Evaluating whole genome sequencing for rare diseases in newborn screening: evidence synthesis from a series of systematic reviews

Supplement 3

Included studies for Q2 (prevalence of genetic variants in those with biochemical or biochemical and clinical features of each condition)

Overview and characteristics of included studies for Q2 (prevalence of genetic variants in those with biochemical or biochemical and clinical features of each condition) of the review of five conditions including study aim, population, total population number in study, eligible population number for the review, study outcome and disease category of included population.

PDE

Reference	Study aim	Population	Total population N in study	Eligible population for review	Study outcome	Disease category of included population
Akiyama T, Hyodo Y, Hasegawa K, Oboshi T, Imai K, Ishihara N, et al. Pyridoxal in the Cerebrospinal Fluid May Be a Better Indicator of Vitamin B6-dependent Epilepsy Than Pyridoxal 5'- Phosphate. Pediatric neurology. 2020;113:33-41.	To demonstrate the biochemical characteristics of vitamin B6-dependent epilepsy, with a particular focus on pyridoxal 5'- phosphate and pyridoxal in the cerebrospinal fluid	Patients with PDE or PLPHP deficiency	9	7 patients with PDE	Variant frequency in ALDH7A1gene	Gene (ALDH7A1) positive PDE
Baumgart A, Spiczak Sv, Verhoeven-Duif NM, Moller RS, Boor R, Muhle H, et al. Atypical vitamin B6 deficiency: a rare cause of unexplained neonatal and infantile epilepsies. Journal of child neurology. 2014;29(5):704-7.	To assess the frequency of (ALDH7A1 and PNPO deficiencies) in unexplained infantile epilepsy	Patients with unexplained seizure disorders starting during the neonatal or infantile period	113	113	Variant frequency in ALDH7A1 gene	Gene (ALDH7A1) positive PDE

Bennett CL, Chen Y, Hahn S, Glass IA, Gospe SM, Jr. Prevalence of ALDH7A1 mutations in 18 North American pyridoxine- dependent seizure (PDS) patients. Epilepsia. 2009;50(5):1167-75.	To evaluate the hypothesis that the prevalence of ALDH7A1 mutations is discordant between early (neonatal) and later-onset cases of PDS	Patients with pyridoxine- dependent seizure	18	18	Variant frequency in ALDH7A1 gene	Clinical-biochemical PDE
Boonsimma P, Ittiwut C, Kamolvisit W, Ittiwut R, Chetruengchai W, Phokaew C, et al. Exome sequencing as first-tier genetic testing in infantile- onset pharmacoresistant epilepsy: diagnostic yield and treatment impact. European journal of human genetics : EJHG. 2023;31(2):179-87.	To identify yield and treatment implications of exome sequencing (ES) as first-tier genetic testing for infantile-onset pharmacoresistant epilepsy	Children with infantile-onset (age <= 12 months) pharmacoresistant epilepsy	103	103	Variant frequency in ALDH7A1 gene	Childhood onset pharmaco- resistant seizures
Costain G, Cordeiro D, Matviychuk D, Mercimek-Andrews S. Clinical Application of	To identify underlying genetic diagnoses	Children seen in a single Paediatric Epilepsy Genetics Clinic	197	197	Variant frequency in ALDH7A1 gene	Childhood onset pharmaco- resistant seizures

Targeted Next-						
Generation						
Sequencing Panels						
and Whole Exome						
Sequencing in						
Childhood Epilepsy.						
Neuroscience.						
2019;418:291-310.						
Coughlin CR, II, van	To report the developmental	Patients who were	6	6	Variant frequency	Gene (ALDH7A1) positive PDE
Karnebeek CDM, Al-	and biochemical outcome of	genetically			in ALDH7A1 gene	
Hertani W, Shuen AY,	six subjects who were treated	positive for PDE				
Jaggumantri S, Jack	with this triple therapy					
RM, et al. Triple						
therapy with						
pyridoxine, arginine						
supplementation						
and dietary lysine						
restriction in						
pyridoxine-						
dependent epilepsy:						
Neurodevelopmental						
outcome. Mol Genet						
Metab. 2015;116(1-						
2):35-43.						
Costain G, Cordeiro	To provide a comprehensive	Patients with PDE-	185	185	Variant frequency	Gene (ALDH7A1) positive PDE
D, Matviychuk D,	overview of ALDH7A1	ALDH7A1			in ALDH7A1 gene	
Mercimek-Andrews	mutations that cause PDE					
S. Clinical						
Application of						
Targeted Next-						
Generation						
Sequencing Panels						
and Whole Exome						

Sequencing in Childhood Epilepsy. Neuroscience. 2019;418:291-310.						
Gallagher RC, Van Hove JLK, Scharer G, Hyland K, Plecko B, Waters PJ, et al. Folinic acid- responsive seizures are identical to pyridoxine- dependent epilepsy. Annals of neurology. 2009;65(5):550-6.	To perform genetic and biochemical testing and to determine the relation between folinic acid- responsive seizures and pyridoxine-dependent epilepsy	Patients with Folinic acid– responsive seizures and pyridoxine- dependent epilepsy	9	9	Variant frequency in ALDH7A1 gene	Clinical-biochemical PDE
Hu C, Liu D, Luo T, Wang Y, Liu Z. Phenotypic spectrum and long- term outcome of children with genetic early-infantile-onset developmental and epileptic encephalopathy. Epileptic Disorders. 2022;24(2):343-52.	To explore the clinical phenotype and long-term outcome in children with genetic early-infantile-onset DEEs (developmental and epileptic encephalopathy)	Patients with early onset pharmacoresistant seizures and developmental delay	470	470	Variant frequency in ALDH7A1 gene	Childhood onset pharmaco- resistant seizures
Jamali A, Kristensen E, Tangeraas T, Arntsen V, Sikiric A, Kupliauskiene G, et al. Corrigendum to "The spectrum of	To study all available Norwegian subjects with PDE to characterise the phenotypic spectrum and treatment response across the age span to address factors that might	Cases of PDE based on current treatment with pyridoxine	15	15	Variant frequency in ALDH7A1 gene	Clinical-biochemical PDE

pyridoxine	determine the overall					
dependent epilepsy	prognosis of the disorder.					
across the age span:						
A nationwide						
retrospective						
observational study"						
[Epilepsy Res. 190						
(2023) 107099].						
Epilepsy research.						
2023;198:107113.						
Jiao X, Xue J, Gong P,	To characterize the clinical and	Patients with PDE	33	33	Variant frequency	Clinical-biochemical PDE
Wu Y, Zhang Y, Jiang	genetic characteristics of a				in ALDH7A1 gene	
Y, et al. Clinical and	large cohort of patients with					
genetic features in	PDE.					
pyridoxine-						
dependent epilepsy:						
a Chinese cohort						
study.						
Developmental						
medicine and child						
neurology.						
2020;62(3):315-21.						
Koul R, Alfutaisi A,	To report the profile of	Children with	35	35	Variant frequency	Clinical-biochemical PDE
Abdelrahim R,	children with pyridoxine	neonatal and			in ALDH7A1 gene	
Altihilli K. Pyridoxine	responsive seizures	infantile seizures				
Responsive Seizures:		responding to				
Beyond Aldehyde		pyridoxine				
Dehydrogenase 7A1.						
Journal of						
neurosciences in						
rural practice.						
2019;10(4):613-6.						

Mefford HC, Zemel M, Geraghty E, Cook J, Clayton PT, Paul K, et al. Intragenic deletions of ALDH7A1 in pyridoxine- dependent epilepsy caused by Alu-Alu recombination. Neurology. 2015;85(9):756-62.	To investigate the role of intragenic deletions of ALDH7A1 in patients with clinical and biochemical evidence of PDE	Patients with clinical and biochemical evidence of PDE	6	6	Variant frequency in ALDH7A1 gene	Clinical-biochemical PDE
Mercimek- Mahmutoglu S, Patel J, Cordeiro D, Hewson S, Callen D, Donner EJ, et al. Diagnostic yield of genetic testing in epileptic encephalopathy in childhood. Epilepsia. 2015;56(5):707-16.	To determine the genetic diagnostic yield in epileptic encephalopathy, we performed a retrospective cohort study in a single epilepsy genetics clinic	Patients with intractable epilepsy, global developmental delay, and cognitive dysfunction	110	110	Variant frequency in ALDH7A1 gene	Childhood onset pharmaco- resistant seizures
Mills PB, Footitt EJ, Mills KA, Tuschl K, Aylett S, Varadkar S, et al. Genotypic and phenotypic spectrum of pyridoxine- dependent epilepsy (ALDH7A1 deficiency). Brain : a	To evaluate the use of measurement of urine L- alpha-aminoadipic semialdehyde/creatinine ratio and mutation analysis of ALDH7A1 (antiquitin) in investigation of patients with suspected or clinically proven PDE and to characterize further the phenotypic	Children with a seizure disorder; those with elevated alpha- AASA/creatinine ratio had repeat urine analysis or offered sequence analysis of ALDH7A1	243	37 underwent genetic testing	Variant frequency in ALDH7A1 gene	Gene (ALDH7A1) positive PDE

journal of neurology. 2010;133(Pt 7):2148-	spectrum of antiquitin deficiency					
59.						
Della Mina E,	To investigate whether a quick	Patients suffering	19	19	Variant frequency	Childhood onset pharmaco-
Ciccone R, Brustia F,	and cheap molecular	from a range of			in ALDH7A1 gene	resistant seizures
Bayindir B,	diagnosis could be provided	seizures, either				
Limongelli I, Vetro A,		familial or				
et al. Improving		sporadic;				
molecular diagnosis		randomly selected				
in epilepsy by a		from patients'				
dedicated high-		afferent to				
throughput		epileptic centre				
sequencing platform.		for children and				
Eur J Hum Genet.		adolescents.				
2015;23(3):354-62.						
Perez B, Gutierrez-	To report the clinical,	Patients	12	12	Variant frequency	Gene (ALDH7A1) positive PDE
Solana LG, Verdu A,	biochemical, and mutational	suspected with			in ALDH7A1 gene	
Merinero B, Yuste-	spectrum of 12 patients with	PDE (clinically				
Checa P, Ruiz-Sala P,	clinically proven PDE.	confirmed)				
et al. Clinical,						
biochemical, and						
molecular studies in						
pyridoxine-						
dependent epilepsy.						
Antisense therapy as						
possible new						
therapeutic option.						
Epilepsia.						
2013;54(2):239-48.						
Plecko B, Paul K,	To provide biochemical and	Patients with	18	18	Variant frequency	Gene (ALDH7A1) positive PDE
Paschke E, Stoeckler-	molecular characterization	neonatal seizure			in ALDH7A1 gene	
Ipsiroglu S, Struys E,	of 18 patients with PDE in 16	onset				
Jakobs C, et al.	unrelated families					

Biochemical and						
molecular						
characterization of						
18 patients with						
pyridoxine-						
dependent epilepsy						
and mutations of the						
antiquitin (ALDH7A1)						
gene. Human						
mutation.						
2007;28(1):19-26.						
Salomons GS, Bok	To report an intriguing "silent"	Patients with	10	10	Variant frequency	Gene (ALDH7A1) positive PDE
LA, Struys EA, Pope	mutation in ALDH7A1, a novel	alpha-AASA			in ALDH7A1 gene	
LL, Darmin PS, Mills	missense mutation and a	deficiency &				
PB, et al. An	founder mutation in a Dutch	ALDH7A1				
intriguing "silent"	cohort (10 patients) with					
mutation and a	alpha-AASA dehydrogenase					
founder effect in	deficiency.					
antiquitin						
(ALDH7A1). Annals						
of neurology.						
2007;62(4):414-8.						
Scharer G, Brocker C,	To report three patients with	Patients with PDE-	15	15	Variant frequency	Gene (ALDH7A1) positive PDE
Vasiliou V, Creadon-	PDE presenting with variable	ALDH7A1			in ALDH7A1 gene	
Swindell G,	phenotypes and responses to					
Gallagher RC,	pyridoxine supplementation.					
Spector E, et al. The						
genotypic and						
phenotypic						
spectrum of						
pyridoxine-						
dependent epilepsy						
due to mutations in						

ALDH7A1. Journal of						
inherited metabolic						
disease.						
2010;33(5):571-81.						
Tlili A, Hamida	To report the first evidence for	Unrelated	25	7 patients with	Variant frequency	Clinical-biochemical PDE
Hentati N, Chaabane	a founder mutation	Tunisian families		PDE	in ALDH7A1 gene	
R, Gargouri A,	responsible for PDE					
Fakhfakh F.						
Pyridoxine-						
dependent epilepsy						
in Tunisia is caused						
by a founder						
missense mutation						
of the ALDH7A1						
gene. Gene.						
2013;518(2):242-5.						
Tincheva S, Todorov	To report the first cases of	Families referred	7	5 patients	Variant frequency	
T, Todorova A,	molecular genetic diagnostics	for genetic testing		underwent testing	in ALDH7A1 gene	Clinical-biochemical PDE
Georgieva R,	of PDE in Bulgaria: a dizygotic	with because of				
Stamatov D,	twin pair and one non-related	intractable				
Yordanova I, et al.	child with classical PDE caused	seizures (all				
First cases of	by one novel and two	classical clinical				
pyridoxine-	recurrent mutations in the	PDE)				
dependent epilepsy	ALDH7A1 gene					
in Bulgaria: novel						
mutation in the						
ALDH7A1 gene.						
Neurological						
sciences : official						
journal of the Italian						
Neurological Society						
and of the Italian						
Society of Clinical						

Neurophysiology. 2015;36(12):2209- 12.						
Tlili A, Hamida Hentati N, Gargouri A, Fakhfakh F. Identification of a novel missense mutation in the ALDH7A1 gene in two unrelated Tunisian families with pyridoxine- dependent epilepsy. Molecular biology reports. 2013;40(1):487-90.	To report a novel ALDH7A1 homozygous missense mutation identified in two Tunisian families with PDE	Patients from two unrelated Tunisian families with PDE	10	2 patients with PDE	Variant frequency in ALDH7A1 gene	Clinical-biochemical PDE
van Karnebeek CDM, Stockler S. Treatable inborn errors of metabolism causing intellectual disability: A systematic literature review. Molecular Genetics and Metabolism. 2012;105(3):368-81.	To test the effectiveness and safety of dietary lysine restriction as an adjunct to pyridoxine therapy on chemical biomarkers, seizure control, and developmental or cognitive outcomes in 7 children with confirmed ATQ deficiency	Children with PDE caused by antiquitin (ATQ) deficiency	7	7	Variant frequency in ALDH7A1 gene	Gene (ALDH7A1) positive PDE

hRB

Reference	Study aim	Population	Total population N in study	Eligible population for review	Study outcome	Disease category of included
Ahidi O Knari S Sefri	To identify the	Unrelated cases of	41	41	Variant frequency	population
H Charif M Senechal	spectrum and the	RB with different		71	in RB1 gene	
A Hamel C et al	effect of germline	clinical			in the gene	
Mutational analysis of	mutations	presentations				
the RB1 gene in		presentations				
Moroccan patients						
with retinoblastoma.						
Molecular vision.						
2011;17:3541-7.						
Abouzeid H, Munier FL,	To study phenotype-	Patients with RB	65	65	Variant frequency	Any RB
Thonney F, Schorderet	genotype correlations				in RB1 gene	
DF. Ten novel RB1 gene	in RB patients					
mutations in patients						
with retinoblastoma.						
Molecular vision.						
2007;13:1740-5.						
Abraham A,	To describe twins	One twin in each	17	9	Variant frequency	Familial/germline /
Thirumalairaj K,	(including genetic	family affected by		Three sets of twins	in RB1 gene	bilateral RB
Gaikwad N,	testing) where one is	bilateral RB, other		from three families		
Muthukkaruppan V,	affected by RB and the	twin unaffected				
Reddy AG, Thangaraj K,	other is unaffected					
et al. Retinoblastoma						
discordance in families						
with twins. Indian						
journal of						
ophthalmology.						
2019;67(3):436-9.						

4. Afshar AR,						
Pekmezci M, Bloomer						
MM, Cadenas NJ,						
Stevers M, Banerjee A,						
et al. Next-Generation						
Sequencing of						
Retinoblastoma						
Identifies Pathogenic						
Alterations beyond						
RB1 Inactivation That						
Correlate with						
Aggressive						
Histopathologic						
Features.						
Ophthalmology.						
2020;127(6):804-13.						
Afshar AR, Pekmezci	To determine the utility	Patients with RB	32	32	Variant frequency	Any RB
M, Bloomer MM,	of next-generation				in RB1 gene	
Cadenas NJ, Stevers M,	sequencing for the					
Banerjee A, et al. Next-	clinical management of					
Generation Sequencing	children undergoing					
of Retinoblastoma	enucleation for RB					
Identifies Pathogenic						
Alterations beyond						
RB1 Inactivation That						
Correlate with						
Aggressive						
Histopathologic						
Features.						
Ophthalmology.						
2020;127(6):804-13.						

