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Abstract 
Second-generation antipsychotics (SGAs) are widely used to treat schizophrenia (SCZ), 

but they often induce metabolic side eƯects, including dyslipidemia and obesity, posing 

significant clinical challenges. While genetic factors are believed to contribute to the 

variability of these side eƯects, pharmacogenetic studies remain limited. This study 

aimed to identify genetic variants associated with SGA-induced lipid and BMI changes in 

a Chinese SCZ cohort using genome-wide association studies (GWASs). A naturalistic 

longitudinal cohort of Chinese SCZ patients receiving SGAs was followed for up to 18.7 

years. We analyzed the patients' genotypes (N=669), lipid profiles and BMI, utilizing 19 

316 prescription records and 3 917 to 7 596 metabolic measurements per outcome. 

Linear mixed models were used to estimate the random eƯects of SGAs on lipid profiles 

and BMI changes for each patient. GWAS and gene set analyses were conducted with 

false discovery rate (FDR) correction. Two genome-wide significant SNPs were identified 

under an additive genetic model: rs6532055 in ABCG2 (olanzapine-induced LDL changes) 

and rs2644520 near SORCS1 (aripiprazole-induced triglyceride changes). Three 

additional SNPs achieved genome-wide significance under non-additive models: 

rs115843863 near UPP2 (clozapine-induced HDL changes), rs2514895 near KIRREL3 

(paliperidone-induced LDL changes), and rs188405603 in SLC2A9 (quetiapine-induced 

triglyceride changes). Gene-based analysis revealed six genome-wide significant 

(p<2.73e-06, Bonferroni correction) genes: ABCG2, APOA5, ZPR1, GCNT4, MAST2, and 

CRTAC1. Four gene sets were significantly associated with SGA-induced metabolic side 

eƯects. This pharmacogenetic GWAS identified several genetic variants associated with 

metabolic side eƯects of seven SGAs, potentially informing personalized treatment 

strategies to minimize metabolic risk in SCZ patients. 
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1. Introduction 
Schizophrenia (SCZ) is a severe, chronic mental illness with high heritability and a lifetime 

prevalence of approximately 1%. The global burden of SCZ has been increasing, with the 

incidence increasing by 2% annually between 2000 and 20191-3. Cardiovascular disease 

(CVD) is the leading cause of mortality in SCZ patients4, and psychosis itself is also a 

recognized risk factor for dyslipidemia and obesity5. Moreover, second-generation 

antipsychotics (SGAs), the mainstream treatment for SCZ, can adversely aƯect patients’ 

lipid profiles, other metabolic parameters, and body mass index (BMI)6.  

Interestingly, the propensity to develop these metabolic side eƯects varies considerably 

among individuals. Twin and sibling studies have demonstrated that such interindividual 

variability may be largely attributable to genetic diƯerences7, 8. However, the underlying 

genetic mechanisms remain poorly understood. 

Pharmacogenetics (PGx) examines how genetic variations aƯect drug metabolism and 

response, potentially enabling personalized treatment plans with better eƯicacy and 

fewer side eƯects. Over the past two decades, most PGx studies on SGA-induced 

metabolic side eƯects have employed candidate gene approaches, focusing primarily on 

dopamine and serotonin receptor-related genes9, 10. Additionally, variants in cytochrome 

P450 genes (CYP1A2, CYP2C19, CYP2D6 and CYP3A4) have been reported to be 

associated with antipsychotic serum concentrations11, 12. The advent of genome-wide 

association studies (GWASs) has largely overcome the limitations of candidate gene 

approaches, uncovering more variants and genes associated with antipsychotic 

response13-17. However, the majority of previous PGx studies have focused mainly on 

treatment response rather than the metabolic side eƯects of SGAs. 
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To date, only seven PGx GWASs have been conducted to investigate SGA-induced 

metabolic side eƯects18-24. All but one study focused exclusively on weight gain, with 

Adkins et al. (2010) investigating PGx on a variety of metabolic side eƯects across five 

SGAs and one typical antipsychotic18. Additionally, most studies focused on short-term 

outcomes, with the longest follow-up reported by Adkins et al. (18 months) 18. 

Nevertheless, the work of Adkins et al. has several limitations, as acknowledged by the 

original authors18. For example, most participants had prior experience with 

antipsychotics, and many were concurrently taking other medications, such as 

antidepressants and mood stabilizers, which could potentially influence the results. 

Notably, the subjects had received, on average, 14.3 years of antipsychotic medications 

at baseline. Moreover, DNA collection was conducted after the clinical trial, involving 

only a subset of participants (51%) who exhibited lower symptom severity and reduced 

rates of drug and alcohol dependence, potentially introducing bias. With respect to 

GWAS analysis, Adkins et al. did not employ imputation, which may limit the ability to 

detect true genetic associations. 

