patients alone (Supplementary Figure 2 and Supplementary Table 3). In both cases, the two 

subtypes identified in the primary SuStaIn model were recapitulated with similar patterns of 

progression, although as expected, there was increased uncertainty at higher stages in the iRBD-

only model, particularly in the cortical-first subtype. As with the main SuStaIn model, the inclusion 

of Parkinson’s disease patients with probable RBD resulted in a similar distribution of classifiable 

patients (304 classifiable versus 250 non-classifiable patients), with 50% of Parkinson’s disease 

patients determined to be non-classifiable. In both cases, the Bhattacharrya coefficient indicated a 

similarity between 81% and 90% with the original model that included iRBD and dementia with 

Lewy bodies patients. Taken together, this indicates that the primary driver of subtyping and 

staging reflects the progression of cortical and subcortical atrophy. 

 

Inspecting the subtypes based on the progression of atrophy in each brain region revealed that 

compared to normative data from control scans, iRBD patients from the subcortical-first subtype 

had rapid subcortical volume loss in the early stages, with relative stability of most cortical 

structures but progressive atrophy of the hippocampus, putamen, and cortical structures at later 

stages (Figure 3). This pattern was generally reversed in cortical-first patients, where atrophy of 

cortical structures occurred in the earlier stages followed by relative stability in the cingulate, 
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occipital, and parietal structures, with progressive atrophy in the frontal, insular, and temporal 

cortical areas and subcortical structures (Figure 3). 

 

Atrophy subtypes are related to increased clinical burden 

Next, we investigated whether demographics and clinical variables differed between classifiable 

and stage 0/non-classifiable patients and between the identified subtypes. The baseline 

demographics and clinical variables of the classifiable and stage 0/non-classifiable groups are 

shown in Table 1. The classifiable group (which includes patients identified as either cortical-first 

or subcortical-first subtypes) had more dementia with Lewy bodies patients (27.5% vs. 7.1%, p < 

0.001), were overall older (71.0 ± 7.7, vs. 66.3 ± 7.2 p < 0.001), and had worse MoCA (22.5 ± 6.3 

vs. 25.6 ± 3.5, p < 0.001), and MDS-UPDRS-III (14.6 ± 16.4 vs. 6.5 ± 7.8, p < 0.001) scores than 

stage 0/non-classifiable patients. Worse clinical scores in classifiable patients were also observed 

when comparing within iRBD and dementia with Lewy bodies groups.  

There were no significant differences in sex proportion, age, and MoCA scores when comparing 

patients classified in the cortical-first versus the subcortical-first atrophy progression subtypes 

(Table 1). However, there were significantly more iRBD patients classified as cortical-first than 

subcortical-first (74.7% vs. 69.1%, p = 0.001), whereas the distribution in dementia with Lewy 

bodies patients was not significantly different (25.3% vs. 30.9%, p = 0.332). In addition, although 

the MDS-UPDRS-III scores were not different between subtypes in the total sample of patients, 

those with dementia with Lewy bodies classified in the cortical-first group had higher MDS-

UPDRS-III scores than those classified in the subcortical-first subtype (38.7 ± 19.9 versus 26.9 ± 
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14.5, p = 0.006). In other words, our modelling identified brain atrophy subtypes related to higher 

cognitive and motor disease burden. 

 

Brain atrophy severity relates to cognitive and motor progression 

We next sought to determine whether cognitive and motor functions varied as a function of brain 

subtype severity. Figure 4 and Table 2 show the relationships between clinical variables and 

SuStaIn subtype and stage while accounting for age, sex, and probability of subtype. Higher 

SuStaIn stages, namely more advanced brain disease progression, were associated with higher 

MDS-UPDRS-III scores (increased by 0.69 points per increase in stage, p = 0.003) and lower 

MoCA scores (decreased by 0.35 points per increase in stage, p < 0.001). Moreover, the cortical-

first subtype was associated with a greater rate of increase in MDS-UPDRS-III scores over time 

relative to the subcortical-first subtype (increased by 5.03 points, p = 0.011). This indicates that as 

brain atrophy progresses, cognitive and motor impairments become more pronounced, with the 

cortical-first subtype exhibiting a greater motor disease burden compared to the subcortical-first 

subtype.    

