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Evaluafing whole genome sequencing for rare diseases in newborn screening: 

evidence synthesis from a series of systemafic reviews 

Supplement 1 

 
Characteristics of the 5 conditions under review 
 

Pyridoxine-dependent epilepsy 

Background 

Pyridoxine-dependent epilepsy (PDE or PDE-ALDH7A1, henceforth PDE, OMIM 266100) is a rare 

inherited form of epilepsy, mostly caused by mutafion in the ALDH7AI gene. Other forms not 

considered here include PDE-PNPO and PDE-PLPHP, which are caused by mutafions in the PNPO and 

PLPHP genes, respecfively.1 The ALDH7A1 gene is responsible for producfion of the enzyme alpha 

aminoadipic semialdehyde (α-AASA) dehydrogenase, which is involved in the breakdown of lysine in 

the brain. Deficiency of α-AASA dehydrogenase results in the accumulafion of metabolites including 

piperideine-6-carboxylate (P6C), which in turn inacfivates pyridoxal 5’-phosphate (PLP), the acfive 

form of pyridoxine. PLP deplefion is thought to contribute to the epilepfic features observed in PDE 

and treatment with large daily doses of pyridoxine (vitamin B6) leads to adequate seizure control for 

most pafients. Neurotoxic metabolite accumulafion associated with α-AASA dehydrogenase deficiency 

has also been purported to contribute to intellectual disability and developmental delay, which occurs 

in as much as 75% of cases of PDE.   

Natural history 

Classic PDE usually presents during the neonatal period with prolonged seizures that are difficult to 

control with anfi-seizure medicafion; in 75% of cases seizures may occur within the first few hours of 

life.2 These seizures last several minutes and involve loss of consciousness, spasficity and convulsions. 

If untreated, periods of encephalopathy are common (irritability, crying, fluctuafing tone, poor 

feeding). In some cases, affected individuals do not experience seizures unfil they are one to three 

years old (late-onset PDE). Intellectual disability and developmental delay are often present (around 

75% of cases), especially in those with classic PDE.1, 3, 4 Due to the symptoms of PDE being similar to 

other, more common neonatal disorders, the condifion can be missed, and this can led to death.5 

Genefics and epidemiology 

PDE is an autosomal recessive condifion usually caused by a homozygous or compound heterozygous 

mutafion in the ALDH7A1 gene on chromosome 5q23.6 Over 165 pathogenic variants of ALDH7A1 have 

been idenfified and the vast majority are biallelic.7 A recent review reported prevalences of PDE based 

on clinical diagnosis,  to, as low as 1:396,000 in the Netherlands, and 1:783,000 in the United 

Kingdom.8 However, these early studies only included pafients who responded to a pyridoxine trial and 

are therefore likely to have under-esfimated prevalence; more recent studies esfimate the prevalence 

of PDE as 1:64,352. Children born to couples who are both carriers of the mutafion have a 25% risk of 

developing PDE.9 

https://www.omim.org/entry/266100
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Screening and Diagnosis 

PDE should be considered when invesfigafing intractable seizures in pafients aged three and under. 

Historically, diagnosis was ascertained by a posifive clinical response to pyridoxine treatment,4, 10 

however, techniques to diagnose PDE now include measurement of biomarkers in the urine, blood, or 

cerebral spinal fluid (i.e. Δ1-piperideine-6-carboxylate (or Δ1-P6C) α-AASA)11 and genefic tesfing for 

pathogenic (or likely pathogenic) variants in ALDH7A1.7 A 2020 consensus guideline recommended the 

use of α-AASA or Δ1-P6C as diagnosfic biomarkers of PDE, either alone or in combinafion with “other 

biomarkers” but did not make specific recommendafions about levels that should be considered 

diagnosfic.7 A 2007 series of 11 pafients with definite, probable or possible PDE reported the control 

values used for both α-AASA and Δ1-P6C; α-AASA was above control values in 10 of 11 pafients, while 

PA in plasma was elevated in all pafients with elevated α-AASA levels.11 Although MRI abnormalifies 

have been reported,11, 12 there are currently no imaging or electroencephalogram features that can 

confirm a diagnosis of PDE.4 

PDE is not currently screened for in newborn programmes in the UK. 