To address this knowledge gap, our PGx study investigated lipid and BMI changes induced 

by seven SGAs: olanzapine (OZP), clozapine (CZP), quetiapine (QUE), risperidone (RIS), 

aripiprazole (ARI), amisulpride (AMI) and paliperidone (PAL). We focused on BMI and four 

lipid measurements, including total cholesterol (TC), high-density cholesterol (HDL), 

low-density cholesterol (LDL) and triglycerides (TG), as outcomes. Compared with 

Adkins et al.’s previous study which followed patients for 1.5 years, we utilized a 

longitudinal cohort with a longer follow-up of up to 5.7 years (median), and our 

naturalistic dataset had a greater mean number of metabolic measures per subject. The 

proportion of SGA-naïve patients was also markedly greater at ~63%. Furthermore, the 
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homogeneity of our Chinese cohort, which was recruited from Hong Kong, China, 

combined with imputed genotypes based on the ChinaMAP reference panel, enhanced 

the statistical power of GWAS to detect true signals.  

Taken together, this sophisticated approach combined with a long follow-up duration and 

comprehensive medication history and metabolic measures. We aimed to identify novel 

genetic variants associated with SGA-induced metabolic side eƯects. Our findings 

provide insights into the biological mechanism underlying SGA-induced lipid and BMI 

changes, potentially contributing to more personalized and eƯective treatments for SCZ 

patients. 

2. Subjects and Methods 

2.1 Study population and data collection 

We recruited SCZ patients from an early psychosis intervention clinic at Castle Peak 

Hospital Hong Kong between 2009 and 202125. The inclusion criteria were as follows: (1) 

aged ≥18 years, (2) Chinese ethnicity, (3) ICD-10 diagnosis of SCZ or schizoaƯective 

disorder, (4) treatment with SGAs, and (5) at least one post-SGA measurement of fasting 

lipids and/or BMI. We excluded patients with preexisting metabolic disorders or those 

lost to psychiatric follow-up as of March 2021.  

From 767 eligible patients, we extracted complete medication records, lipid profiles and 

BMI measurements from initial service contact to the study endpoint. Following local 

guidelines for monitoring SGA side eƯects, patients received baseline measures of 

fasting lipid profiles and BMI before SGA initiation, with annual follow-up measurements 
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while on SGAs. Electronic health records documented the type and dosage of all 

psychotropic and concomitant medications, including antidepressants and lipid-

lowering drugs.  

2.2 Genotyping and imputation 

Blood samples from patients were genotyped using the Illumina Asian Screening Array-

24 v1.0. Quality control was performed using PLINK 1.9p, removing genotypes and 

subjects based on missing data (missing rate > 10%), Hardy‒Weinberg equilibrium (p < 

1e-06), and relatedness (IBS distance > 0.25). No ethnic outliers were identified through 

principal component analysis. 

The genome coordinates were lifted from GRCh37 to GRCh38 using CrossMap v0.6.4. 

Haplotype phasing and genotype imputation were conducted using Eagle2 and 

Minimac4, respectively26, 27, with the ChinaMAP phase 1.v1 reference panel (59 010 860 

sites from 10 155 Chinese individuals)28. This large, ancestrally matched reference panel 

improved imputation accuracy. The imputed SNPs were removed based on imputation 

quality (INFO score  0.3) and minor allele count (MAC  10). The final dataset comprised 

6 992 805 high-quality imputed SNPs. 

2.3 Data preprocessing and variable selection 

Full GWAS data were available for 669 SCZ patients with 19 316 prescription records 

within 3 months of metabolic measurement. We analyzed TC, HDL, LDL, and TG (all in 

mmol/L), and BMI (kg/m2) separately. Outliers exceeding six standard deviations from the 

group mean were removed to avoid a biased eƯect estimation. As a result, the final 
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analysis included 4 048 TC, 3 917 HDL, 4 035 LDL, 4 034 TG, and 7 596 BMI records. We 

applied natural log transformation to the data prior to modeling. 

We selected seven SGAs that had been prescribed to at least 30 patients in our sample, 

namely CZP, OZP, ARI, AMI, PAL, RIS, and QUE (Table 1). The choices of these SGAs, 

which were taken by a substantial number of subjects, allowed more robust models to 

be constructed. Long-acting injectable and oral formulations were analyzed equally, 

after dose conversion using the standard method29. Given that some non-SGA 

psychotropics and statins (lipid-lowering drugs) are commonly prescribed, and might 

influence patients’ lipid profiles and BMI, we accounted for these concomitant 

medications (i.e., haloperidol, valproate, lithium, metformin, simvastatin, and 

atorvastatin) by including them as covariates in our model, as suggested by prior 

studies30-33. We also included daily drug dosage (mg) and treatment duration (month) as 

random-eƯect covariates, while age, gender and years of education were entered as 

fixed-eƯect covariates. 

2.4 Random-eƯect estimation for SGA-induced lipid/BMI changes 

We used linear mixed models (LMMs) to estimate the random eƯects (random slope) of 

SGAs on lipid/BMI changes. The random eƯects quantified how each patient’s lipid/BMI 

changes deviated from the cohort’s mean, serving as a proxy outcome measure for the 

severity of the metabolic side eƯects of each patient. A similar approach has been 

employed in several PGx GWASs18, 34, 35. In addition, we employed an advanced statistical 

approach to disentangle the within-subject estimates from the between-subject 

estimates of SGA random eƯects 36-38. By focusing on the within-subject eƯects, we can 
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more accurately estimate the metabolic side eƯects of SGAs by accounting for 

unmeasured time-invariant confounders39.   