 

Atrophy subtypes relate differently to phenoconversion in iRBD 

We investigated whether the brain atrophy subtypes are associated with phenoconversion risk and 

clinical subtypes in iRBD. Among all iRBD patients, 84 (23%) phenoconverted to a defined 

synucleinopathy, with 28 (33%) having developed dementia with Lewy bodies, 52 (62%) 

Parkinson’s disease, and 4 (5%) multiple system atrophy. Although there were no differences in 
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the unadjusted number of phenoconverted patients between classifiable and non-classifiable groups 

or between subtypes (Supplementary Table 4), we further analysed the risk of phenoconversion in 

iRBD with respect to classifiability using a logistic regression model involving age, sex, and 

interaction between classifiability and probability of classifiability (Supplementary Table 5). This 

revealed that classifiable subjects (either cortical-first or subcortical-first) had a higher predicted 

probability of phenoconverting as compared to non-classifiable subjects (log-odds = 3.38, p = 

0.040). This effect was modulated by the interaction between classifiability and probability of 

subtype (log-odds = -4.32, p = 0.034), since most non-classifiable subjects had lower probability 

of subtyping as compared to classifiable subjects. 

 

To analyse the risk of phenoconversion in iRBD with respect to a specific SuStaIn subtype, we 

employed a logistic regression model using age, sex, and interaction between subtype and stage 

(Supplementary Table 6). This revealed a significant effect of subtype on phenoconversion, with 

iRBD patients in the subcortical-first subtype being more likely to phenoconvert compared to those 

classified in the cortical-first subtype (log-odds = 1.45, p = 0.022). Importantly, the interaction 

term between SuStaIn subtype and stage was also significant (log-odds = -0.31, p = 0.049), 

indicating that the effect of severity of atrophy on the likelihood of phenoconverting differed 

between the iRBD patients classified in each subtype. Specifically, compared to iRBD patients 

classified in the cortical-first subtype, iRBD patients classified in the subcortical-first subtype had 

a higher likelihood of receiving a diagnosis of an overt synucleinopathy in the earliest severity 

stages of brain disease progression. 
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Subtype-specific logistic regression models indicated that an earlier SuStaIn stage in iRBD in the 

subcortical-first subtype related to a higher likelihood of phenoconverting to an overt disease (log-

odds = -0.232, p = 0.054) independently from age (p = 0.75) and sex (p = 0.88) (Supplementary 

Table 6). Conversely, in the iRBD patients classified as cortical-first, older age was significantly 

associated with a higher likelihood of phenoconversion (log-odds = 0.082, p = 0.049) but not 

SuStaIn stage (p = 0.62) or sex (p = 0.52) (Supplementary Table 7). In other words, more prominent 

brain atrophy in subcortical structures early during the disease course was associated with a 

stronger likelihood of phenoconverting at earlier stages (Figure 5A), resulting in a clinical 

diagnosis of a defined neurodegenerative disease sooner. On the other hand, more prominent brain 

atrophy in cortical structures early during the disease course was associated with phenoconversion 

over the long term (Figure 5A), with these patients receiving a clinical diagnosis at much later 

stages of brain disease progression. 

 

We then investigated whether the subtypes could serve as predictors for the development of a 

parkinsonism or dementia phenotype while still in the preclinical stage of iRBD, as predicting 

differential pathways from still healthy iRBD individuals is essential for developing a prognostic 

subtyping approach. Logistic regression revealed that the development of a parkinsonism 

phenotype in iRBD patients was associated with the subcortical-first subtype compared to those 

who did not yet phenoconvert (log-odds = 0.63, p = 0.014), but not with SuStaIn stage (p = 0.21), 

age (p = 0.61), or sex (p = 0.97) (Supplementary Table 8). In contrast, the development of dementia 

in iRBD patients was borderline-significantly associated with SuStaIn stage (log-odds = 0.37, p = 

0.054), independently of subtype (p = 0.77), age (p = 0.37), or sex (p = 0.90) (Supplementary Table 

8). These findings indicate that classification into a subcortical-first subtype is associated with a 
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higher likelihood of developing a parkinsonism-first phenotype. In addition, the progression of 

brain atrophy, regardless of subtype, is related to an increased risk of developing dementia.  