Treatment 

There is no cure for PDE. The mainstay of treatment has tradifionally been daily, high doses of 

pyridoxine for seizure control. However, outcomes for pafients are often sfill poor, even with early 

diagnosis. Adjunct lysine reducfion therapies (LRT) (e.g., lysine restricted diet and arginine 

supplementafion) aim to reduce the accumulafion of metabolites thought to contribute to intellectual 

disability and developmental delay.13, 14 The combinafion of vitamin B6 and LRT is known as ‘Triple 

Therapy’.15 Small observafional studies have suggested possible improvements in clinical outcomes 

from triple therapy. However results are likely to be confounded by earlier age on inifiafion of 

treatment.13,16, 17  
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Hereditary refinoblastoma 

Background  

Hereditary refinoblastoma (RB, OMIM 180200) is a rare embryonic malignant neoplasm of the eye. 

RB is caused by biallelic mutafions to the human refinoblastoma suscepfibility (RB1) gene on 

chromosome 13q14 that codes for the RB protein.18 Mutafions to the RB1 gene prevent producfion 

of funcfional protein leading to uncontrollable growth of cells in the refina, resulfing in tumours.19 It 

is esfimated that 40 to 45% of all RBs are hereditary (resulfing from a germline  mutafion and a 

second mutafion occurring in refinal cell precursors); the remaining cases are somafic (caused by two 

allele mutafions at the cellular level).20 Hereditary RB is usually bilateral (80% of cases), 5% are 

trilateral (including a pineal/midline neuroectodermal tumour) and 15% are unilateral.21 However, it 

is esfimated only 10% of children with RB have a family history of the disease.22The remaining cases, 

where there is no family history of the disease, are known as sporadic. Sporadic cases can either be 

hereditary or somafic.23 

Natural history  

Hereditary RB usually occurs at an average of 15 months of age and may be picked up by targeted 

ocular screening before any symptoms develop if there is family history of the disease.24, 25 The most 

common first symptom of RB is leukocoria or visible whiteness of the pupil, which may be noficed in 

photographs taken using flash photography. Leukocoria was cited as primary reason for treatment 

referral in 62.8% of cases in a global cohort of 4351 pafients, followed by strabismus (squint) in 10.2% 

and proptosis (protruding eye(s)) in 7.4%.24 Other common symptoms include glaucoma and hypopyon 

(presence of pus), and if the tumour is large, the eye may become painful and inflamed.26 High-risk 

features on presentafion (e.g. opfic nerve invasion) are more common with increasing age and are 

associated with poorer outcome.27 If RB is left untreated, blindness can occur and metastases will most 

likely develop.28, 29 In 5% of cases, heritable RB is associated with a midline brain tumour.30 

RB is considered to be largely curable, with 10-year survival rates from non-neoplasfic causes no lower 

than the general populafion.31 Survival rates have been shown to vary globally according to nafional 

income levels,  with 3-year survival ranging from 99·5% (95% CI 98·8–100·0) for children from high 

income countries to 57·3% (52·1–63·0) for children from low-income countries.24 Following curafive 

treatment for hereditary RB, survivors have an increased risk of subsequent malignancy (standardised 

incidence rafio of 11.9, 95% CI 10.4, 13.5), with considerably higher risks for sarcoma of the bone or 

soft fissue.32 

Genefics and epidemiology 

Hereditary RB is caused by a heterozygous germline mutafion on one allele and a second, somafic 

mutafion on the other allele of the RB1 gene on chromosome 13q14.33 Over 900 mutafions in RB1 

have been reported; research is ongoing to invesfigate whether the type of mutafion (e.g., nonsense, 

delefion, frameshift, or splicing mutafions) is associated with the clinical features of RB.34, 35Most 

mutafions are of very high penetrance and expressivity.32 In 10-20% of cases, the mutafion is inherited 

from a parent who also has hereditary RB.36 Children with one parent who has heritable RB have a 25% 

risk of developing RB (50% risk of inheritance and 90% penetrance).34, 37 There are two known RB1 

allele mutafions which show a parent-of-origin effect; c.607+1G→T subsfitufion and c.1981C→T 