For each of the seven SGAs (plus one additional model of ‘any SGA use’), five random-

eƯect LMMs were built with corresponding lipid/BMI measures as outcomes, resulting in 

40 models. Random eƯect coeƯicients were extracted for patients prescribed the 

corresponding SGAs from these 40 models with their specifications listed in 

Supplementary Text 1. Following other PGx studies18, 34, 35, the random-eƯect 

coeƯicients were the primary outcome of the subsequent GWAS and MAGMA analyses, 

with sample sizes varying across models (Table 1). Details concerning how we identified 

the best-fitting random-eƯect LMM models and estimated the within-subject dosage of 

the SGAs have been described elsewhere6, 39. 

We applied rank-based inverse normal transformation (INT) to the random-eƯect 

coeƯicients40 to ensure a normal distribution of the outcomes (and residuals) and reduce 

outlier eƯects (Supplementary Figure S1).  

2.5 Genome-wide association study (GWAS) analysis 

GWAS association tests between SNP dosages and SGA-induced lipid/BMI changes were 

conducted using PLINK 2.00a41, with gender and the top ten genetic principal 

components as covariates. The imputed genotypes were converted to PLINK 2 binary 

formats to retain dosage information, which can improve the statistical power of the 

association tests. In our primary analyses, we tested additive genetic models using allelic 

dosage as the predictor. To capture variants with non-additive genetic eƯects as advised 

by Guindo-Martínez, Amela 42, we also performed additional analyses based on dominant, 

recessive and genotypic (2 degrees of freedom) models.  
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Associations with a p-value (p) < 5e-08 were considered genome-wide (GW) significant43, 

whereas those with p ≥ 5e-08 but a false discovery rate (FDR) < 0.2 were considered 

‘suggestive’ associations. A similar approach was also employed by Adkins et al. in their 

GWAS of the metabolic side eƯects of antipsychotics18. 

2.6 MAGMA analyses 

MAGMA is a powerful approach for testing the associations between a phenotype and 

SNPs aggregated within an entire gene43. We performed gene and gene-set association 

tests between the imputed genotypes and 40 sets of random-eƯect coeƯicients of SGA-

induced lipid/BMI changes using MAGMA v1.10. To leverage the strengths and mitigate 

the weaknesses of each MAGMA model, we built three predefined MAGMA models, 

including (1) principal component regression, (2) the SNP-wise mean, and (3) the SNP-

wise top 1. MAGMA then merged the resulting gene p-values into a single aggregated p-

value. This approach has increased the statistical power and sensitivity across various 

genetic architectures43. Such MAGMA models have been detailed in the MAGMA manual. 

2.7 Post-GWAS annotation 

LD-clumping was performed using PLINK to identify top SNPs within linkage 

disequilibrium clusters (with clump-p1=5e-05, clump-p2=0.05, r2=0.6 and window 

size=250 kb). The top SNPs were annotated using Ensembl Variant EƯect Predictor (VEP) 

v111.0 with VEP cache version 111_GRCh3844, including gene information, nearest gene, 

location, and eƯect allele frequency in East Asian and European populations. Previous 

studies reporting GW-significant SNPs within the same genes were annotated based on 

the GWAS Catalog and Open Target Platform45, 46. To uncover potential hidden 
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associations between the identified genes and annotated enriched terms across 

multiple datasets and resources, integrative gene set enrichment analyses and 

visualisation were conducted using the Enrichr-KG platform, incorporating four gene-set 

libraries47: GWAS Catalog (2019), GO_biological Process (2021), DisGeNET, and Human 

Phenotype Ontology. For each input gene set, the top five enriched terms per library with 

an FDR < 0.05 were considered significant. A subnetwork linking the input genes to these 

enriched terms was visualized using the Enrichr-KG platform. 

2.8 Fine-mapping with the SuSiE model 

To identify potential causal SNPs among the GW-significant findings, we employed the 

SuSiE fine-mapping approach48. This method is built on top of variable selection in a 

linear regression model, fitted by a Bayesian analog of stepwise selection methods. This 

method reports as many groups of SNPs (credible sets) as the data support, each with 

the minimum number of SNPs possible. For each credible set, it estimates the posterior 

distribution of the SNPs’ eƯect and calculates marginal posterior inclusion probabilities 

(PIPs) to assess the strength of evidence for each SNP being causal. The region (±1 000 

kb) around each GW-significant SNP was taken for fine-mapping using the LD reference 

panel constructed from the subject’s imputed genotypes. The SuSiE model fit was based 

on the p-value of the SNPs, with the maximum number of nonzero eƯects (L) set to 11, 

where default values were used for the remaining parameters. The casual SNPs of the 

best credible sets were visualized via region plots. 
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2.9 Multiple testing correction 

We employed the FDR approach to balance the risk of false discoveries against potential 

true findings. We reported the FDR separately for each analysis, which controlled the 

expected proportion of false discoveries among rejected null hypotheses49. In contrast to 

Bonferroni correction, the FDR is much less aƯected by the number of tests, because the 

FDR controls the proportion (instead of the number) of false discoveries50, 51. Intuitively, 

when controlling the FDR at 0.2 for example, at least 80% of the significant findings would 

be “true discoveries” on average. 