Discussion  

In this study, we used a data-driven approach to identify two distinct patterns of brain atrophy 

progression, summarizing the spectrum linking iRBD to overt disease. The first is a cortical-first 

atrophy progression subtype, where atrophy initially spreads throughout cortical areas before 

manifesting in subcortical structures later. The second is a subcortical-first atrophy progression 

subtype, where atrophy begins in the amygdala and basal ganglia before spreading to the cortical 

areas. Patients classified in the subtypes had an increased clinical burden compared to patients not 

subtyped by our modelling. Clinical scores of disease severity worsened with increasing stages of 

atrophy, and phenoconversion trajectories differed based on the subtype. Specifically, iRBD 

patients with a subcortical-first atrophy subtype were more likely to phenoconvert at earlier 

SuStaIn stages, while those with a cortical-first pattern of atrophy were more likely to phenoconvert 

at later stages. In addition, iRBD patients with a subcortical-first atrophy subtype were more likely 

to phenoconvert to a parkinsonism-first phenotype, while both subtypes were likely to 

phenoconvert to a dementia-first phenotype. Our results provide insights into the progression of 

brain atrophy in prodromal synucleinopathy as it develops towards manifest disease, which may 

have potential utility for prognostication and patient stratification. 

 

Previous studies have found cortical and subcortical atrophy in iRBD patients, which have been 

shown to correlate with motor and cognitive dysfunction, as well as predict phenoconversion to 

dementia [5,7–9,15,37]. The atrophy in iRBD, as in several neurodegenerative diseases [13,38,39], 
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has been shown to be constrained by both the brain’s structural connectivity pattern and the local 

patterns of gene expression [5], targeting preferentially regions overexpressing genes involved in 

energy production and protein degradation [6]. Distinct patterns of cortical and subcortical atrophy 

have also been described in patients with mild cognitive impairment who later developed dementia 

with Lewy bodies [40]. Patients with dementia with Lewy bodies similarly show unique patterns 

of atrophy when compared with patients with Alzheimer’s disease and healthy controls [41,42], 

with a hippocampal-sparing pattern of regional atrophy observed in dementia with Lewy bodies, 

which may be influenced by mixed co-pathology [43]. The distinct involvement of subcortical 

structures at earlier and later disease stages depending on machine learning-derived subtypes has 

also been described individuals with manifest Parkinson’s disease [44]. The broad areas and 

patterns of atrophy in prodromal synucleinopathy and overt disease found in the present study are 

in line with these results. Here, using a large cross-sectional sample size of brain MRI scans in 

iRBD and dementia with Lewy bodies and machine learning, we were able to account for the 

variability in disease stage across individuals and reconstruct the progression of atrophy even at 

very early stages of disease. Our results not only support the finding that atrophy is diffuse in the 

late stages of synucleinopathy, but also suggest that the origin and pathway towards this state 

follows distinct patterns. These different patterns of atrophic spread, based solely on the data-

driven analysis of quantitative atrophy derived from brain MRI scans, could have relevance for 

prognosis or more precisely select patients for disease-modifying trials. For this to be the case, 

future studies will need to derive signature patterns for each of these subtypes and develop 

algorithms that will allow classifying brain MRI scans from patients into the likeliest subtype. 
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The identified subtypes were significantly associated with clinical features and progression 

trajectories. Indeed, we observed that higher subtype stages, namely more advanced brain disease 

progression, were associated with worse clinical scores. Furthermore, the cortical-first subtype was 

associated with higher rate of increase in MDS-UPDRS-III scores over time relative to the 

subcortical-first subtype. This agrees with our observation that cortical-first patients phenoconvert 

at later stages, having time to accumulate more brain changes as they transition towards overt 

disease. This is in line with both dementia with Lewy bodies and Parkinson’s disease 

phenoconverters having similarly elevated MDS-UPDRS-III in the iRBD stage, and that the motor 

interval being, if anything, longer in dementia with Lewy bodies phenoconverters than Parkinson’s 

disease phenoconverters [45]. Importantly, the MDS-UPDRS-III and MoCA are broad metrics of 

motor and cognitive function, respectively, which do not fully capture the breadth or depth of 

dysfunction in iRBD [45,46]. Future work can examine if different subtype progression patterns 

are associated with more specific patterns of clinical dysfunction.  