Ahani A, Behnam B, Khorshid HRK, Akbari MT. RB1 gene mutations in Iranian patients with retinoblastoma: report of four novel mutations. Cancer genetics. 2011;204(6):316-22.	To perform mutation analysis of Iranian RB patients	Children with RB	18	18	Variant frequency in RB1 gene	Any RB
Ahani A, Akbari MT, Saliminejad K, Behnam B, Akhondi MM, Vosoogh P, et al. Screening for large rearrangements of the RB1 gene in Iranian patients with retinoblastoma using multiplex ligation- dependent probe amplification. Molecular vision. 2013;19:454-62.	To identify deletions/duplications of RB1 gene in a cohort of Iranian patients	Patients with RB who were referred to Mahak, Farabi, and Rasoul Akram hospitals	121	121	Variant frequency in RB1 gene	Any RB
Akdeniz Odemis D, Kebudi R, Bayramova J, Kilic Erciyas S, Kuru Turkcan G, Tuncer SB, et al. RB1 gene mutations and genetic spectrum in retinoblastoma cases.	To investigate the frequency and types of mutations in the RB1 gene in a Turkish population	Patients with RB in Turkey	136	122 probands	Variant frequency in RB1 gene	Any RB

Medicine.						
2023;102(36):e35068.						
Albrecht P, Ansperger-	To use different	Patients with RB	129	129	Variant frequency	Any RB
Rescher B, Schuler A,	sequencing techniques				in RB1 gene	
Zeschnigk M, Gallie B,	to identify mutations					
Lohmann DR.	(gross deletions or					
Spectrum of gross	insertions mainly) in RB					
deletions and	patients where no					
insertions in the RB1	mutation was					
gene in patients with	previously found					
retinoblastoma and						
association with						
phenotypic expression.						
Human mutation.						
2005;26(5):437-45.						
Alekseeva EA, Babenko	To identify RB1	Patients with RB	332	332	Variant frequency	Any RB
OV, Kozlova VM,	alterations causing				in RB1 gene	
Ushakova TL,	hereditary low				_	
Kazubskaya TP,	penetrance RB and to					
Nemtsova MV, et al.	evaluate how the					
Parental origin of the	parental origin of an					
RB1 gene mutations in	RB1 mutation affects					
families with low	its phenotypic					
penetrance hereditary	expression					
retinoblastoma.						
Cancers.						
2021;13(20):5068.						
Ali MJ, Parsam VL,	To identify correlations	Patients with RB	74	74	Variant frequency	Any RB
Honavar SG,	between the type of				in RB1 gene	
Kannabiran C,	mutations observed					
Vemuganti GK, Reddy	and the severity of the					
VAP. RB1 gene	disease using multiple					
mutations in	sequencing techniques					

retinoblastoma and its						
clinical correlation.						
Saudi Journal of						
Ophthalmology.						
2010;24(4):119-23.						
Alonso J, Moreno C,	To perform mutation	Patients with RB	43	43	Variant frequency	Any RB
Lopez A, Mendiola M,	analysis of RB patients				in RB1 gene	
Garcia-Miguel P,						
Abelairas J, et al. Five						
novel single nucleotide						
polymorphisms of the						
RB1 gene (g.5625T>C,						
g.70169T>G,						
g.76875A>T,						
g.78026delA, and						
g.150072T>C) in						
retinoblastoma						
patients. Human						
mutation.						
2001;17(5):437.						
Arbetman A, Abdala	To determine clinical,	Patients with RB	86	30 received genetic	Variant frequency	Any RB
M, Fandino A, Herrera	chromosomal, and			testing	in RB1 gene	
J, Baranzini S, Borelina	molecular					
D, et al. Clinical,	characteristics of					
cytogenetic, and	Argentine patients with					
molecular testing of	unilateral and bilateral					
Argentine patients	RB					
with retinoblastoma.						
Journal of AAPOS : the						
official publication of						
the American						
Association for						
Pediatric						

Ophthalmology and						
Strabismus.						
1998;2(2):102-7.						
Ata-ur-Rasheed M,	To perform mutation	Patients with RB	21	21	Variant frequency	Any RB
Vemuganti Gk,	analysis of RB patients				in RB1 gene	
Honavar Sg, Ahmed N,						
Hasnain Se,						
Kannabiran C.						
Mutational analysis of						
the RB1 gene in Indian						
patients with						
retinoblastoma.						
Ophthalmic genetics.						
2002;23(2):121-8.						
Ayari Jeridi H, Bouguila	To provide stepwise	Patients with RB	20	20	Variant frequency	Familial/germline /
H, Ansperger-Rescher	strategy for mutation				in RB1 gene	bilateral RB
B, Baroudi O, Mdimegh	analysis of Tunisian RB					
I, Omran I, et al.	patients					
Genetic testing in						
Tunisian families with						
heritable						
retinoblastoma using a						
low cost approach						
permits accurate risk						
prediction in relatives						
and reveals incomplete						
penetrance in adults.						
Experimental eye						
research. 2014;124:48-						
55.						
Bamne MN, Ghule PN,	To identify and	Patients with RB	34	34	Variant frequency	Sporadic RB
Jose J, Banavali SD,	characterize				in RB1 gene	
Kurkure PA, Amare	constitutional and					

Kadam PS	somatic BB1 gene					
Constitutional and	mutations					
somatic RB1 mutation	matations					
spectrum in						
nonfamilial unilateral						
and hilateral						
retinoblastoma in						
India Genetic testing						
2005·9(3)·200-11						
Barbosa RH Aguiar	To perform mutation	Patients with RB	75	71 natients with RB	Variant frequency	Δny RB
FCC Silva MFL Costa	analysis of Brazilian BB		,5		in RB1 gene	
RA Vargas FR Lucena	natients and analysis of				in the bene	
F et al Screening of	genotype-phenotype					
RB1 alterations in	associations					
Brazilian natients with						
retinoblastoma and						
relatives with						
retinoma: phenotypic						
and genotypic						
associations.						
Investigative						
ophthalmology &						
visual science.						
2013;54(5):3184-94.						
Barbosa RH, Vargas FR,	To report a family with	A family with	10	10	Variant frequency	Familial/germline /
Aguiar FCC, Ferman S,	transmission of a	affected and healthy			in RB1 gene	bilateral RB
Lucena E, Bonvicino	germline RB1 mutation	offspring			-	
CR, et al. Hereditary	-					
retinoblastoma						
transmitted by						
maternal germline						
mosaicism. Pediatric						

blood & cancer.						
2008;51(5):598-602.						
Bisht S, Chawla B,	To perform targeted	Patients with RB	75	75	Variant frequency	Sporadic RB
Kumar A, Vijayan V,	exome sequencing				in RB1 gene	
Kumar M, Sharma P, et	approach to find novel					
al. Identification of	mutations in Indian RB					
novel genes by	patients					
targeted exome						
sequencing in						
Retinoblastoma.						
Ophthalmic genetics.						
2022;43(6):771-88.						
Blanquet V, Turleau C,	To perform mutation	Patients affected	232	232	Variant frequency	Any RB
Gross-Morand MS,	analysis of all 27 exons	with familial/			in RB1 gene	
Senamaud-Beaufort C,	of the RB1	bilateral sporadic or				
Doz F, Besmond C.		unilateral multifocal,				
Spectrum of germline		unilateral sporadic				
mutations in the RB1		RB				
gene: a study of 232						
patients with						
hereditary and non						
hereditary						
retinoblastoma.						
Human molecular						
genetics.						
1995;4(3):383-8.						
Braggio E, Bonvicino	To perform mutation	Patients with	28	28	Variant frequency	Any RB
CR, Vargas FR, Ferman	analysis of RB1 gene	sporadic			in RB1 gene	
S, Eisenberg ALA,	using different	bilateral/unilateral.				
Seuanez HN.	techniques	Patients with familial				
Identification of three		RB				
novel RB1 mutations in						
Brazilian patients with						

retinoblastoma by						
"exon by exon" PCR						
mediated SSCP						
analysis. Journal of						
clinical pathology.						
2004;57(6):585-90.						
Chai P, Luo Y, Yu J, Li Y,	To compare patient	Consecutive patients	145	145	Variant frequency	Any RB
Yang J, Zhuang A, et al.	demographics and	with RB			in RB1 gene	
Clinical characteristics	clinical characteristics					
and germline mutation	between patients with					
spectrum of RB1 in	or without RB1					
Chinese patients with	mutations					
retinoblastoma: A						
dual-center study of						
145 patients.						
Experimental eye						
research.						
2021;205:108456.						
Dalamon V, Surace E,	To detect chromosome	Families with RB	16	16	Variant frequency	Sporadic RB
Borelina D, Ziembar M,	and molecular				in RB1 gene	
Esperante S,	abnormalities in 16					
Francipane L, et al.	Argentine families with					
Detection of mutations	RB					
in argentine						
retinoblastoma						
patients by segregation						
of polymorphisms,						
exon analysis and						
cytogenetic test.						
Ophthalmic research.						
2001;33(6):336-9.						

Dalamon V. Surace F	To perform mutation	Patients with PR in	21	21	Variant frequency	Any PR
Ciliberto E Forreiro V	applysis in Argontinian	Argontino	21	21	in BB1 gono	Ally ND
Gillberto F, Ferreiro V,	DD notionts	Argentina			III KDI gene	
Fernandez C, Szijan I.	RB patients					
Detection of germine						
mutations in argentine						
retinoblastoma						
patients: low and full						
penetrance						
retinoblastoma caused						
by the same germline						
truncating mutation.						
Journal of						
biochemistry and						
molecular biology.						
2004;37(2):246-53.						
Davies HR, Broad KD,	To identify new	Individuals with no	20	20	Variant frequency	Sporadic RB
Onadim Z, Price EA,	mutations in RB1 gene	previous family			in RB1 gene	•
Zou X, Sheriff I, et al.	using tumour samples	history			0	
Whole-genome	from 20 patients with	,				
sequencing of	sporadic RB					
retinoblastoma reveals						
the diversity of						
rearrangements						
disrupting RB1 and						
uncovers a treatment-						
related mutational						
signature. Cancers.						
2021;13(4):1-19.						
Devarajan B, Prakash L,	To use targeted next	Patients with RB	33	33	Variant frequency	Any RB
Kannan TR, Abraham	generation sequencing				in RB1 gene	
AA, Kim U,	with in-house				Ŭ	
Muthukkaruppan V. et	bioinformatics pipeline					
al. Targeted next	for the molecular					

generation sequencing of RB1 gene for the molecular diagnosis of Retinoblastoma. BMC cancer. 2015;15:320.	diagnosis of RB in families					
Dommering CJ, Mol BM, Moll AC, Burton M, Cloos J, Dorsman JC, et al. RB1 mutation spectrum in a comprehensive nationwide cohort of retinoblastoma patients. Journal of medical genetics. 2014;51(6):366-74.	To describe RB1 mutations in a Dutch cohort	Patients registered in the Dutch Retinoblastoma Registry	1173	529 underwent genetic testing	Variant frequency in RB1 gene	Any RB
Frenkel S, Pe'er J. The clinical presentation of retinoblastoma patients with mosaics. Investigative Ophthalmology and Visual Science. 2016;57(12):3672.	To describe the association between RB1 mutations and disease characteristics in RB patients	Patients with RB	295	149 received genetic testing	Variant frequency in RB1 gene	Any RB
Gargallo P, Oltra JS, Yanez Y, Segura V, Balaguer J, Canete A. Retinoblastoma: towards an earlier diagnosis. Retinoblastoma: hacia un diagnostico mas	To evaluate the different diagnostic aspects and clinical features of RB patients, and propose strategies that might improve their clinical management	Patients with RB	38	38	Variant frequency in RB1 gene	Any RB

precoz.						
2018;93(9):439-43.						
Genuardi M, Klutz M,	To describe large	Family with	28	28	Variant frequency	Familial/ germline /
Devriendt K, Caruso D,	pedigree in which	individuals affected			in RB1 gene	bilateral RB
Stirpe M, Lohmann DR.	lipoma predisposition	by bilateral RB				
Multiple lipomas linked	is linked to a mutant					
to an RB1 gene	RB1 allele that causes					
mutation in a large	low-penetrance RB					
pedigree with low						
penetrance						
retinoblastoma.						
European journal of						
human genetics : EJHG.						
2001;9(9):690-4.						
Grotta S, D'Elia G,	To report experience	Patients affected by	65	65	Variant frequency	Any RB
Scavelli R, Genovese S,	on a cohort of RB	RB in Rome			in RB1 gene	
Surace C, Sirleto P, et	patients using a					
al. Advantages of a	combined approach of					
next generation	NGS and RB1 custom					
sequencing targeted	array-Comparative					
approach for the	Genomic Hybridization					
molecular diagnosis of						
retinoblastoma. BMC						
cancer. 2015;15:841.						
Gupta H, Malaichamy	To describe and	Patients with RB	50	50	Variant frequency	Any RB
S, Mallipatna A,	identify associations				in RB1 gene	
Murugan S, Jeyabalan	between genetic and					
N, Suresh Babu V, et al.	clinical parameters of					
Retinoblastoma	50 RB patients from					
genetics screening and	India					
clinical management.						
BMC medical						

genomics.						
2021;14(1):188.						
He M-y, An Y, Gao Y-j,	To screen	Children diagnosed	85	85	Variant frequency	Sporadic RB
Qian X-w, Li G, Qian J.	constitutional	with RB			in RB1 gene	
Screening of RB1 gene	mutations in the RB1					
mutations in Chinese	gene via a method					
patients with	combining DNA					
retinoblastoma and	sequencing and					
preliminary exploration	multiplex ligation-					
of genotype-	dependent probe					
phenotype	amplification, and a					
correlations. Molecular	preliminary exploration					
vision. 2014;20:545-	of genotype–					
52.	phenotype correlations					
Hulsenbeck I, Frank M,	To study the	Patients with	287	287	Variant frequency	Familial/germline /
Biewald E, Kanber D,	retinoblastoma variant	germline mutation			in RB1 gene	bilateral RB
Lohmann DR, Ketteler	effect classification	who did not				
P. Introduction of a	which considers each	undergo screening				
variant classification	variant's predicted					
system for analysis of	effects on the common					
genotype-phenotype	causal mediator					
relationships in						
heritable						
retinoblastoma.						
Cancers.						
2021;13(7):1605.						
Hung C-C, Lin S-Y, Lee	To perform clinical	Taiwanese family	30	30	Variant frequency	Familial/germline /
C-N, Chen C-P, Lin S-P,	assessments and	with RB			in RB1 gene	bilateral RB
Chao M-C, et al. Low	molecular analyses in a					
penetrance of	large Taiwanese family					
retinoblastoma for	with RB					
p.V654L mutation of						
the RB1 gene. BMC						

medical genetics.						
2011;12:76.						
Jakubowska A,	To report three novel	Patients with RB	8	8	Variant frequency	Familial/germline /
Zajaczek S, Haus O,	constitutional RB1 gene				in RB1 gene	bilateral RB
Limon J, Kostyk E,	mutations in patients					
Krzystolik Z, et al.	with retinoblastoma.					
Novel RB1 gene						
constitutional						
mutations found in						
Polish patients with						
familial and/or						
bilateral						
retinoblastoma.						
Human mutation.						
2001;18(5):459.						
Kalsoom S, Wasim M,	To identify mutational	Clinically evaluated	70	70	Variant frequency	Any RB
Afzal S, Shahzad MS,	alterations in the RB1	patients with RB			in RB1 gene	
Ramzan S, Awan AR, et	gene in Pakistani	from different				
al. Alterations in the	patients with RB	regions of Pakistan				
RB1 gene in Pakistani						
patients with						
retinoblastoma using						
direct sequencing						
analysis. Molecular						
vision. 2015;21:1085-						
92.						
Kiet NC, Khuong LT,	To present the	Probands with	50	41 underwent	Variant frequency	Any RB
Minh DD, Quan NHM,	spectrum of mutations	advanced stage		genetic testing	in RB1 gene	
Xinh PT, Trang NNC, et	in the RB1 gene in	(group D or E) RB				
al. Spectrum of	Vietnamese patients					
mutations in the RB1	with RB.					
gene in Vietnamese						
patients with						

retinoblastoma. Molecular vision. 2019;25:215-21.						
Kiran VS, Kannabiran C, Chakravarthi K, Vemuganti GK, Honavar SG. Mutational screening of the RB1 gene in Indian patients with retinoblastoma reveals eight novel and several recurrent mutations. Human mutation. 2003;22(4):339.	To perform mutational screen of the exons and promoter of the RB1 gene in Indian patients with retinoblastoma to determine the range of mutations giving rise to disease	Probands with RB	47	20 with peripheral blood only	Variant frequency in RB1 gene	Any RB
Lan X, Xu W, Tang X, Ye H, Song X, Lin L, et al. Spectrum of RB1 Germline Mutations and Clinical Features in Unrelated Chinese Patients With Retinoblastoma. Frontiers in Genetics. 2020;11:142.	To identify germline RB1 mutations and correlate the identified mutations with the clinical features of Rb patients.	Unrelated Rb patients and their parents	118	118	Variant frequency in RB1 gene	Any RB
Li L, Li H, Zhang J, Gan H, Liu R, Hu X, et al. Five novel RB1 gene mutations and genotype-phenotype correlations in Chinese	To identify the spectrum of RB1 gene mutations in 114 Chinese patients with retinoblastoma.	Patients with retinoblastoma from Southern China	114	114	Variant frequency in RB1 gene	Any RB

children with retinoblastoma. International						
ophthalmology. 2022;42(11):3421-30.						
Linh DNH, Van Huy N, Nguyen PD, Le Thi P, Tuan HA, Van Nguyen T, et al. Mutation spectrum of retinoblastoma patients in Vietnam. Molecular genetics & genomic medicine. 2023;11(11):e2244.	To report mutations (both germline and somatic) found in (RB) patients (in stage B– E) , which would then aid the genetic counselling and detection of RB patients at earlier stages, reducing the mortality rate	Patients with RB, diagnosed by standard ophthalmologic and histological criteria in the 2020–2022 period, at the National Institute of Ophthalmology	42	42	Variant frequency in RB1 gene	Any RB
Lohmann D, Horsthemke B, Gillessen-Kaesbach G, Stefani FH, Hofler H. Detection of small RB1 gene deletions in retinoblastoma by multiplex PCR and high-resolution gel electrophoresis. Human genetics. 1992;89(1):49-53.	To screen all the 27 exons and adjacent intronic sequences. To reduce the labor involved, the different regions of RB1 gene were simultaneously amplified n a single polymerase chain reaction (multiplex PCR).	Unrelated patients with hereditary retinoblastoma	24	24	Variant frequency in RB1 gene	Familial/ germline / bilateral RB
Lohmann DR, Brandt B, Hopping W, Passarge E, Horsthemke B. Spectrum of small length germline	To identify germline mutations in the RB1 gene	Patients with hRB	106	106	Variant frequency in RB1 gene	Familial/ germline / bilateral RB