Since the FDR controls the proportion of false discoveries, if the FDR is performed 

separately for each set of analyses, the overall FDR is still generally controlled, especially 

when the number of hypothesis tests is large, as shown by Efron 51. 

2.10 Ethics statement 

This study adhered to the ethical principles of the Helsinki Declaration and relevant 

national and institutional guidelines for human research. Ethical approval was obtained 

from the New Territories West Cluster Ethics Committee (Approval Numbers: 

NTWC/CREC/823/10 and NTWC/CREC/1293/14) and the Joint Chinese University of 

Hong Kong-New Territories East Cluster Clinical Research Ethics Committee (Approval 

Number: 2016.559). All participants provided written informed consent. The software 

and tools used in this study are listed in Supplementary Text 2. 
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3. Results 

3.1 Sample characteristics 

Our final dataset comprised 625 subjects with lipid profile data and 646 subjects with 

BMI data after the seven SGAs prescribed to at least 30 patients were selected. 

Supplementary Table S1 presents the gender ratio, mean age at the first clinical visit, 

and mean years of follow-up. The longitudinal cohort had a maximum follow-up period of 

18.7 years, with a mean follow-ups of 5.7 years (SD = 3.3) for the lipid cohort and 5.5 years 

(SD = 3.2) for the BMI cohort. 

We conducted 40 separate GWASs to examine the eƯects of SNPs on SGA-induced 

changes in lipids (TC, HDL, LDL, TG) and BMI for seven specific SGAs and any SGA use. 

The individual GWAS sample sizes ranged from 43 to 567 patients, with mean 

prescriptions per patient ranging from 1.8 (SD=1.7) to 9.3 (SD=8.8) (Table 1). 

3.2 GWAS results  

3.2.1 Primary analyses: Additive genetic model 

In our main GWAS analyses using an additive genetic model, two SNPs reached GW 

significance (p < 5e-08) (Table 2), whereas eight SNPs achieved an FDR of < 0.2 

(Supplementary Table S2). The top SNP, rs6532055 (p = 3.13e-09, FDR = 0.022), was 

associated with olanzapine-induced LDL changes. This SNP is located within an intron of 

the ABCG2 gene, which is part of the ATP-binding cassette (ABC) family. The second GW-

significant SNP, rs2644520 (p = 3.06e-08, FDR = 0.122), was associated with aripiprazole-
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induced TG changes and located in an intergenic region near SORCS1, a gene encoding 

a member of vacuolar protein sorting 10 (VPS10) domain-containing receptor proteins.  

The quantile–quantile plots (QQ) plots for the GWASs with GW-significant SNPs are 

shown at the bottom of Table 2, and the QQ plots of the GWASs with SNPs achieving an 

FDR < 0.2 are shown in Supplementary Figure S2. The QQ plots demonstrate that the p 

value distributions closely matched the expected p-values under the null hypothesis, 

with genomic control inflation factor (λGC at the median) ranging from 0.97 to 1.01 for the 

GWASs harboring GW-significant SNPs and ranging from 0.94 to 1.01 for the GWASs 

harboring SNPs with FDR < 0.2, indicating that genomic inflation is unlikely to be a 

concern. 

3.2.2 Additional analyses with non-additive models 

Further analyses using dominant, recessive and genotypic models revealed three 

additional GW-significant SNPs (Table 2). The top SNP in the genotypic model, 

rs115843863 (p = 2.05e-08, FDR = 0.0287), was associated with clozapine-induced HDL 

changes. The SNP is located in an intergenic region near UPP2, a gene involved in dCMP 

and uridine catabolic processes. Another GW-significant SNP in the genotypic model, 

rs2514895 (p = 4.96e-09, FDR = 0.004), was associated with paliperidone-induced LDL 

changes and is located near KIRREL3, a gene encoding a nephrin-like protein expressed 

in the brain. The last GW-significant SNP rs188405603 (p = 3.52e-08, FDR = 0.065) under 

the dominant model was associated with quetiapine-induced TG changes and is located 

within an intron of SLC2A9, a gene encoding a glucose transporter. 
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3.2.3 Suggestive associations with FDR < 0.2 

Eight SNPs achieved an FDR < 0.2 in the primary GWAS analyses under an additive model 

(Supplementary Table S2). Notably, four SNPs, namely rs7412 (FDR = 0.182), rs2384157 

(FDR = 0.195), rs74625905 (FDR = 0.195) and rs56349742 (FDR = 0.195), were associated 

with olanzapine-induced LDL changes. The well-known LDL-altering SNP rs7412 in APOE 

is positively associated with olanzapine-induced LDL changes. Four SNPs, namely 

rs2358259 (FDR = 0.123), rs10174314 (FDR = 0.123), rs117416034 (FDR = 0.123), and 

rs6424242 (FDR = 0.186), were associated with quetiapine-induced HDL changes. In 

particular, rs6424242 is located in an upstream region of the SIPA1L2 gene, which has 

been previously linked to obesity-related traits, response to alcohol consumption, and 

neuroticism based on Open Targets and the GWAS Catalog52-54. 