 

Regression analyses indicated that classifiable subjects with iRBD had higher risk of 

phenoconversion than non-classifiable subjects. Furthermore, the subcortical-first brain atrophy 

progression subtype in iRBD was associated with a stronger likelihood of developing an overt 

synucleinopathy at earlier stages, whereas the cortical-first brain atrophy progression subtype was 

associated with phenoconversion over the longer term. We propose that as subcortical structures 

are affected initially, the hallmark clinical features of parkinsonism become manifest, leading to a 

diagnosis at earlier subcortical stages. In line with this, phenoconversion occurs at later stages in 

the cortical-first subtype, since it takes longer for the subcortical structures to be affected and motor 

signs and symptoms of disease to become manifest. This is supported by the fact that: i) the 
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subcortical-first subtype was associated with conversion to the parkinsonism phenotype, 

particularly at earlier stages; ii) the cortical-first subtype was associated with a greater rate of 

increase in MDS-UPDRS-III over time, which implicitly suggests that subcortical-first 

phenoconverters are at higher scores initially with less room to progress; and iii) conversion to the 

dementia phenotype occurred at later SuStaIn stages irrespective of subtype. In other words, 

whereas both subtypes are associated with dementia with increasing progression, the subcortical-

first phenotype is more strongly associated with the development of a parkinsonism subtype in 

iRBD (Figure 6). This may indicate that the cortical-first subtype is more closely related to what is 

classically known as dementia with Lewy bodies (i.e., initial cortical involvement followed by 

subcortical involvement, with a long-term risk of dementia), whereas the subcortical-first subtype 

is more closely related to Parkinson’s disease with dementia (i.e., initial subcortical involvement 

followed by cortical involvement, with earlier phenoconversion to Parkinson’s disease and an 

increased long-term risk of dementia). 

 

Several hypotheses may explain the pathophysiological patterns of each subtype. First, the patterns 

of atrophy may be reflective of ongoing neurodegeneration in different regions of the brain in 

iRBD: the cortical-first subtype begins with neurodegeneration of the cortex while the subcortical-

first subtype begins with atrophy in the limbic and basal ganglia structures. It is important to keep 

in mind that our model was built on atrophy and not actual pathology, and that although preliminary 

evidence has shown that atrophy in synucleinopathies can be recreated in silico as a spread of 

alpha-synuclein misfolded proteins [5], several other proteins and co-pathologies may also be at 

play in iRBD-associated neurodegeneration. For example, brain neurodegeneration in dementia 

with Lewy bodies patients is associated with amyloid beta and tau deposition at baseline [47,48] 
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and lower CSF levels of amyloid beta 42 have been found in iRBD compared to controls [49]. 

Moreover, 25% of iRBD patients are found to be amyloid beta-positive [50]. Future studies should 

investigate whether the cortical- and subcortical-first atrophy subtypes of iRBD differ on imaging 

and blood- and CSF-based markers of Alzheimer’s disease co-pathologies. Another possibility is 

that the cortical-first subtype represents a resilient subtype compared to the subcortical-first 

subtype, where pathology also spreads through the subcortical structures but did not manifest as 

observable and quantifiable atrophy, unlike cortical areas. From this angle, both subtypes would 

have the same initial starting point, and patients within the subcortical-first subtype would represent 

increased vulnerability of the basal ganglia structures in showing neurodegeneration and displaying 

atrophy. Otherwise, despite iRBD patients being classified in this study as cortical- or subcortical-

first, previous models have demonstrated that the iRBD phenotype belongs to a body-first 

propagation of pathology compared to a brain-first (i.e., pathology spreading from the gut to the 

brain and not from the brain to the gut) [51]. Therefore, it could be that the impact of pathology 

differs between subtypes, with the cortical-first subtype impacting more strongly upon several 

brainstem nuclei and neurotransmitter systems whose upstream changes yield observable 

morphological changes. Finally, it may be that deviations in morphological measurements 

compared to what was expected for age and sex are reflective of long-term genetic, lifestyle and 

environmental factors, which render the brain differently vulnerable to synucleinopathies once the 

pathological process hits. 