(p.Arg661Trp) missense mutafion.38  Otherwise, the mutafion in the affected child is new.36   

Around 44 cases of RB are diagnosed every year in the UK, and 40% of these are of the hereditary 

form.39,40 There is a slightly higher incidence of bilateral RB amongst males.39 In around 5% of people 

https://www.omim.org/entry/180200
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with RB, the part of chromosome 13q that contains the RB1 gene is missing. This rare form of RB is 

classed as hereditary and is known as chromosome 13q delefion.21 

Screening and Diagnosis 

Many countries offer targeted ophthalmological screening for RB in children born into families where 

there is a history of RB.25 Family members may have already undergone genefic counselling and 

tesfing, parficularly where a germline RB1 mutafion was idenfified in the original proband, and genefic 

tesfing is likely to be offered to offspring of those idenfified as having a familial RB1 mutafion.41 

Subsequent ophthalmological screening of those idenfified as at risk of developing RB is usually based 

around red reflex tesfing, begins after birth and, may be repeated every few months unfil the child is 

5 years old.42 Children with dim or absent red reflex are referred to a specialist ophthalmology service 

for eye examinafion under general anaesthefic.21 Unlike other cancers, RBs can be diagnosed by their 

appearance so a biopsy is usually not necessary. After RB is diagnosed, other tests are conducted to 

stage the tumour. These can include an ultrasound or MRI scans, a lumbar puncture, a bone marrow 

sample or a bone scan.43 For those with bilateral or mulfifocal RB (hereditary), alterafions in the RB1 

gene can usually be detected in blood samples. For children with unilateral RB, genefic tesfing can 

clarify whether the disease is hereditary or somafic.21 

Treatment 

Management of RB is complex and treatment regimens must be tailored dependent on the 

circumstances, including factors such as tumour stage, number of foci, localizafion and size of the 

tumour(s).44, 45 Treatment opfions include enucleafion, cryotherapy, laser treatment, chemotherapy or 

radiotherapy.46 Small, localised tumours can be successfully treated with laser treatment or 

cryotherapy, however chemotherapy is often needed for more advanced cases or when RB is present 

in both eyes, as is often the case for the hereditary form of the disease. Chemotherapy has been shown 

to lead to tumour control and avoidance of enucleafion (eye removal) or external beam radiotherapy 

in over 90% of pafients with no evidence of seeding (tumour invasion) into the subrefinal space or 

vitreous cavity prior to commencing treatment.45, 47, 48 In a series of 869 eyes (540 pafients) undergoing 

chemotherapy for RB, a total of 161 (19%) underwent enucleafion at a mean of 15 months (range 1 to 

191 months).45 

Somefimes, enucleafion must be performed.46 According to the NHS, there is a high chance the child 

will lose some or all vision in the affected eye therefore successful treatment is highly dependent on 

idenfifying RB early. A UK retrospecfive case study of pafients with bilateral refinoblastoma idenfified 

visual impairment in 38% (14/44) of children (i.e., Snellen acuity between 20/40 and 20/200 in the 

befter eye) and legal blindness in 19% of children (vision of 20/200 or worse in the befter eye) following 

chemotherapy.49   

Medium Chain Acyl-CoA Dehydrogenase Deficiency (MCADD) 

Background 

Medium chain Acyl-CoA Dehydrogenase Deficiency (MCADD, OMIM 201450) is an inherited metabolic 

disease in which medium-chain fafty acids cannot be oxidised. This leads to an accumulafion of fafty 

acids in the body and to a disrupfion in energy producfion mechanisms, parficularly that of ketone 

synthesis. People with MCADD thus cannot mobilise energy stores in periods of increased metabolic 

demand (i.e., fasfing, intense exercise, illness, etc.) which sends them into a state of metabolic crisis.  