Another 17 SNPs with FDRs < 0.2 were identified in the additional GWAS analyses under 

non-additive models. These SNPs are related to the metabolic side eƯects of clozapine, 

olanzapine, risperidone, and paliperidone (Supplementary Table S3). The associated 

genes are implicated in psychiatric disorders, lipid or BMI measurements, or drug 

responses, including BICD1 and CSMD1 (olanzapine-induced TC changes); GADL1 

(risperidone-induced BMI changes); SIPA1L2 (quetiapine-induced HDL changes); and 

RAB38, CDH23, AMPH, FOXN3, APBB2, C1R and LRCOL1 (paliperidone-induced LDL 

changes). Additionally, GWAS analyses were conducted on the heterozygous-only 

(HETONLY) genetic model, revealing two GW-significant SNPs and six SNPs with 

suggestive evidence (FDR < 0.2). The detailed results can be found in Supplementary 

Table S4, and an overview of all identified genes from diƯerent types of analyses is 

provided in Table 3. 
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3.2.4 Fine-mapping results 

The fine-mapping results for the five GW-significant SNPs are visualized in region plots 

(Figure 1). The top GW-significant SNPs associated with olanzapine-induced LDL 

changes and aripiprazole-induced TG changes were proposed to be causal (PIP = 1.0). 

However, the remaining three top GW-significant SNPs were not considered causal, as 

shown by their low PIP values. Another SNP, rs73968514 (PIP = 1.0), was identified as 

potentially causal for clozapine-induced HDL changes (PIP = 1.0), replacing the original 

GWAS hit rs115843863. Both rs2441693 and another SNP rs2441693, with the same p-

value, were identified as potentially causal for paliperidone-induced LDL eƯects (PIP = 

0.5 each). Finally, instead of the observed GWAS hit rs188405603, fine-mapping evidence 

suggested that rs77140241 was the real causal variant for quetiapine-induced TG 

changes (PIP = 1.0, p = 9.5e-08, FDR = 0.065). 

3.3 MAGMA analysis results 

3.3.1 Gene-level analysis 

Six genes reached the GW significance threshold of p < 2.73e-06 after Bonferroni 

correction (α = 0.05/18 288 genes tested) in the gene-level analysis(Table 4), with their 

corresponding QQ plots from the gene-level analysis shown in Supplementary Figure S3. 

All GW-significant genes also had an FDR < 0.05. Diseases or traits associated with these 

genes were annotated using the Open Target Platform55, which we also highlighted here. 

The top gene ABCG2 (p = 8.26e-09, FDR = 1.51e-04) was associated with olanzapine-

induced LDL changes; this gene is related to gout, urate measurement, and BMI based 

on information from the Open Target Platform. APOA5 (p = 3.45e-08, FDR = 6.31e-04) and 
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ZPR1 (p = 1.80e-06, FDR = 0.016) were associated with SGA-induced TG changes; these 

genes were related to TG, HDL, and LDL levels and metabolic syndrome. GCNT4 (p = 

3.17e-07, FDR = 5.12e-03) and MAST2 (p = 4.79e-07, FDR = 8.62e-03) were associated 

with quetiapine-induced TG and risperidone-induced LDL changes respectively. CRTAC1 

(p = 2.273e-06, FDR = 0.042) was associated with olanzapine-induced HDL changes. 

Based on the evidence from the Open Target Platform55, GCNT4 and MAST2 are related to 

neurodegenerative disease and measurements of erythrocyte count, BMI, LDL and TC56-

60; whereas CRTAC1 is related to body fat percentage and measurements of HDL and TG60, 

61. 

Gene set enrichment analysis, incorporating these six significant genes along with those 

associated with the five GW-significant SNPs identified in the primary GWAS analyses, 

was performed using the Enrichr-KG platform. The subnetwork of gene and enriched 

terms are illustrated in Figure 2, with corresponding enrichment p-values and FDRs listed 

in Supplementary Table S5. 

3.3.2 Gene set analysis 

Fourteen gene sets were nominally associated with SGA-induced metabolic changes. 

After FDR correction (FDR < 0.05), four gene sets remained significant (Supplementary 

Table S6). The top gene set, skeletal muscle satellite cell diƯerentiation (pBonferroni = 1.29e-

05, FDR = 4.4e-04), was associated with SGA-induced TG changes62. The mRNA editing 

(pBonferroni = 2.20e-05, FDR = 4.4e-04) gene set was associated with clozapine-induced LDL 

changes. The gene sets ER ubiquitin ligase complex (pBonferroni = 0.004, FDR = 0.04) and 

Saccadic smooth pursuit (pBonferroni = 0.004, FDR = 0.04) were associated with clozapine-

induced BMI and amisulpride-induced BMI changes respectively. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.24313052doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.04.24313052
http://creativecommons.org/licenses/by-nc-nd/4.0/


4. Discussion 

This study is one of the largest longitudinal PGx GWAS investigations, identifying the 

genetic variants associated with the lipid and BMI changes induced by seven commonly 

used SGAs in a Chinese SCZ cohort. Our investigation included 19 316 prescription 

records and 3 917 to 7 596 metabolic measurements for each outcome, with a median 

follow-up duration of 5.7 years (SD=3.3, max=18.7), surpassing the duration of 

comparable GWASs18, 20-22. The study design incorporates several key strengths that 

enhance the robustness and applicability of our findings. 