 

Approximately half of the iRBD patients were not classifiable into a disease subtype. The stage 

0/non-classifiable patients were significantly younger, had better MDS-UPDRS-III and MoCA 

scores, and less overall brain atrophy. This was expected, as previous studies using computational 
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neuroimaging in iRBD demonstrated that cognitive impairments account for a large variance of the 

morphological changes associated with iRBD [8], being significantly more prominent in the 

presence of mild cognitive impairment [7], which affects 30% to 50% of iRBD patients [10,52]. A 

smaller number of dementia with Lewy bodies patients (17%) were non-classifiable, similar in 

proportion to a recent SuStaIn study in patients with progressive supranuclear palsy [29]. Dementia 

with Lewy bodies patients that were non-classifiable were also younger relative to classifiable 

dementia with Lewy bodies patients and had better MoCA scores, although all met criteria for 

dementia. It is possible that non-classifiable iRBD and dementia with Lewy bodies patients reflect 

phenotypes with less overall disease burden or perhaps different patterns of brain atrophy 

progression. For example, it is known that de novo dementia with Lewy bodies patients have much 

higher frequencies of significant Alzheimer’s disease co-pathology as compared to de novo 

Parkinson’s disease patients, implying that Alzheimer’s disease co-pathology during the prodromal 

phase is a strong determinant of dementia with Lewy bodies phenoconversion and the development 

of dementia in synucleinopathies in general [53]. Information about Alzheimer’s disease co-

pathology was not available for this study; however, we speculate that the unclassifiable dementia 

with Lewy bodies and iRBD patients could reflect a “pure” alpha-synuclein phenotype with limited 

co-pathology, with consequently a lesser degree of atrophy. In keeping with this possibility, adding 

Parkinson’s disease patients with probable RBD – who had less overall atrophy and presumably 

less Alzheimer’s disease co-pathology – to the SuStaIn model did not substantively change the 

subtyping patterns, nor did it result in a significant number of previously non-classifiable patients 

becoming classifiable or create a novel alternative subtype. Moreover, 50% of the Parkinson’s 

disease patients were not classifiable, in keeping with the fact that atrophy was the primary driver 

of subtyping and staging. Once a computational framework becomes available for obtaining a 

probability of subtyping from individual brain MRI scans in iRBD, future studies should 
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investigate more thoroughly the clinical features and biological underpinnings of classified and 

unclassified patients. 

 

Some limitations in this study should be discussed. First, the modelling based on the SuStaIn 

algorithm recreated spatiotemporal brain atrophy progression patterns from cross-sectional MRI 

scans. Although powerful for leveraging large datasets of brain disease scans, future initiatives 

should aim at investigating the differential pathways of brain disease progression from longitudinal 

MRI scans in iRBD patients. Second, even though this multicentric study involved the largest MRI 

sample of patients of polysomnography-proven iRBD, the number of patients remains limited, 

which increases the uncertainty of staging. Moreover, large regions of interest were used to better 

balance the spatial and temporal dimensions, which may have hidden the presence of atrophy in 

smaller areas. This is even more important for the brainstem, where specific nuclei have been 

reported to be impacted by neurodegeneration and pathology in iRBD [54–56]. Another limitation 

of the study is the combination of patients from different centres including distinct imaging and 

acquisition protocols. However, we performed our analyses on imaging data that were harmonized 

for the effect of imaging site using NeuroComBAT. All dementia with Lewy bodies diagnoses 

were made clinically and not confirmed at post-mortem; thus, some degree of misdiagnosis cannot 

be excluded, for example, with Alzheimer’s disease. Furthermore, dementia with Lewy bodies 

patients were also not polysomnography-proven to have RBD, although RBD is highly prevalent 

in dementia with Lewy bodies and is a core clinical feature in the diagnosis [22]. In order to 

harmonize clinical data, MMSE scores were converted to estimated MoCA scores in a subset of 

participants, which may limit the interpretation of cognitive function since the MMSE is less 

sensitive to mild cognitive impairment [36]. However, the majority of such conversions involved 
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those with dementia with Lewy bodies, who meet criteria for dementia by definition. Finally, due 

to limitations on available MRI studies, we were not able to verify subtyping patterns using an 

independent replication sample set; however, to our knowledge, our primary analysis has used by 

far the largest sample size of prodromal synucleinopathy MRIs assembled to date.  