mutations in the RB1						
gene. Human						
molecular genetics.						
1994;3(12):2187-93.						
Lohmann DR, Brandt B,	To delineate the	Patients with RB	71	71	Variant frequency	Familial/germline /
Hopping W, Passarge E,	spectrum of RB1 germ-				in RB1 gene	bilateral RB
Horsthemke B. The	line mutations					
spectrum of RB1 germ-	and to search for					
line mutations in	genotype-phenotype					
hereditary	correlations					
retinoblastoma.						
American journal of						
human genetics.						
1996;58(5):940-9.						
Manukonda R, Pujar A,	To study the clinical	Patients diagnosed	62	62	Variant frequency	Any RB
Ramappa G,	outcomes in all RB	with RB and their			in RB1 gene	
Vemuganti GK, Kaliki S.	patients who	parents/family				
Identification of novel	underwent genetic	members who				
RB1 genetic variants in	testing and attempted	attended genetic				
Retinoblastoma	to understand the	counselling followed				
patients and their	association between	by genetic testing				
impact on clinical	genetic mutations and	were included in the				
outcome. Ophthalmic	clinical outcomes in	study				
genetics.	Asian Indian RB					
2022;43(1):64-72.	patients					
Mehyar M, Mosallam	To evaluate the impact	Children with RB	50	50	Variant frequency	Any RB
M, Tbakhi A, Saab A,	of the type of RB1 gene				in RB1 gene	
Sultan I, Deebajah R, et	mutation on clinical					
al. Impact of RB1 gene	presentation and					
mutation type in	management outcome					
retinoblastoma						
patients on clinical						
presentation and						

management outcome. Hematol Oncol Stem Cell Ther. 2020:13(3):152-9						
Mendonca V,	To identify novel	Children with RB	96	96	Variant frequency	Any RB
Evangelista AC, P Matta	genomic alterations in				in RB1 gene	
B, M Moreira MA, Faria	non-conventional RB					
P, Lucena E, et al.	(with apparent wild-					
Molecular alterations	type RB1) which could					
in retinoblastoma	contribute to initiation					
beyond RB1.	or progression in this					
Experimental eye	malignancy					
research.						
2021;211:108753.						
Mohd Khalid MKN,	To perform molecular	Children with RB	19	19	Variant frequency	Any RB
Yakob Y, Md Yasin R,	genetic testing of the				in RB1 gene	
Wee Teik K, Siew CnG,	RB1 gene					
Rahmat J, et al.						
Spectrum of germ-line						
RB1 gene mutations in						
Malaysian patients						
with retinoblastoma.						
Molecular vision.						
2015;21:1185-90.						
Nguyen HH, Nguyen	To identify germline	Children with RB	34	34	Variant frequency	Any RB
HTT, Vu NP, Le QT,	mutations in RB1 in a				in RB1 gene	
Pham CM, Huyen TT, et	cohort of patients with					
al. Mutational	Rb from northern					
screening of germline	Vietnam.					
RB1 gene in						
Vietnamese patients						
with retinoblastoma						
reveals three novel						

mutations. Molecular						
vision. 2018;24:231-8.						
Nichols KE,	To facilitate genetics	Patients with RB	180	85 patients	Variant frequency	Any RB
Houseknecht MD,	counselling and patient			underwent genetic	in RB1 gene	
Godmilow L, Bunin G,	management, we			testing		
Shields C, Meadows A,	adopted a multistep					
et al. Sensitive	molecular screening					
multistep clinical	assay for detecting RB1					
molecular screening of	mutations					
180 unrelated						
individuals with						
retinoblastoma detects						
36 novel mutations in						
the RB1 gene. Human						
mutation.						
2005;25(6):566-74.						
Ottaviani D, Parma D,	To identify RB1	Families with RB in	144	144	Variant frequency	Any RB
Giliberto F, Ferrer M,	mutations in as many	Argentina			in RB1 gene	
Fandino A, Davila MT,	RB patients as possible					
et al. Spectrum of RB1	and to correlate them					
mutations in argentine	to the patient					
patients: 20-years	phenotype, which					
experience in the	allows better genetic					
molecular diagnosis of	counselling and clinical					
retinoblastoma.	management of					
Ophthalmic genetics.	affected					
2013;34(4):189-98.	families.					
Parma D, Ferrer M,	To identify causative	Children with RB	34	34	Variant frequency	Any RB
Luce L, Giliberto F,	RB1 mutations in RB				in RB1 gene	
Szijan I. RB1 gene	patients with different					
mutations in Argentine	clinical presentations					
retinoblastoma						
patients. Implications						

for genetic counseling.						
PloS one.						
2017;12(12):e0189736.						
Parsam VL, Kannabiran	To identify the RB1	Children with RB	74	74	Variant frequency	Any RB
C, Honavar S,	mutations, we analysed				in RB1 gene	
Vemuganti GK, Ali MJ.	74 retinoblastoma					
A comprehensive,	patients by screening					
sensitive and	the exons and the					
economical approach	promoter region of RB1					
for the detection of						
mutations in the RB1						
gene in						
retinoblastoma.						
Journal of genetics.						
2009;88(4):517-27.						
Pradhan MA, Ng Y,	To investigate the	RB probands and	20	20	Variant frequency	Any RB
Strickland A, George	results of RB1 testing in	their families			in RB1 gene	
PM, Raizis A,	retinoblastoma					
Warrington J, et al.	management in a					
Role of genetic testing	tertiary referral					
in retinoblastoma	centre					
management at a						
tertiary referral centre.						
Clinical & experimental						
ophthalmology.						
2010;38(3):231-6.						
Price EA, Price K,	To present the	Patients who	209	209	Variant frequency	Any RB
Kolkiewicz K, Hack S,	spectrum of	underwent			in RB1 gene	
Reddy MA, Hungerford	genetic and epigenetic	screening for RB				
JL, et al. Spectrum of	changes identified in					
RB1 mutations	194 tumours					
identified in 403						
retinoblastoma						

patients. Journal of medical genetics.	and 209 blood samples, from 403 unrelated BB					
2014;51(3):208-14.	patients.					
Reddy MA, Butt M,	To provide prognostic	Children with RB	111	111	Variant frequency	Familial/germline /
Hinds A-M, Duncan C,	information from the				in RB1 gene	bilateral RB
Price EA, Sagoo MS, et	identification of					
al. Prognostic	different genetic					
Information for Known	categories of					
Genetic Carriers of RB1	potentially heritable					
Pathogenic Variants	retinoblastoma					
(Germline and						
Mosaic).						
Ophthalmology Retina.						
2021;5(4):381-7.						
Richter S, Vandezande	To present a sensitive	Probands with RB	378	378	Variant frequency	Any RB
K, Chen N, Zhang K,	and efficient strategy to				in RB1 gene	
Sutherland J, Anderson	screen probands with					
J, et al. Sensitive and	retinoblastoma for RB1					
efficient detection of	mutations					
RB1 gene mutations						
enhances care for						
families with						
retinoblastoma.						
American journal of						
human genetics.						
2003;72(2):253-69.						
Rojanaporn D,	To identify germline	Children with RB	52	52	Variant frequency	Any RB
Boontawon T,	RB1 mutations and to				in RB1 gene	
Chareonsirisuthigul T,	correlate the mutations					
Thanapanpanich O,	with clinical					
Attaseth T, Saengwimol	phenotypes of RB					
D, et al. Spectrum of	patients.					
germline RB1						

mutations and clinical						
manifestations in						
retinoblastoma						
patients from Thailand.						
Molecular vision.						
2018;24:778-88.						
Rojanaporn D,	To generate a stepwise	Children with RB	42	42	Variant frequency	Any RB
Chitphuk S,	method to reduce the				in RB1 gene	
lemwimangsa N,	workload of full scale					
Chareonsirisuthigul T,	RB1 sequencing for					
Saengwimol D,	germline mutation					
Aroonroch R, et al.	screening in RB					
Germline RB1	patients					
Mutation in						
Retinoblastoma						
Patients: Detection						
Methods and						
Implication in Tumor						
Focality. Translational						
vision science &						
technology.						
2022;11(9):30.						
Rushlow D, Piovesan B,	To detect	Probands with RB	1020	1020	Variant frequency	Any RB
Zhang K, Prigoda-Lee	low-level mosaicism for				in RB1 gene	
NL, Marchong MN,	11 recurrent RB1					
Clark RD, et al.	CGA4TGA					
Detection of mosaic	nonsense mutations					
RB1 mutations in						
families with						
retinoblastoma.						
Human mutation.						
2009;30(5):842-51.						

Sagi M, Frenkel A, Eilat A, Weinberg N, Frenkel S, Pe'er J, et al. Genetic screening in patients with Retinoblastoma in Israel. Familial cancer. 2015;14(3):471-80.	To present experience in detecting the pathogenic mutations in blood samples, from 150 unrelated Rb patients and highlight the relevant counselling issues	Patients with RB	150	150	Variant frequency in RB1 gene	Any RB
Saliminejad K, Behnam B, Akbari MT, Khorshid HRK, Ghassemi F, Amoli FA, et al. Rapid detection of RB1 recurrent mutations in retinoblastoma by ARMS-PCR. Journal of genetics. 2013;92(2):e36-40.	To develop a multiplex ARMS-PCR method to screen for the most recurrent mutations in RB1 in patients with RB.	Children with RB	121	121	Variant frequency in RB1 gene	Any RB
Salviat F, Gauthier- Villars M, Carton M, Cassoux N, Lumbroso- Le Rouic L, Dehainault C, et al. Association Between Genotype and Phenotype in Consecutive Unrelated Individuals With Retinoblastoma. JAMA ophthalmology. 2020;138(8):843-50.	To assess the association between genotype and phenotype in patients with RB	Patients with RB	1404	1404	Variant frequency in RB1 gene	Any RB
Sampieri K, Hadjistilianou T, Mari F, Speciale C, Mencarelli	To perform a	Patients with RB	35	35	Variant frequency in RB1 gene	Any RB

MA. Cetta F. et al.	mutational screening of					
Mutational screening	the RB1 gene in Italian					
of the RB1 gene in	natients					
Italian patients with	affected by RB referred					
retinoblastoma reveals	to the University of					
11 novel mutations.	Siena					
Journal of human	0.0					
genetics.						
2006:51(3):209-16.						
Sanchez-Sanchez E	To report a novel	Patients with RB	10	10	Variant frequency	Familial/germline /
Ramirez-Castilleio C.	mutation detected in				in RB1 gene	bilateral RB
Weekes DB. Benevto	10 individuals of an					
M. Prieto F. Naiera C.	extended family, only					
et al. Attenuation of	three of whom are					
disease phenotype	affected by RB disease					
through alternative	· · · · · · · · · · · · · · · · · · ·					
translation initiation in						
low-penetrance						
retinoblastoma.						
Human mutation.						
2007;28(2):159-67.						
Shahraki K, Ahani A,	To evaluate the RB1	Children with RB	106	106	Variant frequency	Any RB
Sharma P, Faranoush	mutations in 106				in RB1 gene	,
M, Bahoush G, Torktaz	patients				C C	
I, et al. Genetic	with retinoblastoma					
screening in Iranian						
patients with						
retinoblastoma. Eye						
(London, England).						
2017;31(4):620-7.						
Singh J, Mishra A,	To use an improved	Children with RB	50	50	Variant frequency	Any RB
Pandian AJ, Mallipatna	NGS-based method to				in RB1 gene	
AC, Khetan V, Sripriya	screen the RB1 gene in					

S et al Next-	the DNA isolated from					
generation	blood or saliva samples					
sequencing-based	from an Indian Ph					
mothed shows	cohort (E0 cases) and					
inercosed mutation	dotested all types of					
increased mutation	detected all types of					
detection sensitivity in	germine mutations					
an Indian						
retinoblastoma cohort.						
Molecular vision.						
2016;22:1036-47.						
Sippel KC, Fraioli RE,	To determine how	Families with one	405	405	Variant frequency	Familial/germline /
Smith GD, Schalkoff	often	family member			in RB1 gene	bilateral RB
ME, Sutherland J,	mosaicism could be	having RB				
Gallie BL, et al.	documented in a group					
Frequency of somatic	of families					
and germ-line	that included one or					
mosaicism in	more individuals					
retinoblastoma:	affected with					
implications for genetic	retinoblastoma					
counseling. American						
journal of human						
genetics.						
1998;62(3):610-9.						
Siti-Norulhuda H,	To detect mutations	Children with RB	132	132	Variant frequency	Any RB
Hanani H, Siti-Raihan I,	and single nucleotide	and matched			in RB1 gene	
Jamalia R, Ariffin N,	polymorphisms (SNPs)	controls				
Shatriah I, et al.	in N- and C-termini of					
Mutational analysis in	RB1 and to determine					
N- and C- termini of	the association of					
RB1 gene among	these genetic variations					
sporadic	with laterality and					
retinoblastoma	staging of					
patients in Malaysia.	retinoblastoma in					
International Medical	Malaysian children					
--------------------------	-------------------------	----------------------	-----	-----	-------------------	----------------------
Journal.	with RB.					
2012;19(4):369-72.						
Sugano K, Yoshida T,	To report experience in	Patients with RB	51	51	Variant frequency	Any RB
Izumi H, Umezawa S,	genetic counselling and				in RB1 gene	
Ushiama M, Ichikawa	gene testing for RB					
A, et al. Outpatient						
clinic for genetic						
counseling and gene						
testing of						
retinoblastoma.						
International journal of						
clinical oncology.						
2004;9(1):25-30.						
Szijan I, Lohmann DR,	To use two step	Families with one	10	10`	Variant frequency	Familial/ germline /
Parma DL, Brandt B,	strategy and detected	child affected			in RB1 gene	bilateral RB
Horsthemke B.	the gene defect in six	by bilateral RB				
Identification of RB1	of 10 Argentinian					
germline mutations in	patients					
Argentinian families						
with sporadic bilateral						
retinoblastoma.						
Journal of medical						
genetics.						
1995;32(6):475-9.						
Taylor M, Dehainault C,	To delineate the	Pedigrees with a	165	165	Variant frequency	Familial/ germline /
Desjardins L, Doz F,	spectrum of RB1	family history of RB			in RB1 gene	bilateral RB
Levy C, Sastre X, et al.	germline mutations in					
Genotype-phenotype	familial Rb and to					
correlations in	identify genotype–					
hereditary familial	phenotype correlations					
retinoblastoma.	as well as putative					
	modifier					

Human mutation. 2007:28(3):284-93.						
Temming P, Viehmann A, Biewald E, Lohmann DR. Sporadic unilateral retinoblastoma or first sign of bilateral disease? The British journal of ophthalmology. 2013;97(4):475-80.	To identify clinical and genetic characteristics of children with sporadic unilateral retinoblastoma	Children with sporadic unilateral RB	480	195 patients with genetic data	Variant frequency in RB1 gene	Sporadic RB
Tomar S, Sethi R, Sundar G, Quah TC, Quah BL, Lai PS. Mutation spectrum of RB1 mutations in retinoblastoma cases from Singapore with implications for genetic management and counselling. PloS one. 2017;12(6):e0178776.	To characterize the spectrum of RB1 mutations in RB cases seen among patients in Singapore to aid disease management	Infants with RB	59	59	Variant frequency in RB1 gene	Any RB
Tsai T, Fulton L, Smith BJ, Mueller RL, Gonzalez GA, Uusitalo MS, et al. Rapid identification of germline mutations in retinoblastoma by protein truncation testing. Archives of ophthalmology	To demonstrate the utility of protein truncation testing (PTT) for rapid detection and sequencing of germline mutations in the retinoblastoma tumour suppressor gene (RB1)	Probands with RB	27	27	Variant frequency in RB1 gene	Familial/ germline / bilateral RB

(Chicago, Ill : 1960).						
2004;122(2):239-48.						
Umar BT, Rimayanti U,	To identify the	Patients with RB and	35	21 patients with RB	Variant frequency	Any RB
Pagarra H, Budu, Massi	germline mutation in	their parents and			in RB1 gene	
N, Muhiddin HS. Novel	the RB1 gene in	normal				
point mutation and	patients with RB and	control subjects				
intronic mutations of	their parents from the					
RB1 gene in	eastern part of					
retinoblastoma	Indonesia					
patients in Indonesia.						
Medical Journal of						
Indonesia.						
2022;31(4):218-24.						
Vural O, Atalay HT,	To assess the clinical	Children with RB	53	19 patients	Variant frequency	Any RB
Kayhan G, Tarlan B,	and genetic			underwent NGS	in RB1 gene	
Oral M, Okur A, et al.	characteristics					
Clinical and genetic	of children diagnosed					
characteristics of	with retinoblastoma					
retinoblastoma	(RB) at Gazi					
patients in a single	University Faculty of					
center with four novel	Medicine's Department					
RB1 variants.	of Pediatric					
International Journal of	Oncology					
Ophthalmology.						
2023;16(8):1274-9.						
Xie Y, Xu XL, Wei WB.	To screen the structural	Children with RB	12	12	Variant frequency	Sporadic RB
The rb1 mutation	mutations of the RB1				in RB1 gene	
spectrum and genetic	gene using gene					
management	capture and a					
consultation in	preliminary exploration					
pediatric patients with	of the correlation					
retinoblastoma in	between the genotypes					
Beijing, China. Risk	and phenotypes					

Management and						
Healthcare Policy.						
2021;14:3453-63.						
Yousef YA, Tbakhi A, Al-	To evaluate the	Children with RB	50	40 probands	Variant frequency	Any RB
Hussaini M,	oncogenic mutations in	and their parents			in RB1 gene	
AlNawaiseh I, Saab A,	the RB1 gene and the					
Afifi A, et al.	inheritance patterns of					
Mutational analysis of	RB in the Jordanian					
the RB1 gene and the	patients					
inheritance patterns of						
retinoblastoma in						
Jordan. Familial cancer.						
2018;17(2):261-8.						
Zajaczek S, Jakubowska	To study constitutional	Children with RB	17	17	Variant frequency	Sporadic RB
A, Gorski B, Kurzawski	RB1 gene mutations in				in RB1 gene	
G, Krzystolik Z, Lubinski	a series of 17 families					
J. Frequency and	with isolated unilateral					
nature of germline Rb-	retinoblastoma					
1 gene mutations in a	patients					
series of patients with						
sporadic unilateral						
retinoblastoma.						
European journal of						
cancer (Oxford,						
England : 1990).						
1999;35(13):1824-7.						
Zhang L, Jia R, Zhao J,	To perform genetic	Children with RB	117	17 with RB	Variant frequency	Any RB
Fan J, Zhou Y, Han B, et	screening of Chinese				in RB1 gene	
al. Novel mutations in	RB patients and their					
the RB1 gene from	family members for					
Chinese families with a	heritable RB1					
history of	mutations					
retinoblastoma.						