Notably, our cohort recruited from the early psychosis intervention clinic comprised a 

high proportion of antipsychotic-naïve patients (approximately 63%) at baseline; as such, 

confounding by previous medications was reduced and likely lower than many other 

comparable studies, including Adkins et al.18. Furthermore, our focus on a homogeneous 

ethnic Chinese sample provides valuable insights specific to this population, which has 

been underrepresented in previous studies. This is particularly important given the 

known diƯerences in allele frequency and LD patterns between East Asian (EAS) and 

European (EUR) populations63-66, as evidenced in Table 2.   

We employed a sophisticated analytical approach using within-subject random eƯects 

of SGA-induced lipid/BMI changes. This method substantially reduces the risk of 

confounding by indication/contraindication67, enabling a more accurate assessment of 

the SGA-induced metabolic side eƯects. To further mitigate potential confounding 

eƯects of other medications, we included lipid-lowering drugs as covariates in the GWAS 

phenotype estimations. Notably, the mean age of our cohort at the first clinical visit (28.3 
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years, SD = 9.8) was lower than that reported in a similar GWAS study (mean=40.9 years 

old, SD=11)18, reducing the influence of age-related metabolic changes on our findings. 

Our findings might have important clinical implications and contribute to understanding 

the biological mechanisms underlying SGA-induced metabolic changes. The 

interindividual variations in PGx may explain the high variability in CVD risk in SCZ 

patients taking SGAs. Notably, we identified several GW-significant SNPs (rs6532055 in 

ABCG2, rs2644520 near SORCS1, rs115843863 near UPP2, rs2514895 near KIRREL3, 

and rs1884050603 in SLC2A9) and several loci with suggestive evidence (FDR < 0.2). 

These discoveries may enable more accurate predictions of the risk of metabolic side 

eƯects and pave ways for future personalized prescriptions to patients.  

The top GW-significant SNP rs6532055 is located in ABCG2, which encodes a 

translocation protein involved in the eƯlux of antipsychotics across cellular membranes, 

including the blood‒brain barrier68, 69. Its association with olanzapine-induced LDL 

changes suggests a potential role in antipsychotic pharmacokinetics and lipid 

metabolism. Notably, ABCG2 has also been reported to be associated with the degree of 

LDL reduction in response to rosuvastatin70, 71.  

Another top gene identified was SORCS1 which was associated with aripiprazole-

induced triglyceride changes. SORCS1 encodes a member of the VPS10 domain-

containing receptor protein family and is strongly expressed in the central nervous 

system72. These receptors bind neuropeptides and facilitate intracellular traƯicking. 

SORCS1 has been implicated in insulin regulation and type 2 diabetes risk in both animal 

and clinical studies73-75. Notably, several studies have shown that increased TG levels are 

associated with increased type 2 diabetes risk and impaired fasting glucose76-78. Its role 
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in energy balance further supports its potential involvement in antipsychotic-induced 

metabolic alterations.79. 

In our additional analyses (Table 2), UPP2 was linked to clozapine-induced HDL changes 

which encode uridine phosphorylase 2. Notably, several studies have revealed an 

association between uridine metabolism with lipid metabolism and glucose 

homeostasis80-82. It has been demonstrated that increasing endogenous hepatic uridine 

levels by inhibiting uridine phosphorylase 2 may reduce drug-induced liver lipid 

accumulation82, 83, although long-term uridine consumption might promote liver lipid 

accumulation and exacerbate glucose intolerance82.  

KIRREL3 encodes a synaptic cell adhesion molecule essential for the formation of target-

specific synapses and is expressed in fetal and adult brain tissues. This gene was 

associated with paliperidone-induced LDL changes in our study and is known primarily 

for its role in neurological and cognitive disorders, neuroticism, and autism spectrum 

disorders84-87. While its role in lipid metabolism remains to be investigated, this finding 

suggests a potential novel link between neuronal function and metabolic regulation. 

SLC2A9 encodes glucose transporter 9 (GLUT9), a protein involved in reabsorbing or 

excreting urate and glucose in kidney proximal tubules. This gene has been strongly 

associated with uric acid levels and gout in numerous studies88-91. SLC2A9 was identified 

to be linked to TG changes in our sample; notably, studies have revealed a significant 

positive association between TG and urate levels92-94. Recently, a GWAS from Qatar 

revealed the association of SLC2A9 with LDL levels95.  