Conclusions 

In conclusion, we demonstrate data-driven evidence for the existence of two atrophy subtypes in 

iRBD. The accurate identification and staging of patients with iRBD may have important 

implications for tracking disease progression. 
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Table 1: Demographic and clinical variables for each brain atrophy progression subtype 

 Classifiable Subtyped 

Phenoconversion 
Non-

classifiable 
Classifiable 

p-valuea Cortical-

first 

Subcortical-

first 

p-valueb 

Demographics       

n (%): iRBD 183 (92.9) 179 (72.5) 0.833 112 (74.7) 67 (69.1) 0.001 

n (%): DLB 14 (7.1) 68 (27.5) <0.001 38 (25.3) 30 (30.9) 0.332 

Age: All 66.3 (7.2) 71.0 (7.7) <0.001 70.5 (7.7) 71.7 (7.5) 0.249 

Age: iRBD 65.8 (7.1) 68.5 (6.5) <0.001 68 (6.3) 69.2 (6.8) 0.235 

Age: DLB 72.7 (5.7) 77.6 (6.3) <0.001 78 (6.7) 77.2 (5.8) 0.577 

% male 83.8 83.8 0.960 82.7 85.6 0.611 

Stagec (SD): All 0 (0) 4.8 (4.7) <0.001 4.5 (4.8) 5.3 (4.6) 0.209 

Stagec (SD): iRBD 0 (0) 3.6 (2.9) <0.001 3.2 (2.1) 4.3 (3.9) 0.043 

Stagec (SD): DLB 0 (0) 7.9 (6.7) <0.001 8.2 (7.7) 7.5 (5.4) 0.630 

Clinical variables       

MDS-UPDRS-III (SD): All 6.5 (7.8) 14.6 (16.4) <0.001 15.6 (18.2) 13.2 (13.1) 0.236 

MDS-UPDRS-III (SD): iRBD 5.1 (4.7) 7.1 (6.3) <0.001 7.1 (6.5) 7.0 (5.9) 0.932 

MDS-UPDRS-III (SD): DLB 25.2 (14.2) 33.5 (18.6) 0.073 38.7 (19.9) 26.9 (14.5) 0.006 

MoCA (SD): All 25.6 (3.5) 22.5 (6.3) <0.001 22.5 (6.7) 22.5 (5.8) 0.955 

MoCA (SD): iRBD 26.1 (2.8) 25.4 (3.2) 0.040 25.4 (3.3) 25.5 (2.9) 0.855 

MoCA (SD): DLB 17.7 (5.1) 13.8 (5.4) 0.048 12.9 (5.9) 15.0 (4.4) 0.112 

% MCI: iRBDd 35.6 46.3 0.041 50.0% 48.5% 0.649 

Statistical differences were calculated using unpaired t-tests for continuous variables and chi-
squared test for categorical variables. 
aNon-classifiable group versus classifiable group. 
bCortical-first subtype versus subcortical-first subtype. 
cStage refers to SuStaIn stage. 
dMCI as defined by ≤ 25/30 on MoCA; all DLB patients met criteria for dementia. 
 
DLB = dementia with Lewy bodies; iRBD = idiopathic/isolated REM sleep behaviour disorder; 
MoCA = Montreal Cognitive Assessment; MCI = mild cognitive impairment; MDS-UPDRS-III = 
Movement Disorders Society – Unified Parkinson’s Disease Rating Scale, Part III; MoCA = 
Montreal Cognitive Assessment; PD-pRBD = Parkinson’s disease with possible REM sleep 
behaviour disorder; SD = standard deviation; SuStaIn = Subtype and Staging Inference.  
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Table 2: Comparison of clinical variables and time to phenoconversion by SuStaIn subtype 
and stage 

 SuStaIn subtype SuStaIn stage 

 Beta estimate p-value Beta estimate p-value 

Clinical variables     

MDS-UPDRS-III -5.03 0.011 0.69 0.003 

MoCA 1.06 0.144 -0.35 <0.001 

Linear regression model of variable ∼ stage + subtype + age + sex + probability of subtype. 
 
iRBD = idiopathic/isolated REM sleep behaviour disorder; MoCA = Montreal Cognitive 
Assessment; MDS-UPDRS-III = Movement Disorders Society – Unified Parkinson’s Disease 
Rating Scale, Part III; SD = standard deviation; SuStaIn = Subtype and Staging Inference. 
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Figure 1: Overview of study design, data processing, and subtype modelling. 