Tumour biology : the						
journal of the						
International Society						
for						
Oncodevelopmental						
Biology and Medicine.						
2015;36(4):2409-20.						
Zhang Z, Xiao Y-S, Shen	To use targeted NGS to	Non-	12	12	Variant frequency	Sporadic RB
R, Jiang H-C, Tan L, Li R-	screen probands and	consanguineous			in RB1 gene	
Q, et al. Next	then Sanger	families with RB				
generation sequencing	sequencing					
of RB1gene for the	was used to identify					
molecular diagnosis of	variants in other					
ethnic minority with	members of					
retinoblastoma in	pedigrees					
Yunnan. BMC medical						
genetics.						
2020;21(1):230.						
Zhang Y, Wang Y,	To analyze the impact	Children with RB	40	40	Variant frequency	Any RB
Huang D, Ma J, Zhang	of RB1 gene				in RB1 gene	
W, Gu H, et al.	polymorphism on					
Correlation between	morbidity of RB and					
Family RB1 Gene	provide a molecular					
Pathogenic Variant	level diagnosis					
with Clinical Features	information					
and Prognosis of						
Retinoblastoma under						
5 Years Old. Disease						
markers.						
2021;2021:9981028.						

XLHR

Reference	Study aim	Population	Total population N in study	Eligible population for review	Study outcome	Disease category of included population
Acar S, BinEssa HA, Demir K, Al-Rijjal RA, Zou M, Catli G, et al. Clinical and genetic characteristics of 15 families with hereditary hypophosphatemia: Novel Mutations in PHEX and SLC34A3. PloS one. 2018:13(3):e0193388.	To analyse clinical and genetic characteristics of patients from 15 unrelated families from a different region of Turkey	15 unrelated Turkish families with hereditary hypophosphatemia diagnosed based on clinical and laboratory assessment	51	15 probands	Variant frequency in PHEX gene	Hereditary HR
Alikasifoglu A, Unsal Y, Gonc EN, Ozon ZA, Kandemir N, Alikasifoglu M. Long- term effect of conventional phosphate and calcitriol treatment on metabolic recovery and catch- up growth in children with PHEX mutation. Journal of pediatric endocrinology &	To investigate the genetic and clinical variability of XLHR in paediatric patients and analyse genotype-phenotype correlations focusing on short term, long term and pubertal impact of conventional treatment, being on the verge of an advance in treatment such as burosumab	12 unrelated families diagnosed with HR, based on clinical, laboratory and radiologic investigations	16	11 probands	Gene frequency and variant frequency in PHEX, FGF23 and CLCN5	XLH

metabolism : JPEM.						
2021;34(12):1573-84.						
Ariceta G, Beck-	To present the findings of the	Patients with diagnosis	579	282 children	Gene frequency	XLHR
Nielsen SS, Boot AM,	first interim analysis of the	of XLH based on the		with genetic	and variant	
Brandi ML, Briot K, de	International X-Linked	clinical judgement of an		test results	frequency in	
Lucas Collantes C, et	Hypophosphatemia registry	XLH-treating expert			PHEX, FGF23 and	
al. The International		physician, using			SLC34A3	
X-Linked		information such as				
Hypophosphatemia		family history and				
(XLH) Registry: first		clinical, radiological and				
interim analysis of		biochemical findings				
baseline						
demographic, genetic						
and clinical data.						
Orphanet journal of						
rare diseases.						
2023;18(1):304.						
Cao Y, You Y, Wang Q,	To identify causative variants in	Nine unrelated Chinese	56	3 patients	Gene frequency	HR
Ren X, Li S, Li L, et al.	nine unrelated Chinese families	families with HR		with age ≤18	and variant	
Identification of six	associated with HR, and to			yrs	frequency in	
novel variants from	determine potential				PHEX and	
nine Chinese families	pathogenicity of the identified				SLC34A3	
with	variants					
hypophosphatemic						
rickets. BMC medical						
genomics.						
2022;15(1):161.						
Capelli S, Donghi V,	To describe the clinical features	Patients with clinical and	26	25 with age	Gene frequency	HR
Maruca K, Vezzoli G,	of patients with HR and the	biochemical features of		≤18 yrs	and variant	
Corbetta S, Brandi	results of the genetic analyses	HR			frequency in	
ML, et al. Clinical and	in the family members				PHEX, FGF23,	
molecular					DMP1, MEPE,	
heterogeneity in a					ENPP1	

large series of						
patients with						
hypophosphatemic						
rickets. Bone.						
2015;79:143-9.						
Cho HY, Lee BH, Kang	To perform a clinical and	Unrelated Korean	17	17	Gene frequency	HR
JH, Ha IS, Cheong HI,	molecular genetic analysis in	children, diagnosed with			and variant	
Choi Y. A clinical and	children with a clinical	HR by the Department			frequency in	
molecular genetic	diagnosis of HR	of Pediatrics, Seoul			PHEX and FGF23	
study of		National University				
hypophosphatemic		Children's Hospital				
rickets in children.						
Pediatric research.						
2005;58(2):329-33.						
Del Pino M, Viterbo	To analyse the long-term	Patients diagnosed with	96	42	Variant frequency	Hereditary HR
GL, Arenas MA, Perez	growth pattern, growth	Hereditary HR			in PHEX gene	
Garrido N, Ramirez P,	velocity, body disproportion					
Marino R, et al.	and pubertal development in					
Growth in height and	children with HHR under					
body proportion from	conventional treatment					
birth to adulthood in						
hereditary						
hypophosphatemic						
rickets: a						
retrospective cohort						
study. Journal of						
endocrinological						
investigation.						
2022;45(7):1349-58.						
Durmaz E, Zou M, Al-	To report 10 Turkish patients	Patients with XLHR and	10 from 6	6 probands	Variant frequency	HR
Rijjal RA, Baitei EY,	from 6 unrelated families. Four	their parents from 6	families	with age at	in PHEX gene	
Hammami S, Bircan I,	novel mutations were found in	unrelated Turkish		diagnosis		
et al. Novel and de	the PHEX gene and de novo	families		≤18 yrs		

novo PHEX mutations in patients with hypophosphatemic rickets. Bone.	mutations were exclusively present in female patients					
2013;52(1):286-91.						
Gao Y, Wang Z-M, Li X-L. Analysis of 2 novel mutations of PHEX gene inducing X-linked dominant hypophosphatemia rickets in 2 families: Two case reports. Medicine. 2018;97(31):e11453.	To report two novel mutations of PHEX gene: c.497delG and c.388G>T found by Sanger sequencing in 2 families manifesting growth retardation, skeletal malformations, dental dysplasia	Family members affected with XLHR showing skeletal malformations, bowing of legs, and dental dysplasia	2	2	Variant frequency in PHEX gene	XLHR
Gaucher C, Walrant- Debray O, Nguyen T- M, Esterle L, Garabedian M, Jehan F. PHEX analysis in 118 pedigrees reveals new genetic clues in hypophosphatemic rickets. Human genetics. 2009;125(4):401-11.	To analyse the PHEX gene using classical sequencing in 209 patients with hypophosphatemic rickets, representing 118 families, and high-resolution melting curves analysis was evaluated as a possible screening method	Patients with HR (hypophosphatemia associated with tubular phosphate wasting, bone deformities and radiological signs of rickets)	209	118 probands	Variant frequency in PHEX gene	HR
Guven A, Al-Rijjal RA, BinEssa HA, Dogan D, Kor Y, Zou M, et al. Mutational analysis of PHEX, FGF23 and CLCN5 in patients with	To investigate additional 14 Turkish patients with hypophosphataemic rickets from nine unrelated families and identified seven novel mutations	Patients with HR and their parents from three different regional hospitals in Turkey	14 from 9 families	9 probands	Gene frequency and variant frequency in PHEX, CLCN5, FGF23	HR

hypophosphataemic rickets. Clinical endocrinology. 2017:87(1):103-12.						
Holm IA, Nelson AE, Robinson BG, Mason RS, Marsh DJ, Cowell CT, et al. Mutational analysis and genotype-phenotype correlation of the PHEX gene in X-linked hypophosphatemic rickets. The Journal of clinical endocrinology and metabolism. 2001;86(8):3889-99.	To report our mutational analysis of all 22 PHEX exons in 28 individuals with HYP and 5 PHEX exons in 13 individuals with HYP (familial and sporadic cases). To present phenotype analysis of all patients in whom a mutation was detected in this and our previous study and all available affected family members for familial cases. To report our analysis of potential correlation between phenotype and genotype and our investigation of reverse anticipation and gene dosage effect	Unrelated patients with HR	50	50	Variant frequency in PHEX gene	XLHR
Huang Y, Mei L, Pan Q, Tan H, Quan Y, Gui B, et al. Novel de novo nonsense mutation of the PHEX gene (p.Lys50Ter) in a Chinese patient with hypophosphatemic rickets. Gene. 2015;565(1):150-4.	To clinically characterized four unrelated families with hypophosphatemia, bone abnormalities, short stature, and dentin malformation	Four Chinese families with XLHR based on clinical studies and molecular diagnostics	7	4 probands with age at diagnosis ≤18 yrs	Variant frequency in PHEX gene	HR
Jacob P, Bhavani GS, Udupa P, Wang Z,	To understand the phenotypic and genotypic spectrum of	Unrelated individuals from different families	10	8 individuals with age at	Gene frequency and variant	Hereditary rickets

Hariharan SV,	genetic forms of rickets in 10	with suspected		diagnosis	frequency in	
Delampady K, et al.	families	hereditary rickets.		≤18 yrs	CYP27B1, VDR,	
Exome Sequencing in					PHEX, SLC2A2,	
Monogenic Forms of					SLC34A3	
Rickets. Indian journal						
of pediatrics. 2023.						
Jap T-S, Chiu C-Y, Niu	To identify PHEX gene	Unrelated Chinese	9	9 patients	Variant frequency	HR
D-M, Levine MA.	mutations in Chinese patients	patients with clinical and		with age at	in PHEX gene	
Three novel	with hypophosphatemic rickets	biochemical		time of		
mutations in the	who are living in Taiwan	manifestations of early-		testing ≤18		
PHEX gene in Chinese		onset or congenital		yrs		
subjects with		hypophosphatemic				
hypophosphatemic		rickets, including				
rickets extends		hypophosphatemia,				
genotypic variability.		short stature, and lower				
Calcified tissue		extremity deformities				
international.						
2011;88(5):370-7.						
Jimenez M, Ivanovic-	To describe the clinical,	Patients with hereditary	26	17 probands	Gene frequency	Hereditary HR
Zuvic D, Loureiro C,	biochemical, and molecular	hypophosphatemic			and variant	
Carvajal CA, Cavada	presentation of patients with	rickets from different			frequency in	
G, Schneider P, et al.	XLH in Chile, with the purpose	centres throughout Chile			CLCN5, CYP27B1,	
Clinical and molecular	of increasing awareness in our				CYP2R1, DMP1,	
characterization of	medical community about the				ENPP1, FGF23,	
Chilean patients with	importance of early diagnosis,				PHEX, SLC34A4,	
X-linked	pertinent treatment, and				VDR, ALPL, FAH,	
hypophosphatemia.	prevailing unmet needs in care				FAM20C, FGFR1	
Osteoporosis						
international : a						
journal established as						
result of cooperation						
between the						
European Foundation						

for Osteoporosis and						
the National						
Osteoporosis						
Foundation of the						
USA.						
2021;32(9):1825-36.						
Kinoshita Y, Saito T,	To conduct a detailed analysis	Patients with clinical and	27	9 patients	Gene frequency	FGF23-related
Shimizu Y, Hori M,	to identify the aetiology of	biochemical		with age ≤18	of PHEX, FGF23,	HR
Taguchi M, Igarashi T,	FGF23-related	manifestations of		yrs	DMP1, ENPP1,	
et al. Mutational	hypophosphatemic rickets in 27	congenital			and variant	
analysis of patients	consecutive Japanese patients	hypophosphatemic			frequencies in	
with FGF23-related		rickets with FGF23			PHEX gene	
hypophosphatemic		above 30 pg/ml				
rickets. European						
journal of						
endocrinology.						
2012;167(2):165-72.						
Li S-S, Gu J-M, Yu W-J,	To screen a total of 18 affected	Unrelated Chinese	43	8 probands	Variant	HR
He J-W, Fu W-Z,	families for mutations in the	families with			frequency in	
Zhang Z-L. Seven	PHEX gene in order to interpret	hypophosphatemic			PHEX gene	
novel and six de novo	the mutation traits in Chinese	rickets of Han ethnicity				
PHEX gene mutations	patients and potentially					
in patients with	provide evidence of a critical					
hypophosphatemic	domain in PHEX protein					
rickets. International						
journal of molecular						
medicine.						
2016;38(6):1703-14.						
Liao H, Zhu H-M, Liu	To report on two variants of the	Two Chinese families	23	2 probands	Variant frequency	XLHR
H-Q, Li L-P, Liu S-L,	PHEX gene in two Chinese	affected by XLHR			in PHEX gene	
Wang H. Two novel	families affected by XLHR. The					
variants of the PHEX	primary aim was to provide a					
gene in patients with	genetic diagnosis for the					

X-linked dominant	affected family members and					
hypophosphatemic	to analyse the underlying					
rickets and prenatal	genotype-phenotype					
diagnosis for fetuses	correlations					
in these families.						
International journal						
of molecular						
medicine.						
2018;41(4):2012-20.						
Lin X, Zhu Y, Luo J,	To identify the gene mutations	Three children with	3	3	Variant frequency	XLHR
Huang J. Genetic	responsible for three cases of	XLHR with XLH-affected			in PHEX gene	
analysis of three	XLH and its clinical phenotype	mothers			-	
families with X-linked						
dominant						
hypophosphatemic						
rickets. Journal of						
pediatric						
endocrinology &						
metabolism : JPEM.						
2018;31(7):789-97.						
Lin Y, Xu J, Li X, Sheng	To provide clinical and	Paediatric	80	80	Variant frequency	HR
H, Su, L, Wu M, Cheng	mutational characteristics of 65	hypophosphatemia			in PHEX gene	
J, Huang Y, Mao X,	XLH paediatric patients in	patients and 123				
Zhou Z, Zhang W, Li C,	southern China	relatives from 76				
Cai Y, Wu D, Lu Z, Yin		unrelated families in				
X, Zeng C, Liu L. Novel		Guangzhou Women and				
variants and		Children's Medical				
uncommon cases		Center				
among southern						
Chinese children with						
X-linked						
hypophosphatemia.						
Journal of						

Endocrinological Investigation. 2020;43(11):p1577-						
90.						
Lo F-S, Kuo M-T,	To describe two novel	Two unrelated	6	2 probands	Variant frequency	XLHR
Wang C-J, Chang C-H,	mutations of the PHEX gene, a	Taiwanese families with			in PHEX gene	
Lee Z-L, Van Y-H. Two	missense mutation (L206W) in	XLHR in Taiwan				
novel PHEX mutations	exon 5, and a frameshift					
in Taiwanese patients	mutation (nucleotide					
with X-linked	1826/1830delAAAAG, stop					
hypophosphatemic	after codon 610) in exon 18, in					
rickets. Nephron	two unrelated Taiwanese					
Physiology.	families with XLH. To analyse					
2006;103(4):p157-63.	the laboratory and radiographic					
	findings for these patients					
Marik B, Bagga A,	To identify mutations	Patients with refractory	37	32 probands	Variant frequency	HR
Sinha A, Hari P,	responsible for the	rickets			in PHEX gene	
Sharma A. Genetics of	pathogenesis of refractory					
Refractory Rickets:	rickets					
Identification of						
Novel PHEX						
Mutations in Indian						
Patients and a						
Literature Update.						
Journal of pediatric						
genetics.						
2018;7(2):47-59.						
Marik B, Bagga A,	To prospectively examined the	Patients with	66	65	Gene frequency	HR
Sinha A, Khandelwal	aetiology of hypophosphatemic	hypophosphatemic		individuals	and variant	
P, Hari P, Sharma A.	rickets in consecutive patients	rickets		with age ≤18	frequency in	
Genetic and clinical	referred to this tertiary care			yrs	PHEX, FGF23,	
profile of patients	centre, by testing for presence				DMP1, ENPP1,	
with	of disease-causing variations to				CLCN5, CTNS,	

hypophosphatemic rickets. European journal of medical genetics. 2022;65(8):104540.	enable molecular diagnosis and appropriate therapy				SLC2A2, GATM, SLC34A1, EHHADH, SLC4A1, ATP6V1B1, ATP6V0A4,	
					and FGFR1	
Morey M, Castro- Feijoo L, Barreiro J, Cabanas P, Pombo M, Gil M, et al. Genetic diagnosis of X-linked dominant Hypophosphatemic Rickets in a cohort study: tubular reabsorption of phosphate and 1,25(OH)2D serum levels are associated with PHEX mutation type. BMC medical genetics. 2011;12:116.	To perform genetic diagnosis in a cohort of patients with clinical diagnosis of HR	Patients clinically diagnosed with HR and one pre-symptomatic infant belonging to 36 unrelated families	43	36 probands	Variant frequency in PHEX gene	HR
Obara-Moszynska M, Rojek A, Kolesinska Z, Jurkiewicz D, Chrzanowska KH, Niedziela M. X-linked hypophosphataemic rickets in children: clinical phenotype, therapeutic	To investigate the clinical phenotype, therapeutic strategies, and molecular background of HR in children hospitalised in our clinic	Children diagnosed with HR due to their clinical and biochemical profiles	11	11	Gene frequency and variant frequency in PHEX and FGF23	HR

strategies, and						
molecular						
background.						
Endokrynologia						
Polska.						
2021;72(2):108-19.						
Pecoraro C, Fioretti T,	To report the clinical and	Two Italian female	2	2	Variant frequency	HR
Perruno A, Klain A,	genetic features of two Italian	infants with sporadic HR			in PHEX gene	
Cioffi D, Ambrosio A,	female infants with sporadic HR	who successfully				
et al. De Novo Large	who successfully responded to	responded to				
Deletions in the PHEX	Burosumab	Burosumab				
Gene Caused X-Linked						
Hypophosphataemic						
Rickets in Two Italian						
Female Infants						
Successfully Treated						
with Burosumab.						
Diagnostics (Basel,						
Switzerland).						
2023;13(15).						
Popowska E, Pronicka	To present biochemical,	Individuals from 36	59	31 probands	Variant frequency	XLHR
E, Sulek A, Jurkiewicz	stomatological, audiological	unrelated families with			in PHEX gene	
D, Rowinska E, Sykut-	and anthropometrical	XLH			_	
Cegielska J, et al. X-	characteristics of patients with					
linked	established genotypes and					
hypophosphatemia in	analyse correlations between					
Polish patients. 2.	clinical symptoms and the type					
Analysis of clinical	and localisation of the PHEX					
features and	gene mutations					
genotype-phenotype						
correlation. Journal of						
applied genetics.						
2001;42(1):73-88.						