Additionally, we identified eight SNPs with suggestive evidence (FDR < 0.2) in our primary 

analyses under an additive model, including SNPs located in or near APOE, MBL2, MZT1, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.24313052doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.04.24313052
http://creativecommons.org/licenses/by-nc-nd/4.0/


LOC105373454, CDCA7, DDX1, CD34, and SIPA1L2 (Supplementary Table S2). Many of 

these genes are associated with lipid levels, diabetes, CVD, urate levels or other 

metabolic measurements based on data from the Open Target Platform45. These SNPs 

may also play a role in SGA-induced lipid/BMI changes, but further studies are needed. 

Similar evidence was found for the 17 suggestive SNPs (FDR < 0.2) identified in our 

additional analyses using non-additive genetic models (Supplementary Table S3). 

Our MAGMA gene-level analyses identified six GW-significant genes associated with 

SGA-induced lipid/BMI changes (Table 4). Notably, ABCG2 was identified via both GWAS 

and MAGMA analyses, providing further support for its potential role in olanzapine-

induced LDL changes. 

Our study has several limitations. First, only seven SGAs were included, although these 

are probably among the most commonly prescribed. Future research should aim to 

expand the scope to include a broader range of SGAs. Second, although our sample sizes 

(ranging from 43 to 307 participants) are relatively large compared with those of similar 

GWASs19-22, 96, a larger cohort would further increase the statistical power and robustness 

of our findings. Third, potential residual confounding can also be a problem aƯecting the 

estimation of the metabolic side eƯects of SGAs, which may in turn aƯect the estimation 

of the genetic influence on these side eƯects. While we have applied sophisticated 

methods such as within-subject random eƯects estimates and controlled for other 

concomitant medications, there may be unmeasured confounders that could impact our 

results. Finally, lifestyle factors such as diet, exercise, alcohol consumption and tobacco 

smoking were not measured and may be included in future studies. Despite these 

limitations, our study provides a solid foundation for future research in this critical area 
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of psychopharmacology. Addressing these limitations in subsequent investigations will 

further refine our understanding of the genetic basis of SGA-induced metabolic side 

eƯects. 

Our study provides valuable insights into the pharmacogenetics of SGA-induced 

metabolic changes in a Chinese SCZ cohort. The identified genetic markers not only 

enhance our understanding of the biological mechanisms underlying these metabolic 

changes but also hold promise for developing more tailored and safer treatment 

strategies for individuals with SCZ. However, further studies and replication are needed 

before these genetic findings can be applied in clinical practice. 
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Figure Legends 

Figure 1 Region plots of the five GW-significant SNPs fine-mapped via 

the R package suiseR. 

The fine-mapping results of the five GW-significant SNPs are visualized in the region plots 

above. The lead variant, marked in yellow, is the SNP with the lowest p values after the 

LD-clump, whereas the causal variant is marked by a red cross. Other SNPs are coloured 

according to their decreasing R-square values with the lead variant. The credible set 

containing SNP(s) nearest to the lead variant with the smallest p values is chosen as 

causal SNP(s). The subplot at the bottom in each region plot shows the PIP values for the 

SNPs in all creditable sets, with the causal SNPs in the optimum credible set outlined by 

a circle. 

 

Figure 2 Subnetwork of top genes linked to enriched terms 
 

This subnetwork illustrates the top five enriched terms (FDRs < 0.05) for each library, 

connected to the 11 genes significantly associated with the SGA-induced metabolic side 

eƯects, as identified through the primary GWAS and gene-level MAGMA analyses. 
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Table 1 Descriptive statistics of the second-generation antipsychotic prescription records in our cohort.

TC,LDL,HDL,TG 
(N=625)

BMI (N=646)
TC,LDL,HDL,TG 

(N=3525)
BMI 

(N=6640)
TC,LDL,HDL,TG 

(N=740)
BMI (N=759)

CLOZAPINE 119                       125                       551                      1,045          4.6 (2.8) 8.4 (10.1)
OLANZAPINE 230                       307                       760                      1,447          3.3 (2.6) 4.7 (4.5)
ARIPIPRAZOLE 238                       275                       728                      1,228          3.1 (2.2) 4.5 (4.3)
RISPERIDONE 116                       232                       209                      571              1.8 (1.7) 2.5 (2.5)
AMISULPRIDE 162                       216                       399                      766              2.5 (2.0) 3.5 (3.2)
QUETIAPINE 93                         105                       173                      313              1.9 (1.2) 3 (3.1)
PALIPERIDONE 43                         65                         95                        178              2.2 (1.8) 2.7 (2.3)
Any SGA use 553                       567                       2,591                   5,259          4.7 (2.9) 9.3 (8.8)

Second Generation 
Antipsychotics (SGAs)[1]

No. of subject with prescription Total no. of prescription Avg. no. of prescription per subject (SD)
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Table 2 The genome-wide significant SNPs (p < 5e-08) associated with the SGA-induced lipid level and BMI changes.