 

(A) 1,134 participants were recruited, with 171 participants excluded after quality control. (B) T1-
weighted MRI scans underwent cortical reconstruction, volumetric segmentation, multi-centre 
harmonization, z-score normalization, and disease progression modelling using the SuStaIn 
algorithm. (C) SuStaIn identified two distinct subtypes of brain atrophy progression, each with 
unique spatiotemporal patterns and stages of disease. 
 
DLB = dementia with Lewy bodies; iRBD = idiopathic/isolated REM sleep behaviour disorder; 
QC = quality control; ROI = region of interest. 
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Figure 2: SuStaIn identified a two-subtype model as being the best representation of brain 
atrophy progression in patients.

 

(A) CVIC across 10-fold cross-validation of left-out individuals; lower CVIC represents better 
model fit. (B) Distribution of subtypes across SuStaIn stages. (C) The assignability of disease 
subtype, operationalized as the distance from the top or bottom axis, which represents the 
maximum probability (100%) of that subtype. (D) SuStaIn identified two unique subtypes of brain 
atrophy progression. At each stage, the colour in each region indicates the level of severity of 
atrophy, with grey representing unaffected regions, red mildly affected regions (z-score of -1), 
magenta moderately affected regions (z-score of -2), and blue severely affected regions (z-score of 
-3 or more). Brainstem atrophy begins at approximately stage 6 in the subcortical-first subtype (not 
shown).  

CVIC: cross-validation information criterion; CVS: cross-validation similarity; DLB = dementia 
with Lewy bodies; iRBD = idiopathic/isolated REM sleep behaviour disorder; SuStaIn = Subtype 
and Staging Inference. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2024. ; https://doi.org/10.1101/2024.09.05.24313131doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.05.24313131
http://creativecommons.org/licenses/by-nc-nd/4.0/


45 
 

Figure 3: Progression of cortical and subcortical atrophy by subtype and stage in iRBD.  

 

The progression of atrophy in cortical regions (A) and subcortical regions (B) used in the SuStaIn 
modelling in classifiable iRBD patients. 

iRBD = idiopathic/isolated REM sleep behaviour disorder. 
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Figure 4: Progression of clinical variables by SuStaIn stage.  

 

Higher SuStaIn stages was associated with worse clinical scores on MDS-UPDRS-III (A) and 
MoCA (B) in iRBD and DLB patients.  
 
DLB = dementia with Lewy bodies; iRBD = idiopathic/isolated REM sleep behaviour disorder; 
MoCA = Montreal Cognitive Assessment; MDS-UPDRS-III = Movement Disorders Society – 
Unified Parkinson’s Disease Rating Scale, Part III; SD = standard deviation. 
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Figure 5: Phenoconversion risk (calculated from the logistic regression predicting 
phenoconversion) differs in iRBD patients based on SuStaIn subtype and stage.  

 

iRBD patients classified in the subcortical-first subtype had a stronger likelihood of 
phenoconverting to overt disease at earlier stages (and less in later stages as diagnosis was more 
likely to occur earlier), whereas iRBD patients classified in the cortical-first subtype had a stronger 
likelihood of phenoconversion over the long term.  

iRBD = idiopathic/isolated REM sleep behaviour disorder; SuStaIn = Subtype and Staging 
Inference. 
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Figure 6: Hypothetical schematic representing the pathways of evolution of brain atrophy 
progression in iRBD, as simulated by SuStaIn.  

 

 

In this model, the subcortical-first subtype is associated with earlier phenoconversion to 
parkinsonism, possibly due to initial involvement of the basal ganglia structures, with the 
development of dementia only at later stages of disease. By contrast, the cortical-first subtype is 
associated with phenoconversion only at later stages of disease progression. This model suggests 
that the cortical-first subtype is more closely related to what is classically known as DLB (i.e., 
initial cortical involvement followed by subcortical involvement, with a long-term risk of 
dementia), whereas the subcortical-first subtype is more closely related to PD with dementia (i.e., 
initial subcortical involvement followed by cortical involvement, with earlier phenoconversion to 
PD and an increased long-term risk of dementia).    

DLB = dementia with Lewy bodies; iRBD = idiopathic/isolated REM sleep behaviour disorder; 
PD = Parkinson’s disease. 
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