Quinlan C, Guegan K, Offiah A, Neill RO, Hiorns MP, Ellard S, et al. Growth in PHEX- associated X-linked hypophosphatemic rickets: the importance of early treatment. Pediatric nephrology (Berlin, Germany). 2012;27(4):581-8.	Secondary goals were to reports results of mutation screening and genotype- phenotype relationships	Children with XLHR	61	46 who were screened for PHEX mutation	Gene frequency and variant frequency in PHEX	XLHR
Rafaelsen S, Johansson S, Raeder H, Bjerknes R. Hereditary hypophosphatemia in Norway: a retrospective population-based study of genotypes, phenotypes, and treatment complications. European journal of endocrinology. 2016;174(2):125-36.	To explore the prevalence, genotypes, phenotypic spectrum, treatment response, and complications of treatment in the Norwegian population of children with HH	Children with HH based on biochemical markers +/- FH or genetic diagnosis from all paediatric hospital departments in Norway	28	19 probands	Gene frequency and variant frequency in PHEX, FGF23, DMP1, ENPP1, KL, FAM20C	HR
Sant' Ana I, Torrini R, Alves Coelho MC, Cantoni J, Madeira M, Ribeiro M. X-linked hypophosphatemic rickets: Description of	To describe new mutations to improve our knowledge about this rare disease, its genetic bases and possible associated phenotypes, laboratory changes, and family history	Patients with a previously presumptive diagnosis (based on clinical history, laboratory findings, and	26	15 patients with age at diagnosis ≤18 yrs and underwent	Variant frequency in PHEX gene	XLH

seven new variants in		physical examination) of		sequence		
patients followed up		XLHR		analysis		
in reference hospitals						
in Rio de Janeiro.						
Molecular genetics &						
genomic medicine.						
2022;10(6):e1941.						
Song HR, Park JW,	To describe eight different	Patients with a diagnosis	15	13 patients	Variant frequency	HR
Cho DY, Yang JH, Yoon	PHEX mutations identified in 15	of XLHR based on		with age at	in PHEX gene	
HR, Jung SC. PHEX	unrelated Korean patients with	clinical, radiological, and		diagnosis		
gene mutations and	hypophosphatemic rickets,	laboratory findings by		≤18 yrs		
genotype-phenotype	including five novel mutations.	specialists at the Korea				
analysis of Korean	To analyse the correlation	University Guro Hospital				
patients with	between genotype and					
hypophosphatemic	phenotype, phenotypes were					
rickets. Journal of	compared between groups					
Korean medical	with and without a mutation, in					
science.	terms of mutation location,					
2007;22(6):981-6.	mutation type, and sex					
Tavana N, Ting TH, Lai	To identify the gene variants	Paediatric patients with	3	3	Gene frequency	HR
K, Kennerson ML,	responsible for HR in three	HR in Malayasia			and variant	
Thilakavathy K. Whole	cases of Malaysian origin from	presenting with clinical			frequency in	
exome sequencing	three independent families and	and biochemical			PHEX, DMP1,	
identifies two novel	to describe their clinical,	features of HR including			FGF23, SLC34A3,	
variants in PHEX and	biochemical, and radiological	lower limb bowing			CLCN5	
DMP1 in Malaysian	features	deformity, short stature,				
children with		low serum phosphate,				
hypophosphatemic		elevated alkaline				
rickets. Italian journal		phosphatase, normal				
of pediatrics.		serum calcium, and				
2022;48(1):193.		normal 25-				
		hydroxyvitamin D				

Xu X, Tang Y, Luo Z, Song H, Xu W. Role of serum cytokines in the diagnosis and treatment of pediatric hemophagocytic lymphohistiocytosis. Pediatric Blood and Cancer. 2022;69(SUPPL 1).	To describe the clinical features, PHEX gene mutation sites, and iFGF23 levels of 29 patients with XLH as well as recommend optimal operation timing	Chinese patients with XLHR	29	20 probands	Variant frequency in PHEX gene	XLHR
Turan I, Erdem S, Kotan LD, Ozdemir Dilek S, Tastan M, Gurbuz F, et al. Experience with the targeted next- generation sequencing in the diagnosis of hereditary hypophosphatemic rickets. Journal of pediatric endocrinology & metabolism : JPEM. 2021;34(5):639-48.	To present clinical and molecular genetic features of 35 consecutive patients diagnosed at one tertiary care centre	18 consecutive probands and their 17 affected family members with HHR who were admitted to the Cukurova University	35	18 probands	Gene frequency and variant frequency in PHEX, SLC34A3, ENPP1, SLC34A1, CLCN5, DMP1	Hereditary HR
Tyynismaa H, Kaitila I, Nanto-Salonen K, Ala- Houhala M, Alitalo T. Identification of fifteen novel PHEX gene mutations in Finnish patients with	To screen the PHEX gene in Finnish patients with hypophosphatemia	Finish patients with early onset clinical, radiographic, and laboratory hypophosphatemic rickets with favourable outcome of oral	23	23	Variant frequency in PHEX gene	HR

hypophosphatemic		phosphate and alfa-				
rickets. Human		calcidol treatment, and				
mutation.		knowledge of their				
2000;15(4):383-4.		family history				
Xia WB, Meng XW,	To analyse the molecular basis	Patients with XLHR	8	3 patients	Gene frequency	HR
Jiang Y, Li M, Xing XP,	in three unrelated Chinese	according to the		with age at	and variant	
Pang L, et al. Three	families with XLH, we	evaluation of their		diagnosis	frequency in	
novel mutations of	determined the nucleotide	medical history, physical		≤18 yrs	PHEX and FGF23	
the PHEX gene in	sequence of the PHEX gene and	examination, radiologic				
three Chinese families	fibroblast growth factor 23	evidence of rachitic				
with X-linked	(FGF23) gene of affected	disease, unremarkable				
dominant	members	serum calcium,				
hypophosphatemic		electrolyte				
rickets. Calcified		concentrations,				
Tissue International.		hypophosphatemia, and				
2007;81(6):415-20.		X-linked dominant				
		transmission				
Yue H, Yu JB, He JW,	To identify PHEX gene	Patients from Chinese	45	8 individuals	Variant frequency	XLHR
Zhang Z, Fu WZ,	mutations and describe the	Han ethnicity with a		with age ≤18	in PHEX gene	
Zhang H, et al.	clinical features observed in 6	diagnosis of XLH based		yrs		
Identification of two	unrelated Chinese families and	on clinical				
novel mutations in	3 sporadic patients with	manifestations,				
the PHEX gene in	hypophosphatemic	radiology results,				
Chinese patients with	rickets/osteomalacia	skeletal deformities,				
hypophosphatemic		growth impairment, and				
rickets/osteomalacia.		laboratory results that				
Plos One.		indicated the occurrence				
2014;9(5):9.		of hypophosphatemia				
		and renal phosphate				
		wasting				
Zheng B, Wang C,	To investigate the mutational	Unrelated patients with	53	53	Variant frequency	XLHR
Chen Q, Che R, Sha Y,	spectrum of PHEX in 53	XLHR with confirmed			in PHEX gene	
Zhao F, et al.	patients who received a clinical	pathogenic or likely				

Functional	and biochemical diagnosis of	pathogenetic variations		
Characterization of	HR	in PHEX gene and		
PHEX Gene Variants		presence of		
in Children With X-		hypophosphatemia and		
Linked		rickets		
Hypophosphatemic				
Rickets Shows No				
Evidence of				
Genotype-Phenotype				
Correlation. Journal				
of bone and mineral				
research : the official				
journal of the				
American Society for				
Bone and Mineral				
Research.				
2020;35(9):1718-25.				

fHLH

Reference	Study aim	Population	Total	Eligible	Study outcome	Disease category
			population N	population for		of included
			in study	review		population
Ahmari AA, Alsmadi	Explore spectrum of	Saudi patients diagnosed	87	87	Gene and variant	HLH
O, Sheereen A, Elamin	inherited variants of the	with HLH			frequency in PRF1,	
T, Jabr A, El-Baik L, et	eight FHL genes in a large				UNC13D, STXBP2,	
al. Genetic and clinical	cohort of Saudi FHL				STX11, LYST, RAB27A	
characteristics of	patients				and XIAP	
pediatric patients						
with familial						
hemophagocytic						

lymphohistiocytosis.						
Blood research.						
2021;56(2):86-101.						
Almalky MA, Saleh	Illustrate clinical and	Paediatric patients	18	18	Variant frequency in	HLH
SHA, Baz EG, Fakhr	laboratory features,	diagnosed with the HLH			PRF1	
AE. Clinico-laboratory	management outcomes	2004 criteria				
profile and perforin	and PRF1 gene mutation of					
gene mutations of	HLH patients					
pediatric						
hemophagocytic						
lymphohistiocytosis						
cases: a five-year						
single center study.						
The Pan African						
medical journal.						
2020;36:354.						
Amirifar P, Ranjouri	Systematically review	Patients with genetically	322	322	Variant type frequency	single
MR, Abolhassani H,	clinical features,	confirmed UNC13D			in UNC13D	gene/variant
Moeini Shad T,	immunologic data and	mutation				
Almasi-Hashiani A,	genetic findings of					
Azizi G, et al. Clinical,	confirmed patients with					
immunological and	fhlh3 and determine					
genetic findings in	genotype-phenotype					
patients with UNC13D	relationship					
deficiency (FHL3): A						
systematic review.						
Pediatric allergy and						
immunology : official						
publication of the						
European Society of						
Pediatric Allergy and						
Immunology.						
2024 22/41 426 27	1	1	1		1	1

Ammann S, Lehmberg	Establish whether	Children referred with	290	290	Gene frequency of PRF1,	HLH
K, Zur Stadt U,	immunological studies can	suspected HLH			SH2D1A, BIRC4A,	
Klemann C, Bode SFN,	be used as a decision tool				UNC13D, STXBP2,	
Speckmann C, et al.	for the need and extent of				STX11, RAB27A, LYST	
Effective	genetic studies in children				and AP3B1	
Immunological	referred for suspected HLH					
Guidance of Genetic						
Analyses Including						
Exome Sequencing in						
Patients Evaluated for						
Hemophagocytic						
Lymphohistiocytosis.						
Journal of clinical						
immunology.						
2017;37(8):770-80.						
Babol-Pokora K,	Present molecular genetics	Patients with HLH based on	54	36 with genetic	Gene and variant	HLH
Wolowiec M, Popko K,	among paediatric HLH	clinical + biochemical		studies	frequency in PRF1,	
Jaworowska A,	patients	criteria and/or presence of			UNC13D, STX11,	
Bryceson YT, Tesi B, et		relevant genetic mutations			STXBP2, RAB27A,	
al. Molecular Genetics					SH2D1A, XIAP, MAGT1,	
Diversity of Primary					AP3B2, ITK, CD27, LYST	
Hemophagocytic					and NLRC4	
Lymphohistiocytosis						
among Polish						
Pediatric Patients.						
Archivum						
immunologiae et						
therapiae						
experimentalis.						
2021;69(1):31.						
Bayram C, Tahtakesen	Evaluate the clinical and	Patients with primary HLH	41	23 who had HLH	Gene frequency of PRF1,	HLH
TN, Arslantaş E,	laboratory characteristics			mutation analysis	UNC13D and STX11	
Yilmaz E, Özdemir GN,	that impact prognosis and			performed		

Pasli Uysalol E, et al.	long term outcomes in					
Prognostic factors and	patients with primary HLH					
long-term outcomes						
in 41 children with						
primary						
hemophagocytic						
lymphohistiocytosis:						
Report of a single-						
center experience and						
review of the						
literature. J Pediatr						
Hematol Oncol.						
2023;45(5):262-6.						
Beken B, Aytac S,	Evaluate the demographic,	Patients with primary HLH	37	37	Gene frequency of PRF1,	HLH
Balta G, Kuskonmaz B,	clinical and laboratory				UNC13D and STX11	
Uckan D, Unal S, et al.	findings of FHL patients					
The clinical and						
laboratory evaluation						
of familial						
hemophagocytic						
lymphohistiocytosis						
and the importance						
of hepatic and spinal						
cord involvement: a						
single center						
experience.						
Haematologica.						
2018;103(2):231-6.						
Cetica V, Sieni E,	Describe the genetic basis	Clinical diagnosis of HLH	500	426 with DNA	Gene and variant	HLH
Pende D, Danesino C,	of disease for 500 patients			studies carried	frequency in PRF1,	
De Fusco C, Locatelli	with HLH in the national			out	UNC13D, STXBP2, STX11	
F, et al. Genetic	registry				and RAB27A	
predisposition to						

hemophagocytic lymphohistiocytosis: Report on 500 patients from the Italian registry. The Journal of allergy and clinical immunology.						
2016;137(1):188-						
96.e4.						
Chen X, Wang F, Zhang Y, Teng W, Wang M, Nie D, et al. Genetic variant spectrum in 265 Chinese patients with hemophagocytic lymphohistiocytosis: Molecular analyses of PRF1, UNC13D, STX11, STXBP2, SH2D1A, and XIAP. Clinical genetics. 2018;94(2):200-12.	Inspect the inherited variant spectrum of 6 FHL genes in a large cohort of chinese HLH patients and compare with other ethnic and regional populations	Patients with HLH meeting the HLH-2004 criteria admitted to hospital	283	265 with DNA sample of sufficient quality for analysis	Gene and variant frequency in PRF1, UNC13D, STXBP2, STX11, SH2D1A and XIAP	HLH
Chinn IK, Eckstein OS, Peckham-Gregory EC, Goldberg BR, Forbes LR, Nicholas SK, et al. Genetic and mechanistic diversity in pediatric hemophagocytic lymphohistiocytosis.	Evaluate the genomic spectrum and associated outcomes of children with HLH	Children diagnosed with HLH using the HLH 2004 criteria	122	101 with genetic testing performed	Gene frequency in PRF1, RAB27A, STX11, UNC13D, CARMIL2, CASP10, CYBB, DOCK8, LRBA, MCM3AP, MCM9, NCF1, PIK3CD, RAG1, RAG2, STAT1, STAT2, STAT3, TTC7A, WAS, NLRC3, NLRC4, NLRP12, NLRP13, NLRP4, NRAS,	HLH

Blood. 2018;132(1):89-100.					ARHGEF6, ERCC4, G3BP1, IL16, RASGRP3, STAT4, TREM2 and variant frequency in PRF1, RAB27A, STX11,	
Clementi R, zur Stadt U, Savoldi G, Varoitto S, Conter V, De Fusco C, et al. Six novel mutations in the PRF1 gene in children with haemophagocytic lymphohistiocytosis. Journal of medical genetics.	Report 6 novel PRF1 mutations in children with HLH	Families in which index case fulfilled diagnostic criteria	10	10	UNC13D and LYST Gene and variant frequency in PRF1	HLH
2001;38(9):643-6. Cleves D, Lotero V, Medina D, Perez PM, Patino JA, Torres- Canchala L, et al. Pediatric hemophagocytic lymphohistiocytosis: A rarely diagnosed entity in a developing country. BMC pediatrics. 2021;21(1):411.	Determine the frequency of haemophagocytic syndrome and describe demographic, clinical and outcome characteristics	Hospitalised children diagnosed with HLH based in HLH-2004 criteria	21	3 with genetic testing performed	Gene and variant frequency in G6PC3, LYST, XIAP and UNC13D	HLH
Elsharkawy A, Assem H, Salama M, Mikhael N, Zeid MY, El Chazli Y. Clinical Characteristics	Epidemiological study if Egyptian children with HLH	Children <16y fulfilling the HLH-2004 criteria	101	57 with genetic testing performed	Gene frequency of PRF1, UNC13D, STXBP2, LYST, RAB27A, SH2D1A	HLH

and Outcomes of 101						
Children with						
Hemophagocytic						
Lymphohistiocytosis:						
A Four-Year Single-						
Center Experience						
from Egypt. Pediatric						
hematology and						
oncology.						
2021;38(3):194-207.						
Elstak ED, te Loo M,	Describe seven patients	Patients fulfilling HLH	7	7	Variant frequency in	single
Tesselaar K, van	with UNC13D mutations	criteria			UNC13D	gene/variant
Kerkhof P, Loeffen J,						
Grivas D, et al. A						
novel Dutch mutation						
in UNC13D reveals an						
essential role of the						
C2B domain in						
munc13-4 function.						
Pediatric blood &						
cancer.						
2012;58(4):598-605.						
Elyamany G, Alzahrani	Present 12 cases of HLH	Patients from Saudi with	12	10 with genetic	Gene frequency of PRF1,	HLH
A, Elfaraidi H,		HLH using HLH-2004		testing	UNC13D, STXBP2 and	
Alsuhaibani O,		criteria		performed	STX11	
Othman N, Al						
Mussaed E, et al.						
Hemophagocytic						
Lymphohistiocytosis:						
Single-Center Series						
of 12 Cases from						
Saudi Arabia. Clinical						
medicine insights						