SGA Olanzapine Aripiprazole Clozapine Paliperidone Quetiapine
Phenotype LDL TG HDL LDL TG

Test model[1] Additive Additive Genotypic Genotypic Dominant
SNP rs6532055 rs2644520 rs115843863 rs2514895 rs188405603
Gene ABCG2 - - - SLC2A9
Nearest - SORCS1 UPP2 KIRREL3 -
Location Intron Intergene Intergene Intergene Intron
CHR 4 10 2 11 4
POS (GRCh38) 88197235 105919960 157988744 127240288 9973710
Effect Allele C G T T C
N 230 238 119 43 93
Effect AF 0.70 0.44 0.19 0.21 0.07
1KG AF (EAS) 0.73 0.45 0.20 0.29 0.08
1KG AF (EUR) 0.39 0.45 0.03 0.17 0.00
Imp. Rsq 0.73 0.99 0.90 0.97 0.62
Beta -0.622 0.510 NA NA 1.641
SE 0.101 0.089 NA NA 0.269
P-value 3.13E-09 3.06E-08 2.05E-08 4.96E-09 3.54E-08
FDR 0.022 0.122 0.029 0.004 0.065
λGC (50, 70, 90 
percentiles)

1.00, 1.00, 1.00 1.01, 1.01, 1.01 1.00, 1.01, 1.01 0.97, 0.99, 1.03 1.01, 1.01, 1.01

QQ Plot

Remark:

Abbreviation: CHR Chromosome, POS Position, SGA Second generation antipsychotics, SNP Single nucleotide polymorphism, AF allele 
frequency, 1KG 1000 Genomes project, "Imp. Rsq" Genotype imputation r-squared, λGC Genomic Control Inflation Factor

[1] Test model indicates the genetic model employed when conducting GWAS using PLINK2. For details, pls refer to the manual of the 
PLINK2.

Primary Analyses Additional analyses
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Table 3 Genes associated with the SGA-induced lipid/BMI changes in different type of analyses [1,2,3,4].
TC HDL LDL TG BMI

Clozapine

~C15orf39 [D] ~UPP2 [G, H]  

LINC00635 [G] 

LOC105375377 [G]

Olanzapine

~LOC124903233 [R] 

BICD1 [R]                  

CSMD1 [R]            

~UBE2E2 [R]

CRTAC1 ABCG2             
APOE            
~MBL2         
~MZT1 
LOC105373454 
ABCG2 

ENC1 [H]   

LOC105377858 [H]  

NOS3 [H]     

PCOLCE2 [H]       

ADARB2 [H]    

~TMEM87B [H]

Aripiprazole PLCG2 [H] ~SORCS1

Risperidone MAST2 CBSLR [R] GADL1 [R]

Amisulpride

Quetiapine

~CDCA7          ~DDX1            
~CD34          SIPA1L2

SLC2A9 [D]  

GCNT4

Paliperidone

~KIRREL3 [G]  

CDH23 [G,R]   

AMPH [R]    

RAB38 [G]   

~NFE2L3 [G]   

FOXN3 [G]         

C1R [G]    

LRCOL1 [G]

any SGA use
APOA5            
ZPR1

Remarks:
[1] Gene in red colour was identified by the primary analysis,
     Gene in black colour was identified by the additional analysis,
     Gene in blue colour was identified by the MAGMA analysis.
[2] Bold text: SNP-associated gene/Gene reaching genome-wide significant threshold (p < 5e-08), 
      Normal text: SNP-associated gene/Gene reaching suggestive evidence threshold (FDR < 0.2).
[3] ~Gene: SNP does not fall within the gene but it is located near the the gene.
[4] Superscript [D] Dominant, [R] Recessive [G]: genotypic [H]: Heterozygous indicate the genetic model being used in the 
GWAS analysis.
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Table 4 Significant gene associations with SGA-induced lipid level and BMI changes identified in MAGMA gene-level analyses (p < 2.73e-06)
SGA Trait Gene P-value FDR λGC Associated diseases (association scores: 0-1) from the Open Target Platform
Olanzapine LDL ABCG2 8.26E-09 1.51E-04 0.907 Gout(0.92), urate measurement(0.91), BMI(0.83), drug use measurement(0.76), neuroimaging measurment(0.76)
Any SGA use TG APOA5 3.45E-08 6.31E-04 0.925 TG measurement(0.77), HDL measurement(0.71)
Quetiapine TG GCNT4 3.17E-07 5.13E-03 0.961 Neurofibrillary tangles measurement(0.47), BMI(0.46), LDL measurement(0.46), TC measurement(0.45)
Risperidone LDL MAST2 4.79E-07 8.62E-03 0.934 Erythrocyte count(0.46), BMI(0.34), neurodegenerative disease(0.28)
Any SGA use TG ZPR1 1.80E-06 1.64E-02 0.925 TG measurement(0.82), HDL measurement(0.67), LDL measurement(0.67), metabolic syndrome(0.59)
Olanzapine HDL CRTAC1 2.27E-06 4.15E-02 0.934 Body fat percentage(0.82), HDL measurement(0.79), TG measurement(0.74)

Abbreviation: λGC Genomic control inflation factor
Remarks:
[1] The total number of genes involved in the MAGMA gene-level analysis is 18,288
[2] The significant p-value threshold after Bonferroni correction for multiple testing is 2.73e-06 (=0.05/18288)
[3] Associated disease scores were extracted from the genetic association column in the Open Target Platform.
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