Pediatrics.						
2016;10:21-6.						
Feldmann J, Le Deist	Describe the spectrum of	Patients with FHL cause by	14	14	Variant frequency in	single
F, Ouachee-Chardin	clinical, immunological and	PRF1 deficiency			PRF1	gene/variant
M, Certain S,	genetic features in patients					
Alexander S, Quartier	whose FHL results from					
P, et al. Functional	PRF1 deficiency					
consequences of						
perforin gene						
mutations in 22						
patients with familial						
haemophagocytic						
lymphohistiocytosis.						
British journal of						
haematology.						
2002;117(4):965-72.						
Ferreira M, Martins J,	Describe two cases of	Children presenting to A&E	2	2	Gene and variant	HLH
Silvestre C, Abadesso	primary HLH with different	following prolonged fever			frequency in PRF1,	
C, Matias E, Loureiro	clinical presentation and	without accompanying			UNC13D and STX11	
H, et al. Familial	evolution	symptoms				
haemophagocytic						
lymphohistiocytosis:						
two case reports. BMJ						
case reports.						
2010;2010.						
Goransdotter Ericson	Determine the frequency	Unrelated families with one	34	34	Variant frequency in	HLH
K, Fadeel B, Nilsson-	and type of mutations in	or more children affected			PRF1	
Ardnor S, Soderhall C,	the perforin gene by direct	with FHL 1 child per				
Samuelsson A, Janka	sequencing of DNA from a	family investigated in case				
G, et al. Spectrum of	large set of well-defined	where multiple affected				
perforin gene	families affected by FHL	siblings				
mutations in familial						
hemophagocytic						

lymphohistiocytosis.						
American journal of						
human genetics.						
2001;68(3):590-7.						
Gurgey A, Unal S,	Present 8 cases of neonatal	Neonates with HLH	8	7 probands	Gene and variant	HLH
Okur H, Orhan D,	onset primary HLH				frequency in PRF1 and	
Yurdakok M. Neonatal					UCN13D	
primary						
hemophagocytic						
lymphohistiocytosis in						
Turkish children.						
Journal of pediatric						
hematology/oncology.						
2008;30(12):871-6.						
Horne A, Ramme KG,	Characterise the clinical	Patients treated for FHL	76	65 probands	Gene frequency of PRF1,	fHLH (4 genes
Rudd E, Zheng C, Wali	phenotype in patients with				UNC13D and STX11	only)
Y, al-Lamki Z, et al.	FHL and analyse whether a					
Characterization of	correlation could be found					
PRF1, STX11 and	to patients with the three					
UNC13D genotype-	genotypes prf1, UNC13D,					
phenotype	STX11 and the no known					
correlations in familial	gene defect.					
hemophagocytic						
lymphohistiocytosis.						
British journal of						
haematology.						
2008;143(1):75-83.						
Imashuku S, Ueda I,	Determine correlations of	Patients under 1 registered	96	28 sequenced	Gene frequency of PRF1	HLH
Teramura T, Mori K,	onset age, clinical	to the HLH study centre in			and UNC13D	
Morimoto A, Sako M,	characteristics, underlying	Kyoto				
et al. Occurrence of	disease and outcomes					
haemophagocytic						
lymphohistiocytosis at						

less than 1 year of						
age: analysis of 96						
patients. European						
journal of pediatrics.						
2005;164(5):315-9.						
Ishii E, Ueda I,	Analyse relationships	Patients meeting diagnostic	57	57	Gene and variant	HLH
Shirakawa R,	among the clinical features,	criteria for FHL			frequency in PRF1 and	
Yamamoto K, Horiuchi	genetic defects and CTL/NK				UNC13D	
H, Ohga S, et al.	cell functions of FHL					
Genetic subtypes of	patients with different					
familial	molecular subtypes					
hemophagocytic						
lymphohistiocytosis:						
correlations with						
clinical features and						
cytotoxic T						
lymphocyte/natural						
killer cell functions.						
Blood.						
2005;105(9):3442-8.						
Kaya Z, Bay A,	Investigate the aetiology,	Patients with HLH	52	25 underwent	Gene and variant	HLH
Albayrak M, Kocak U,	clinical characteristics,			genetic analysis	frequency in PRF1,	
Yenicesu I, Gursel T.	prognostic risk factors and				UNC13D, STX11,	
Prognostic Factors	long-term outcome in a				STXBP2, RAB27A and	
and Long-Term	large group of patients with				LYST	
Outcome in 52	HLH					
Turkish Children With						
Hemophagocytic						
Lymphohistiocytosis.						
Pediatric critical care						
medicine : a journal						
of the Society of						
Critical Care Medicine						

and the World						
Federation of						
Pediatric Intensive						
and Critical Care						
Societies.						
2015;16(6):e165-73.						
Koh K-N, Im HJ, Chung	Investigate the	Patients diagnosed with	251	85 underwent	Gene frequency of PRF1	HLH
N-G, Cho B, Kang HJ,	epidemiological features	HLH		genetic testing	and UNC13D	
Shin HY, et al. Clinical	and ethnic characteristics					
features, genetics,	of Korean paediatric					
and outcome of	patients with HLH, as well					
pediatric patients	as the general clinical					
with hemophagocytic	features and prognostic					
lymphohistiocytosis in	factors of HLH					
Korea: report of a						
nationwide survey						
from Korea						
Histiocytosis Working						
Party. European						
journal of						
haematology.						
2015;94(1):51-9.						
Lee SM, Sumegi J,	Explore the links between a	Patients with HLH referred	23	23	Variant frequency in	single
Villanueva J, Tabata Y,	specific PRF1 mutation and	for genetic testing and who			PRF1	gene/variant
Zhang K, Chakraborty	ethnic and disease	harboured monoallelic or				
R, et al. Patients of	characteristics	biallelic 50delt mutation on				
African ancestry with		PRF1				
hemophagocytic						
lymphohistiocytosis						
share a common						
haplotype of PRF1						
with a 50delT						
mutation. The Journal						

of pediatrics.						
2006;149(1):134-7.						
Lee SM, Villanueva J,	Investigate the	North American families	50	43 sequenced	Variant frequency in	HLH
Sumegi J, Zhang K,	immunophenotypes of HLH	with children diagnosed			PRF1	
Kogawa K, Davis J, et	in relation to the presence	with primary HLH				
al. Characterisation of	or absence of disease-					
diverse PRF1	causing mutations in PRF1					
mutations leading to						
decreased natural						
killer cell activity in						
North American						
families with						
haemophagocytic						
lymphohistiocytosis.						
Journal of Medical						
Genetics.						
2004;41(2):137-44.						
Lee W-I, Chen S-H,	Define the clinical	Patients diagnosed with	32	26 underwent	Gene frequency of PRF1,	HLH
Hung I-J, Yang C-P,	spectrum, immunology and	HLH		genetic analysis	UNC13S, STX11 and	
Jaing T-H, Chen C-J, et	candidate genes in HLH in				SH2D1A	
al. Clinical aspects,	Taiwanese patients					
immunologic						
assessment, and						
genetic analysis in						
Taiwanese children						
with hemophagocytic						
lymphohistiocytosis.						
The Pediatric						
infectious disease						
journal.						
2000.20(1).20 4			1	1	1	
2009;28(1):30-4.						
Ma H, Zhang R, Zhang	Analyse the clinical	Paediatric patients with	38	38	Gene frequency of PRF1,	HLH

Y, et al. Treatment of	factors, and effectiveness				STXBP2, LYST, RAB27A,	
pediatric primary	of HLH 94 and HLH 04				ITK, AP3B1, CD27,	
hemophagocytic	regimens and HSCT in				MAGT1	
lymphohistiocytosis	paediatric patients with					
with the HLH-94/2004	pHLH					
regimens and						
hematopoietic stem						
cell transplantation in						
China. Annals of						
hematology.						
2020;99(10):2255-63.						
Macartney CA,	Describe two unrelated	Paediatric cases of fHLH	2	2	Gene and variant	HLH
Weitzman S, Wood	cases with same novel	with novel STX11 mutation			frequency in PRF1,	
SM, Bansal D, Steele	STX11 mutation				UNC13D and STX11	
M, Meeths M, et al.						
Unusual functional						
manifestations of a						
novel STX11						
frameshift mutation						
in two infants with						
familial						
hemophagocytic						
lymphohistiocytosis						
type 4 (FHL4).						
Pediatric blood &						
cancer.						
2011;56(4):654-7.						
Meeths M, Chiang	Describe two UNC13D	Swedish infants presenting	13	13	Variant frequency in	HLH
SCC, Wood SM,	mutations that can explain	with a known family history			UNC13D	
Entesarian M,	the majority of FHL cases in	of HLH/defective				
Schlums H, Bang B, et	Scandinavia and several	cytotoxicity/degranulation +				
al. Familial	cases across Europe	all infants identified with				
hemophagocytic						

lymphohistiocytosis		UNC13D mutation in their				
type 3 (FHL3) caused		unit				
by deep intronic						
mutation and						
inversion in UNC13D.						
Blood.						
2011;118(22):5783-						
93.						
Meeths M, Entesarian	Present patients with	Families with biallelic	11	8 probands	Variant frequency in	single
M, Al-Herz W, Chiang	biallelic STXBP2 mutations	STXBP2 mutations			STXBP2	gene/variant
SCC, Wood SM, Al-		identified from a cohort of				
Ateeqi W, et al.		patients without				
Spectrum of clinical		identifiable mutations in				
presentations in		PRF1, UNC13D or STX11				
familial						
hemophagocytic						
lymphohistiocytosis						
type 5 patients with						
mutations in STXBP2.						
Blood.						
2010;116(15):2635-						
43.						
Mhatre S, Madkaikar	Elucidating the molecular	Patients with HLH	121	13 with samples	Variant frequency in	single
M, Desai M, Ghosh K.	pathology of a series of			available for	PRF1	gene/variant
Spectrum of perforin	patients from India			mutation studies		
gene mutations in						
familial						
hemophagocytic						
lymphohistiocytosis						
(FHL) patients in						
India. Blood cells,						
molecules & diseases.						
2015;54(3):250-7.						

Mukda E. Trachoo O.	Analyse PRF1, UNC13D.	Thai children with HLH	22	22	Gene and variant	нін
Pasomsub E.	STX11, and STXBP2	diagnosis			frequency in PRF1.	
Tivasirichokchai R.	mutations using WES. (and				UNC13D. STX11.	
lemwimangsa N.	also 8 other genes for				STXBP2, RAB27A, LYST.	
Sosothikul D. et al.	inflammatory conditions)				AP3B1, SH2D13, XIAP,	
Exome sequencing for					ITK CD27 and MAGT1	
simultaneous						
mutation screening in						
children with						
hemonhagocytic						
lymnhohistiocytosis						
International journal						
of hematology						
2017.106(2).282-90						
Muralitharan S. Wali	Describe the genetic	Patients with HI H	16	16	Gene and variant	нін
VA Dennison D Lamki	screening for PRF1		10	10	frequency in PRF1	
74 Zachariah M	mutation in unrelated					
Nagwa FB, et al	ethnic Omani families					
Novel spectrum of						
nerforin gene						
mutations in familial						
hemonhagocytic						
lymphohistiocytosis in						
ethnic Omani						
natients American						
journal of						
hematology						
2007.82(12).1099-						
102						
My IT Lien IB Hsieh	Analyse the clinical	Children with HIH (clinical	33	33	Gene frequency of PRE1	нн
W_{-C} Imamura T Anh	assessment cytokine	or genetically confirmed)	55		and SH2D1A	
TNK Anh PNI et al	nrofiles virological	Si genetically committed)				
Comprehensive	actiologies family studies					
comprehensive	aetiologies, family studies					

analyses and	and genetic analyses and					
characterization of	treatment outcome of HLH					
haemophagocytic	in Vietnamese children					
lymphohistiocytosis in						
Vietnamese children.						
British journal of						
haematology.						
2010;148(2):301-10.						
Nepesov S, Yaman Y,	Define the clinical,	Patients with familial HLH	9	8 probands	Gene frequency of	HLH
Elli M, Bayram N,	laboratory and genetic				UNC13D, SH2D1A, PRF1,	
Ozdilli K, Kiykim A, et	findings of people with				RAB27A and LYST	
al. Clinical, Genetic,	familial HLH					
and Outcome						
Characteristics of						
Pediatric Patients						
with Primary						
Hemophagocytic						
Lymphohistiocytosis.						
Turkish archives of						
pediatrics.						
2022;57(4):398-405.						
Okur H, Balta G,	Present the molecular	Patients with primary HLH	37	9 patients with	Variant frequency in	single
Akarsu N, Oner A,	defects and associated			perforin gene	PRF1	gene/variant
Patiroglu T, Bay A, et	clinical phenotypes of FHL			homozygosity		
al. Clinical and	patients showing			(studied by		
molecular aspects of	homozygosity for the			linkage analysis)		
Turkish familial	perforin gene			who were then		
hemophagocytic				direct sequenced		
lymphohistiocytosis						
patients with perforin						
mutations. Leukemia						
research.						
2008;32(6):972-5.						
Pagel J. Beutel K.	Present detailed genetic	Patients with suspected	185	28 probands	Variant frequency in	single
------------------------	------------------------------	-------------------------	-----	-------------	----------------------	--------------
Lehmberg K. Koch F.	and clinical analyses of a	FHL			STXBP2	gene/variant
Maul-Pavicic A, Rohlfs	large cohort of patients					
A-K, et al. Distinct	with FHL with biallelic					
mutations in STXBP2	STXBP2 mutations from					
are associated with	diverse ethnic origins and					
variable clinical	describe an extended					
presentations in	clinical spectrum of the					
patients with familial	disease together with a					
hemophagocytic	clear genotype-phenotype					
lymphohistiocytosis	correlation					
type 5 (FHL5). Blood.						
2012;119(25):6016-						
24.						
Ramzan M, Yadav SP,	Report the clinical profiles	Infants with confirmed	8	7 underwent	Gene and variant	HLH
Kharya G,	and outcomes of eight	diagnosis of HLH as per		mutation	frequency in RAB27A,	
Chinnabhandar V,	infants diagnoses with HLH	HLH-2004 guidelines		analysis	UNC13D, PRF1 and	
Enteserian M, Henter					STX11	
JI, et al.						
Hemophagocytic						
lymphohistiocytosis in						
infants: a single						
center experience						
from India. Pediatric						
hematology and						
oncology.						
2014;31(3):285-92.						
Sanchez IP, Leal-	Present common PRF1	Patients with FHL2	4	4	Variant frequency in	single
Esteban LC, Alvarez-	haplotype in unrelated				PRF1	gene/variant
Alvarez JA, Perez-	families with atypical FHL2					
Romero CA, Orrego						
JC, Serna ML, et al.						
Analyses of the PRF1						

gene in individuals						
with hemophagocytic						
lymphohystiocytosis						
reveal the common						
haplotype R54C/A91V						
in Colombian						
unrelated families						
associated with late						
onset disease. Journal						
of clinical						
immunology.						
2012;32(4):670-80.						
Sato H, Kawasaki N,	Present consecutive cases	Patients with fHLH	3	3	Variant frequency in	HLH
Kawasaki M, Abiko Y,	of FHLH				PRF1	
Meguro T, Takahashi						
N, et al. Three						
Consecutive Cases of						
Familial						
Hemophagocytic						
Lymphohistiocytosis,						
Including a Case Due						
to Maternal						
Uniparental Disomy.						
Journal of pediatric						
hematology/oncology						
2020;42(8):e819-e21.						
Shabrish S, Kelkar M,	Report general clinical	Patients fulfilling HLH	101	98 <18y	Gene and variant	fHLH (4 genes
Yadav RM, Bargir UA,	features, immunological	criteria			frequency in PRF1,	only)
Gupta M, Dalvi A, et	and molecular findings and				UNC13D, STXBP2 and	
al. The Spectrum of	outcomes of FHL				STX11	
Clinical,						
Immunological, and						
Molecular Findings in						

Familial						
Hemophagocytic						
Lymphohistiocytosis:						
Experience From						
India. Frontiers in						
immunology.						
2021;12:612583.						
Sieni E, Cetica V,	Genotype phenotype	Cases with genetically	84	69 probands	Variant frequency in	single
Santoro A, Beutel K,	correlation analysis for	diagnosed fHLH3 (presence			UNC13D	gene/variant
Mastrodicasa E,	fHLH3	of biallelic UNC13D				_
Meeths M, et al.		mutations) extracted from				
Genotype-phenotype		consortium database				
study of familial						
haemophagocytic						
lymphohistiocytosis						
type 3. Journal of						
medical genetics.						
2011;48(5):343-52.						
Suga N, Takada H,	Investigate perforin gene in	Patients with FHL or	16	15 probands	Variant frequency in	HLH
Nomura A, Ohga S,	Japanese HLH cases with or	sporadic primary HLH			PRF1	
Ishii E, Ihara K, et al.	without family history					
Perforin defects of						
primary						
haemophagocytic						
lymphohistiocytosis in						
Japan. British journal						
of haematology.						
2002;116(2):346-9.						
Trizzino A, zur Stadt	Explore the contribution of	Patients with fHLH2 pooled	124	124	Variant frequency in	single
U, Ueda I, Risma K,	various PRF1 mutations in	from common database			PRF1	gene/variant
Janka G, Ishii E, et al.	FHL2 patients					
Genotype-phenotype						
study of familial						

haemophagocytic						
lymphohistiocytosis						
due to perforin						
mutations. Journal of						
medical genetics.						
2008;45(1):15-21.						
Ueda I, Ishii E,	Examine PRF1 and UNC13D	Patients with clinical FHL (at	40	40	Gene and variant	HLH
Morimoto A, Ohga S,	abnormalities in a large	least one of: positive family			frequency in PRF1 and	
Sako M, Imashuku S.	group of patients with FHL	history, deficient NK			UNC13D	
Correlation between	(defined clinically and/or	activity, CNS disease)				
phenotypic	family history)					
heterogeneity and						
gene mutational						
characteristics in						
familial						
hemophagocytic						
lymphohistiocytosis						
(FHL). Pediatric blood						
& cancer.						
2006;46(4):482-8.						
Woon S-T,	Review results of patients	Patients with PID referred	228	20 with	Gene frequency in PRF1,	HLH
Ameratunga R.	referred to comprehensive	for genetic testing		genetically	UNC13D, DTX11, STXBP2	
Comprehensive	customised genetic testing			confirmed fHLH	and variant frequency in	
genetic testing for	service				PRF1 and UNC13D.	
primary					Additional genes/variant	
immunodeficiency					investigated: CD46, CFH,	
disorders in a tertiary					CFI, CD95, AIRE, NCF1,	
hospital: 10-year					СҮВВ, СНD7, С2,	
experience in					NLRP3/CIAS1, DOCK8,	
Auckland, New					NEMO, RAB27A,	
Zealand. Allergy,					SERPING1, CD40L,	
asthma, and clinical					AICDA, UNG, AUG,	
immunology : official					CD40, STAT3, FoxP3, ITK,	

iournal of the					SH2D1A BIRC4, SPINK5	
Canadian Society of					MEEV properdin JAK3	
Allergy and Clinical					RAG1 RAG2 ADA LIG4	
Immunology					artemis cernunnos	
2016.12.65					factor II-78 II 2-86	
2010,12.05.					SEDS THERSELA	
					LINCOSH WASD CYCDA	
					BTK	
Xu XI Wang HS Ju XI	Investigate the	Patients diagnosed with	323	86 underwent	Gene frequency of PRF1	нін
	enidemiologic and general	HI H according to the 2004	525	genetic testing		
et al Clinical	clinical features and	criteria all children		genetic testing		
nrocontation and	outcome of HIH				DAD27A AD2D1A, DIAC4,	
outcome of pediatric					I VCT	
nationts with						
homonhogocytic						
lymphobisticsytosis in						
china: A retrospostivo						
cillia. A retrospective						
Dediatric Plead and						
Cancar						
Callel.						
2):555-50.			40	40	Course and we done t	
YOON HS, KIM HJ, YOO	Explore the genetic	Patients with FHL	40	40	Gene and variant	HLH
KH, Sung KW, KOO HH,	background of HLH In				frequency in PRF1 and	
Kang HJ, et al.	когеа				UNCISD	
UNCI3D is the						
predominant						
causative gene with						
recurrent splicing						
mutations in Korean						
patients with familial						
hemophagocytic						
lymphohistiocytosis.						

Haematol-Hematol J.						
2010;95(4):622-6.						
Zhang L, Li Z, Liu W,	Clarify genetics of Chinese	Patients with HLH (clinical	26	26	Gene and variant	HLH
Ma H, Wang T, Zhang	paediatric primary HLH	and genetic			frequency in PRF1,	
R. Genetic	patients	diagnosis/family history)			UNC13D, STX11,	
characterization of					STXBP2, LYST, AP3B1,	
pediatric primary					RAB27A, SH2D1A, BIRC4,	,
hemophagocytic					CD27, ITK, MAGT1	
lymphohistiocytosis in						
China: a single-center						
study. Annals of						
hematology.						
2019;98(10):2303-						
10.						
Zur Stadt U, Beutel K,	Provide an overview of	Patients with FHL	63	63	Gene and variant	HLH
Kolberg S,	mutations involved in FHL				frequency in PRF1,	
Schneppenheim R,					UNC13D, STX11 and	
Kabisch H, Janka G, et					RAB27A	
al. Mutation spectrum	1					
in children with						
primary						
hemophagocytic						
lymphohistiocytosis:						
molecular and						
functional analyses of						
PRF1, UNC13D,						
STX11, and RAB27A.						
Human mutation.						
2006;27(1):62-8.						

MCADD

Reference	Study aim	Population	Total	Eligibile	Study outcome	Disease
			population N	population for		category of
			in study	review		included
						population
Martin-Rivada A,	To report experience of	Newborns screened positive for	902	222	Gene frequency and	MCADD
Palomino Perez L, Ruiz-	IEM diagnosis after	IEMs through NBS programme			variant frequency in	
Sala P, Navarrete R,	implementation of				ACADM, PAH,	
Cambra Conejero A,	expanded newborn				DNAJC12, PCBD1,	
Quijada Fraile P, et al.	screening programme				GCDH, MCC1, MCC2,	
Diagnosis of inborn errors					PCCB, MAT1A, FAH,	
of metabolism within the					HPD, BCKDHB,	
expanded newborn					BCKDHA, DBT,	
screening in the Madrid					BCAT2, CBs, SLC3A!,	
region. JIMD reports.					OTC, ASS1, HMGCL,	
2022;63(2):146-61.					ACADVL, HADHA,	
					SLC22A5, CPT2,	
					ETFB, CPT!A,	
					ММАСНС,	
					MMADHC, MMUT,	
					MMAB	
Nichols MJ, Saavedra-	To explore molecular	Newborns screened positive for	511	511	Variant frequency in	MCADD
Matiz CA, Pass KA,	basis for MCADD in New	MCADD			ACADM	
Caggana M. Novel	York state newborns					
mutations causing						
medium chain acyl-CoA						
dehydrogenase deficiency						
under-representation of						
the common c.985 A > G						
mutation in the New York						
state population.						
American journal of						

medical genetics Part A. 2008;146A(5):610-9.						
Wang B, Zhang Q, Gao A, Wang Q, Ma J, Li H, et al. New Ratios for Performance Improvement for Identifying Acyl-CoA Dehydrogenase Deficiencies in Expanded Newborn Screening: A Retrospective Study. Frontiers in genetics. 2019;10:811.	To select optimal biochemical indicators (aka cutoffs) to maximise test accuracy in biochemical screening of ACAD disorders	Patients with suspected ACAD deficiencies	673	81	Gene frequency and variant frequency in ACADS, ACADM, and ACADVL	MCADD
Touw CML, Smit GPA, de Vries M, de Klerk JBC, Bosch AM, Visser G, et al. Risk stratification by residual enzyme activity after newborn screening for medium-chain acyl- CoA dehyrogenase deficiency: data from a cohort study. Orphanet journal of rare diseases. 2012;7:30.	To explore relationship between genotype and residual enzyme activity	Patients diagnosed with MCADD following positive NBS	84	68	Variant frequency in ACADM	MCADD
Maguolo A, Rodella G, Dianin A, Nurti R, Monge I, Rigotti E, et al. Diagnosis, genetic characterization and clinical follow up of mitochondrial fatty acid oxidation disorders in the	To evaluate the complexity of of genotype-phenotype correlation across range of FAO disorders	Patients diagnosed with FAODs	34	20	Gene frequency and variant frequency in ACADS, ACADM, ACADVL, ETFDH, SCL22A5, CPT2	MCADD

new era of expanded						
newborn screening: A						
single centre experience.						
Molecular genetics and						
metabolism reports.						
2020;24:100632.						
Mesbah Z, Sing Ho K,	To characterise the	Children under 18 yrs diagnosed	17	17	Variant frequency in	MCADD
Fitzsimons P, Monavari	epidemiology and clinical	with MCADD in Ireland			ACADM	
AA, Crushell E, Mayne PD.	features of MCADD in the					
Medium Chain Acyl-CoA	Irish population					
Dehydrogenase Deficiency						
(MCADD) in the Irish						
Paediatric Population.						
Irish medical journal.						
2020;112(10):1016.						
Carpenter K, Wiley V, Sim	To report screening	Neonates as part of newborn	275,666	36	Gene frequency in	MCADD
KG, Heath D, Wilcken B.	results for MCADD in over	screening, those with			ACADM	
Evaluation of newborn	250,000 neonates and	octanoylcarnitine >= 1umol/L				
screening for medium	retrospective review of	were given genetic testing;				
chain acyl-CoA	samples from patietns	clinically detected MCADD with				
dehydrogenase deficiency	now diagnosed with	a newborn screening sample				
in 275 000 babies.	MCADD	available				
Archives of disease in						
childhood Fetal and						
neonatal edition.						
2001;85(2):F105-9.						
Li Y-Y, Xu J, Sun X-C, Li H-Y,	To explore prevalence of	Neonates with positive	183,082	6	Variant frequency in	MCADD
Mu K. Newborn screening	MCADD in the Chinese	screening for MCADD			ACADM	
and genetic variation of	population and explore					
medium chain acyl-CoA	the characteristics of					
dehydrogenase deficiency	genetic variation					
in the Chinese population.						
Journal of pediatric						

endocrinology & metabolism : JPEM. 2022;35(10):1264-71.						
Oerton J, Khalid JM, Besley G, Dalton RN, Downing M, Green A, et al. Newborn screening for medium chain acyl-CoA dehydrogenase deficiency in England: Prevalence, predictive value and test validity based on 1.5 million screened babies. J Med Screen.	To evaluate pilot screening service for MCADD	Newborns screened positive for MCADD	190	147	Variant frequency in ACADM	MCADD
Bentler K, Zhai S, Elsbecker SA, Arnold GL, Burton BK, Vockley J, et al. 221 newborn-screened neonates with medium- chain acyl-coenzyme A dehydrogenase deficiency: Findings from the Inborn Errors of Metabolism Collaborative. Molecular genetics and metabolism. 2016;119(1-2):75-82.	To investigate whether first newborn screen C8 values are related to gender, genotype, birth weight, or initial food source	Patients with MCADD, an abnormal newborn screening result and an available first newborn screen C8 value	221	186	Variant frequency in ACADM	MCADD
Tucci S, Wagner C, Grunert SC, Matysiak U, Weinhold N, Klein J, et al. Genotype and residual enzyme activity in medium-chain acyl-CoA dehydrogenase	To report results on confirmation testing after positive NBS for MCADD	Newborns with positive NBS results suggestive of MCADD	170	170	Variant frequency in ACADM	MCADD

(MCAD) deficiency: Are						
predictions possible?						
Journal of inherited						
metabolic disease.						
2021;44(4):916-25.						
Jager EA, Kuijpers MM,	To evaluate the Dutch	Screen positive MCADD	191	167	Variant frequency in	MCADD
Bosch AM, Mulder MF,	population NBS for	patients			ACADM	
Gozalbo ER, Visser G, et al.	MCADD through a					
A nationwide	nationwide retrospective					
retrospective	observational study of					
observational study of	clinical, laboratory and					
population newborn	epidemiological					
screening for medium-	parameters					
chain acyl-CoA						
dehydrogenase (MCAD)						
deficiency in the						
Netherlands. Journal of						
inherited metabolic						
disease. 2019;42(5):890-7.						
Gregersen N, Winter V,	To study the evolution of	European patients with proven	109	109	Single variant	MCADD
Curtis D, Deufel T, Mack	the 985A>G mutation	or suspected MCADD			(985A>G) frequency	
M, Hendrickx J, et al.	from European data				in ACADM	
Medium-chain acyl-CoA						
dehydrogenase (MCAD)						
deficiency: the prevalent						
mutation G985 (K304E) is						
subject to a strong						
founder effect from						
northwestern Europe.						
Human heredity.						
1993;43(6):342-50.						

Vanture EV Lasndre D. Luz	To proceed first report of	Dationto diagnaced with MCADD	100	100		
ventura FV, Leandro P, Luz	To present first report of	Patients diagnosed with MICADD	109	109	variant frequency in I	VICADD
A, Rivera IA, Silva MFB,	Portuguese MCADD	either by NBS or at clinical onset			ACADM	
Ramos R, et al.	population	or through family studies				
Retrospective study of the						
medium-chain acyl-CoA						
dehydrogenase deficiency						
in Portugal. Clinical						
genetics. 2014;85(6):555-						
61.						
Weiss KJ, Berger U, Haider	To report on biochemical	MCADD patients, most detected	109	109	Variant frequency in I	VCADD
M, Wagner M, Martner	phenotypes, secondary	through NBS, a handful through			ACADM	
EMC, Regenauer-	carnitine deficiency and	targeted screening or clinically				
Vandewiele S, et al. Free	carnitine					
carnitine concentrations	supplementation					
and biochemical						
parameters in medium-						
chain acyl-CoA						
dehydrogenase deficiency:						
Genotype-phenotype						
correlation. Clinical						
genetics.						
2023:103(6):644-54.						
Anderson S. Botti C. Li B.	To report incidence of	Patients either clinically	81	81	Variant frequency in	MCADD
Millonig JH, Lyon E,	clinically manifested	detected or MS/MS NBS	-	-	ACADM	_
Millson A, et al. Medium	MCADD and frequency of	detected				
chain acyl-CoA	MCADD detected by NBS					
dehydrogenase deficiency	to estimate risk of clinical					
detected among Hispanics	manifestation in					
by New Jersey newborn	undiagnosed children and					
screening. American	evaluate effectiveness of					
journal of medical	screening. To report the					
genetics Part A.	mutational spectrum					
2012;158A(9):2100-5.	underlying MCAD					

	deficiency in Denmark and how it correlates with the clinical genotypes					
Nennstiel-Ratzel U, Arenz S, Maier EM, Knerr I, Baumkotter J, Roschinger W, et al. Reduced incidence of severe metabolic crisis or death in children with medium chain acyl-CoA dehydrogenase deficiency homozygous for c.985A>G identified by neonatal screening. Molecular genetics and metabolism. 2005;85(2):157-9.	To assess the outcome of MCADD in screened and unscreened populations by genotype	Children who screen positive for MCADD	74	74	Variant frequency in ACADM	MCADD
Anderson DR, Viau K, Botto LD, Pasquali M, Longo N. Clinical and biochemical outcomes of patients with medium- chain acyl-CoA dehydrogenase deficiency. Molecular genetics and metabolism. 2020;129(1):13-9.	To report on five Hispanic MCADD patients identified through New Jersey newborn screening and the cumulative incidence of MCADD among Hispanic and non- Hispanic infants identified through newborn screening during 30- month period	Hispanic infants with MCADD based on neonatal screening	90	79	Variant frequency in ACADM	MCADD

Janeiro P, Jotta R, Ramos	To evaluate the effects of	Patients with FAODs positive on	83	66	Variant frequency in	MCADD
R, Florindo C, Ventura FV,	expanded NBS on the	NBS screen			ACADM	
Vilarinho L, et al. Follow-	outcome of FAO disorder					
up of fatty acid beta-	patients - analysis of 83					
oxidation disorders in	patient charts					
expanded newborn						
screening era. European						
journal of pediatrics.						
2019;178(3):387-94.						
Sturm M, Herebian D,	To analyse the genetic	Patients who screen positive for	65	65	Variant frequency in	VCADD
Mueller M, Laryea MD,	basis for the increase in	MCADD			ACADM	
Spiekerkoetter U.	C8 concentration in NBS-					
Functional effects of	detected MCADD					
different medium-chain	patients					
acyl-CoA dehydrogenase						
genotypes and						
identification of						
asymptomatic variants.						
PloS one.						
2012;7(9):e45110.						
Andresen BS, Dobrowolski	To investigate the	Infants identified having MCAD	62	62	Variant frequency in	VICADD
SF, O'Reilly L, Muenzer J,	spectrum				ACADM	
McCandless SE, Frazier	of mutations in the MCAD					
DM, et al. Medium-chain	gene in newborns					
acyl-CoA dehydrogenase	identified					
(MCAD) mutations	by observation of a					
identified by MS/MS-	diagnostic acylcarnitine					
based prospective	profile by					
screening of newborns	prospective MS/MS-					
differ from those	based screening					
observed in patients with						
clinical symptoms:						
identification and						

characterization of a new,						
prevalent mutation that						
results in mild MCAD						
deficiency. American						
journal of human						
genetics.						
2001;68(6):1408-18.						
Maier EM, Liebl B,	To describe the spectrum	Patients who are biochemically	57	57	Variant frequency in	MCADD
Roschinger W, Nennstiel-	of ACADM mutations	confirmed of MCADD			ACADM	
Ratzel U, Fingerhut R,	from NBS					
Olgemoller B, et al.						
Population spectrum of						
ACADM genotypes						
correlated to biochemical						
phenotypes in newborn						
screening for medium-						
chain acyl-CoA						
dehydrogenase deficiency.						
Human mutation.						
2005;25(5):443-52.						
Yokota I, Coates PM, Hale	To evaluate prevalence of	Patients with MCADD	55	55	Frequency of MCAD	MCADD
DE, Rinaldo P, Tanaka K.	985A>G mutation in				G985 gene	
Molecular survey of a	MCADD patients				mutation	
prevalent mutation, 985A-						
to-G transition, and						
identification of five						
infrequent mutations in						
the medium-chain Acyl-						
CoA dehydrogenase						
(MCAD) gene in 55						
patients with MCAD						
deficiency. Am J Hum						

Genet. 1991;49(6):1280-						
91.						
Arnold GL, Saavedra-Matiz	To identify patients with	Infants with a positive state	53	53	Frequency of MCAD	MCADD
CA, Galvin-Parton PA, Erbe	MCADD to identify	screen for MCADD and a formal			G985 gene	
R, Devincentis E, Kronn D,	biochemical or genotypic	diagnosis by metabolite or DNA			mutation	
et al. Lack of genotype-	markers which might	criteria and follow-up care				
phenotype correlations	predict outcomes					
and outcome in MCAD						
deficiency diagnosed by						
newborn screening in						
New York State. Molecular						
genetics and metabolism.						
2010;99(3):263-8.						
Touw CML, Smit GPA,	To evaluate fasting	Newborns diagnosed with	50	50	Variant frequency in	MCADD
Niezen-Koning KE,	tolerance and enzyme	MCADD following NBS			ACADM	
Bosgraaf-de Boer C,	assays in different					
Gerding A, Reijngoud D-J,	MCADD genotypes					
et al. In vitro and in vivo						
consequences of variant						
medium-chain acyl-CoA						
dehydrogenase						
genotypes. Orphanet						
journal of rare diseases.						
2013;8:43.						
Hsu H-W, Zytkovicz TH,	To summarise results of	Cases of MCADD diagnosed	47	47	Frequency of MCAD	MCADD
Comeau AM, Strauss AW,	first 6 years of screening	using a combination of genetic			G985 gene	
Marsden D, Shih VE, et al.	programme	and biochemical testing			mutation	
Spectrum of medium-		following screen positive				
chain acyl-CoA						
dehydrogenase deficiency						
detected by newborn						
screening. Pediatrics.						
2008;121(5):e1108-14.						

Couce ML, Sanchez-Pintos	To evaluate any	Patients with MCADD diagnosed	45	45	Variant frequency in	MCADD
P, Diogo L, Leao-Teles E,	relationships between	by two newborn screening			ACADM	
Martins E, Santos H, et al.	biochemical findings at	programmes				
Newborn screening for	diagnosis, genotype, free					
medium-chain acyl-CoA	carnitine levels during					
dehydrogenase deficiency:	follow-up, and clinical					
regional experience and	outcome, in patients with					
high incidence of carnitine	MCADD detected by					
deficiency. Orphanet	newborn screening					
journal of rare diseases.						
2013;8:102.						
Al-Jasmi FA, Al-Shamsi A,	To endorse preventive	Patients with IEM that were	114	48	Gene frequency and	MCADD
Hertecant JL, Al-Hamad	endeavours such as	detected by newborn screening			variant frequency in	
SM, Souid A-K. Inborn	premarital counselling				ACADM, PAH, QDPR,	
Errors of Metabolism in	and genetic screening in				DBT, ASL, PCCB,	
the United Arab Emirates:	order to mitigate these				ММАВ, ММАСНС,	
Disorders Detected by	diseases in the				MCCC1, MCCC2,	
Newborn Screening	community				ACAT1, GCDH, IVD,	
(2011-2014). JIMD					ETFDH,ACADM,	
reports. 2016;28:127-35.					SLC22A5, BTD	
Wilcken B, Haas M, Joy P,	To evaluate the overall	Patients with MCADD (either	41	41	Single variant	MCADD
Wiley V, Chaplin M, Black	effectiveness of neonatal	diagnosed clinically or through			(985A>G) frequency	
C, et al. Outcome of	screening by MS/MS	NBS)			in ACADM	
neonatal screening for						
medium-chain acyl-CoA						
dehydrogenase deficiency						
in Australia: a cohort						
study. Lancet (London,						
England).						
2007;369(9555):37-42.						
Tajima G, Hara K, Tsumura	To present characteristics	Japanese patients diagnosed	40	40	Variant frequency in	MCADD
M, Kagawa R, Okada S,	of Japanese patients with	with MCADD			ACADM	
Sakura N, et al. Screening	MCADD					

of MCAD deficiency in						
Japan: 16years'						
experience of enzymatic						
and genetic evaluation.						
Mol Genet Metab.						
2016;119(4):322-8.						
Prasad C, Speechley KN,	To study incidence of	Children with a diagnosis of	37	37	Variant frequency in	MCADD
Dyack S, Rupar CA,	MCADD, describe health	MCADD			ACADM	
Chakraborty P, Kronick JB.	status of children with					
Incidence of medium-	MCADD, evaluate the					
chain acyl-CoA	impact of diagnosing					
dehydrogenase deficiency	method (clinically or NBS)					
in Canada using the	on health outcomes, and					
Canadian Paediatric	identify mutation					
Surveillance Program:	associated with MCADD					
Role of newborn	cases and their					
screening. Paediatrics &	relationship to					
child health.	phenotype					
2012;17(4):185-9.						
Gramer G, Haege G, Fang-	To evaluate the	Newborns detected with	37	37	Variant frequency in	MCADD
Hoffmann J, Hoffmann GF,	genotype-phenotype	MCADD			ACADM	
Bartram CR, Hinderhofer	correlation in MCADD					
K, et al. Medium-Chain	patients detected by NBS					
Acyl-CoA Dehydrogenase						
Deficiency: Evaluation of						
Genotype-Phenotype						
Correlation in Patients						
Detected by Newborn						
Screening. JIMD reports.						
2015;23:101-12.						
Waddell L, Wiley V,	To explore genotypes of	Patients with biochemical	36	36	Variant frequency in	MCADD
Carpenter K, Bennetts B,	screen positive MCAD	evidence of MCADD			ACADM	
Angel L, Andresen BS, et	patients					

al. Medium-chain acyl-						
CoA dehydrogenase						
deficiency: genotype-						
biochemical phenotype						
correlations. Molecular						
genetics and metabolism.						
2006;87(1):32-9.						
Clayton PT, Doig M,	To describe experience of	Children and neonates with a	482	33	Frequency of MCAD	MCADD
Ghafari S, Meaney C,	diagnosing MCADD using	diagnosis of MCADD			A985G gene	
Taylor C, Leonard JV, et al.	ESI-MS/MS				mutation	
Screening for medium						
chain acyl-CoA						
dehydrogenase deficiency						
using electrospray						
ionisation tandem mass						
spectrometry. Archives of						
disease in childhood.						
1998;79(2):109-15.						
Clayton PT, Doig M,	To review both	Patients with MCADD,	29	29	Variant frequency in	MCADD
Ghafari S, Meaney C,	prevalence of MCADD in	biochemically diagnosed after			ACADM	
Taylor C, Leonard JV, et al.	the Ontario population	positive screening				
Screening for medium	along with biochemical					
chain acyl-CoA	and molecular					
dehydrogenase deficiency	characteristics of					
using electrospray	confirmed cases +					
ionisation tandem mass	predictive value of					
spectrometry. Archives of	screening test					
disease in childhood.						
1998;79(2):109-15.						
Janzen N, Hofmann AD,	To explore disease	Patients with FAOD confirmed	47	30	Variant frequency in	MCADD
Schmidt G, Das AM,	specific acylcarnitine	after positive NBS			ACADM	
Illsinger S. Non-invasive	patterns to help establish					
test using palmitate in	the FAOD diagnosis					

patients with suspected						
fatty acid oxidation						
defects: disease-specific						
acylcarnitine patterns can						
help to establish the						
diagnosis. Orphanet						
journal of rare diseases.						
2017;12(1):187.						
Thodi G, Georgiou V,	To assess MCADD	Infants screening positive for	24	24	Variant frequency in	MCADD
Molou E, Loukas YL,	prevalence in Greece and	MCADD on MS/MS			ACADM	
Dotsikas Y, Biti S, et al.	determine the prevalent					
Characterization of the	alleles in suspected					
molecular spectrum of	infants					
Medium-Chain Acyl-CoA						
Dehydrogenase Deficiency						
in a Greek newborns						
cohort: identification of a						
novel variant. Clinical						
biochemistry.						
2012;45(15):1167-72.						
Gong Z, Liang L, Qiu W,	To examine clinical	Chinese MCADD patients	24	23	Variant frequency in	MCADD
Zhang H, Ye J, Wang Y, et	biochemical and				ACADM	
al. Clinical, Biochemical,	genotype characteristics					
and Molecular Analyses of	of MCADD					
Medium-Chain Acyl-CoA						
Dehydrogenase Deficiency						
in Chinese Patients.						
Frontiers in genetics.						
2021;12:577046.						
Ding JH, Yang BZ, Bao Y,	To molecular	Patients with MCADD	22	22	Single variant	MCADD
Roe CR, Chen YT.	investigation of G985 in				(985A>G) frequency	
Identification of a new	22 unrelated MCADD				in ACADM	
mutation in medium-chain	families					

acyl-CoA dehydrogenase						
(MCAD) deficiency.						
American journal of						
human genetics.						
1992;50(1):229-33.						
Al-Hassnan ZN, Imtiaz F,	To present the	Patients with MCADD that have	30	20	Variant frequency in	MCADD
Al-Amoudi M, Rahbeeni Z,	biochemical phenotype,	been diagnosed by MS-MS			ACADM	
Al-Sayed M, Al-Owain M,	and molecular findings of	using either dried blood spots				
et al. Medium-chain acyl-	MCADD in the Saudi	(DBS) for newborns or blood				
CoA dehydrogenase	population	samples from clinically				
deficiency in Saudi Arabia:		suspected or at-risk infants				
incidence, genotype, and						
preventive implications.						
Journal of inherited						
metabolic disease.						
2010;33 Suppl 3:S263-7.						
ter Veld F, Mueller M,	To present new method	Patients who screen positive for	18	18	Variant frequency in	MCADD
Kramer S, Haussmann U,	for measurement of	MCADD			ACADM	
Herebian D, Mayatepek E,	MCAD and VLCAD activity					
et al. A novel tandem	and correlate residual					
mass spectrometry	MCAD activities with					
method for rapid	genotype in MCADD					
confirmation of medium-						
and very long-chain acyl-						
CoA dehydrogenase						
deficiency in newborns.						
PloS one.						
2009;4(7):e6449.						
Purevsuren J, Hasegawa Y,	To present clinical onset,	Patients diagnosed with MCADD	16	15	Variant frequency in	MCADD
Fukuda S, Kobayashi H,	genotypes, and outcomes	through NBS, after clinical			ACADM	
Mushimoto Y, Yamada K,	of Japanese children with	metabolic crisis or through				
et al. Clinical and	MCADD	sibling detection				
molecular aspects of						

Japanese children with						
medium chain acyl-CoA						
dehydrogenase deficiency.						
Molecular genetics and						
metabolism. 2012;107(1-						
2):237-40.						
Catarzi S, Caciotti A,	To report of biochemical	Patients with a clinical suspicion	14	14	Variant frequency in	MCADD
Thusberg J, Tonin R,	and genetic studies on	of MCADD following newborn			ACADM	
Malvagia S, la Marca G, et	MCADD neonates	screening				
al. Medium-chain acyl-	identified through					
CoA deficiency: outlines	newborn screening					
from newborn screening,						
in silico predictions, and						
molecular studies.						
TheScientificWorldJournal						
2013;2013:625824.						
Couce ML, Castineiras DE,	To evaluate the	Cases of MCADD diagnosed	11	11	Variant frequency in	MCADD
Moure JD, Cocho JA,	diagnostic results as well	with a newborn screening			ACADM	
Sanchez-Pintos P, Garcia-	as the outcome of the	programme				
Villoria J, et al. Relevance	MCADD deficient					
of expanded neonatal	individuals after 10 years					
screening of medium-	of screening					
chain acyl co-a						
dehydrogenase deficiency:						
outcome of a decade in						
galicia (Spain). JIMD						
reports. 2011;1:131-6.						
Howard C, Gorman I,	To review data since the	Patients who screen positive for	11	11	Variant frequency in	MCADD
Crushell E, Knerr I, Hughes	launch of the MCADD NBS	MCADD			ACADM	
J, Boruah R, et al. Medium	in Ireland to characterise					
Chain Acyl-CoA	the confirmed cases					
Dehydrogenase	biochemically, clinically					
Deficiency: 3 years of	and genetically and					

Newborn Screening. Irish	reassess the incidence of					
medical journal.	MCADD in Ireland					
2023;116(3):743.						
Purevsuren J, Kobayashi H,	To report genetic aspects	Japanese patients diagnosed	11	10	Variant frequency in	MCADD
Hasegawa Y, Mushimoto Y,	of 11 Japanese patients	with MCADD			ACADM	
Li H, Fukuda S, et al. A	with MCADD					
novel molecular aspect of						
Japanese patients with						
medium-chain acyl-CoA						
dehydrogenase deficiency						
(MCADD): c.449-						
452delCTGA is a common						
mutation in Japanese						
patients with MCADD.						
Molecular genetics and						
metabolism.						
2009;96(2):77-9.						
Horvath GA, Davidson	To evaluate incidence,	Patients diagnosed with MCADD	10	10	Frequency of MCAD	MCADD
AGF, Stockler-Ipsiroglu SG,	clinical outcome.	following positive NBS			A985G gene	
Lillquist YP, Waters PJ,	Biochemical and				mutation	
Olpin S, et al. Newborn	molecular phenotype of					
screening for MCAD	MCADD cases detected in					
deficiency - Experience of	the first 3 years of					
the first three years in	screening programme in					
British Columbia, Canada.	BC Canada					
Can J Public Health-Rev						
Can Sante Publ.						
2008;99(4):276-80.						
Balci MC, Karaca M, Ergul	To investigate type and	Children followed up with a	68	63	Variant frequency in	MCADD
Y, Omeroglu RE, Demirkol	frequency of cardiac	diagnosis of FAOD divided into 7	'		ACADM	
M, Gokcay GF. Cardiologic	pathologies and response	subgroups based on types of				
evaluation of Turkish		FAOD				

mitochondrial fatty acid	to recommended					
oxidation disorders.	treatment in FAODs					
Pediatrics international :						
official journal of the						
Japan Pediatric Society.						
2022;64(1):e15317.						
Li Y, Zhu R, Liu Y, Song J, Xu	To report the clinical,	Patients with MCADD: identified	6	6	Variant frequency in	MCADD
J, Yang Y. Medium-chain	biochemical and mutation	through NBS or clinically			ACADM	
acyl-coenzyme A	spectrum of Chinese					
dehydrogenase deficiency	:MCADD patients					
Six cases in the Chinese						
population. Pediatrics						
international : official						
journal of the Japan						
Pediatric Society.						
2019;61(6):551-7.						
Tian Y, Zhu X, Lv S, Jia C,	To find out the novel	Infants with MS/MS screen	6	6	Variant frequency in	MCADD
Zhang L, Ni M, et al.	pathogenic variants in the	positive MCADD in Henan,			ACADM	
Analysis of gene	patients and clarify the	China				
mutations of medium-	detection rate of the					
chain acyl-coenzyme a	disease of high frequency					
dehydrogenase deficiency	ACADM pathogenic					
(MCADD) by next-	variants in this					
generation sequencing in	population					
Henan, China. Clinica						
chimica acta; international	I					
journal of clinical						
chemistry. 2022;536:155-						
61.						

Anderson S, Botti C, Li B,	To report on five Hispanic	Patients with elevated	20	5	Variant frequency in	MCADD
Millonig JH, Lyon E,	MCADD patients	octanoylcarnitine identified			ACADM	
Millson A, et al. Medium	identified through New	through NBS				
chain acyl-CoA	Jersey newborn screening					
dehydrogenase deficiency	and the cumulative					
detected among Hispanics	incidence of MCADD					
by New Jersey newborn	among Hispanic and non-					
screening. American	Hispanic infants identified					
journal of medical	through newborn					
genetics Part A.	screening					
2012;158A(9):2100-5.						
Kim MJ, Kim SY, Lee JS,	To evaluate a rapid	Patients with abnormalities in	111	15	Gene and variant	MCADD
Kang S, Park L-J, Choi W, et	genomic testing platform	neonatal screening, or			frequency in	
al. Rapid Targeted	for 254 genetic diseases	unexplained neonatal			ACADM, ACADS,	
Sequencing Using Dried		hypotonia/neonates-onset			PAH, PREPL, PHKA2,	
Blood Spot Samples for		seizure, unexplained abnormal			MCCC2, PCCA,	
Patients With Suspected		lab findings, skeletal dysplasia			SLC25A13	
Actionable Genetic		or joint problems,				
Diseases. Annals of		neurodevelopmental delay with				
laboratory medicine.		abnormal metabolic screening				
2023;43(3):280-9.		test				
Casey JL. MCAD deficiency	To diagnose MCADD in	Children ≤5yrs	147	12	Frequency of MCAD	MCADD
in the Holderman	Holderman Mennonite				A985G gene	
Mennonite population in	children				mutation	
central Kansas. Kansas						
medicine : the journal of						
the Kansas Medical						
Society. 1992;93(11):306-						
8.						
Gregersen N, Winter V,	To characterize, clinically,	Two families with medium-	9	2	Frequency of MCAD	MCADD
Lyonnet S, Saudubray JM,	biochemically, and	chain acyl-CoA dehydrogenase			A985G gene	
Wendel U, Jensen TG, et	genetically, two families	deficiency due to compound			mutation	
al. MOLECULAR-GENETIC	with a 13 base pair repeat	heterozygosity				

CHARACTERIZATION AND	insertion in one allele,								
URINARY-EXCRETION	resulting in reduced level								
PATTERN OF METABOLITES of MCAD mRNA									
IN 2 FAMILIES WITH									
MCAD DEFICIENCY DUE									
TO COMPOUND									
HETEROZYGOSITY WITH A									
13 BASE-PAIR INSERTION									
IN ONE ALLELE. Journal of									
Inherited Metabolic									
Disease. 1994;17(2):169-									
84.									
Kirk JM, Laing IA, Smith N,	To present two non-	Two Scottish families diagnosed	2	2	Frequency of MCAD	MCADD			
Uttley WS. Neonatal	consanguineous Scottish	with MCADD in one surviving			G985A gene				
presentation of medium-	families in whom	child			mutation				
chain acyl-CoA	definitive diagnosis of								
dehydrogenase deficiency	medium-chain acyl-CoA								
in two families. Journal of	dehydrogenase (MCAD)								
inherited metabolic	deficiency (MCADD;								
disease. 1996;19(3):370-1.	McKusick								
	201450), with								
	homozygosity for the								
	G985A mutation								
Woo HI, Park H-D, Lee Y-	To describe mutations	Korean patients screened	2	2	Variant frequency in	MCADD			
W, Lee DH, Ki C-S, Lee S-Y,	observed in Asian	positive for MCADD through			ACADM				
et al. Clinical, biochemical	patients with MCADD	NBS MS/MS							
and genetic analyses in									
two Korean patients with									
medium-chain acyl-CoA									
dehydrogenase deficiency.									
The Korean journal of									
laboratory medicine.									
2011;31(1):54-60.									

NIHR_HTA_ESG_NIHR159928