https://www.omim.org/entry/201450?search=201450&highlight=201450
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A deficiency of MCAD can result in a build-up of acylcarnifines (esters that bind to fat molecules to 

transport them into mitochondria) in blood, which may be observed in pafients with biochemical 

tesfing.50 

Natural history 

MCADD typically presents in the first 2 years of life with hypoglycaemic episodes concurrent with 

illness or increased periods of fasfing (i.e., with the reducfion of night-fime feeds). Severe 

hypoglycaemic episodes may lead to seizure, and metabolic decompensafion characterised by 

vomifing, coma and even death. MCADD accounts for around 1% of Sudden Infant Death Syndrome / 

Sudden Unexpected Death in Infants though the inclusion of MCADD in screening programmes has 

greatly reduced this.51, 52 Mortality following a metabolic crisis episode in undiagnosed people with 

MCADD is around 20%.53-55 

Genefics and epidemiology 

MCADD is an autosomal recessive condifion affecfing the ACADM gene. In the majority of cases 

(>80%), the condifion is caused by a homozygous 985A→G mutafion.56-59 It is more prevalent in 

Caucasian populafions and has a prevalence of 1 in 10,000 in the UK.60 Other mutafions are more 

common in other ethnic groups (e.g., Japan).61 In the UK, the prevalence of homozygous 985A→G 

carriers is esfimated at 6.2 per 100,000.62 

Screening and Diagnosis 

In the UK, MCADD has been part of the standard blood spot screening baftery since 2009.[ref] The 

current tesfing and diagnosfic pathways are presented in Figure 1. The current approach to screening 

for MCADD consists of measuring the concentrafion of acylcarnifines (primarily C8 and C10) in the 

blood. A raised level of these markers (C8 > 0.5 µmol/L and C8:C10 ≥ 1 62, 63) is suggesfive of an 

incomplete breakdown of medium-chain fafty acids due to MCADD. In the current screening and 

diagnosis pathway, posifive metabolite findings trigger genefic tesfing looking for the common 

985A→G mutafion in the first instance and followed by an extended mutafion screening for pafients 

who do not have a homozygous 985A→G mutafion. The sensifivity of the screening programme for 

MCADD in England is esfimated to be 94%.62 
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Figure 1.1 Screening and Diagnostic pathways for MCADD (adapted from 64)  

Key: C8: Octanoylcarnifine; C10: Decanoylcarnifine; DBS: Dried Blood Spot; EMS: Extended Mutafion 

Screening; MCADD: Medium Chain Acyl-CoA Dehydrogenase Deficiency; MRM: Mulfiple Reacfion 

Monitoring 
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Treatment 

There is no cure for MCADD, but it can be effecfively managed through diet. MCADD management 

typically consists of prevenfing hypoglycaemic episodes through limifing fasfing periods.65 Normal diet 

composifion is normally acceptable, with the excepfion of coconut and coconut-derived products.66 

Diets should include sufficient complex carbohydrate intake, especially before fasfing periods (i.e., 

night-fime). 

Acute illness increases risk of metabolic crisis. Emergency plans include prevenfion or treatment of 

hypoglycaemia through intake of fast carbohydrate by mouth or intravenous glucose infusion.67 
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X-linked hypophosphataemic rickets 

Background 

X-linked hypophosphataemic rickets (XLHR, OMIM 307800), also known as X-linked 

hypophosphataemia, X-linked rickets, or vitamin-D resistant rickets, is a hereditary disorder of 

phosphate processing that causes a form of rickets. This is primarily characterized by osteomalacia 

(soft bones) and associated complicafions (bone deformity, bone and joint pain, dental problems). 

XLHR was first reported in 1957 and mutafion to the PHEX gene idenfified as a cause in 1995.68, 69 

The pathophysiology of XLHR is not fully understood but is known to primarily involve an increase in 

the FGF23 hormone. This triggers changes in both the kidneys and the parathyroid glands and 

ulfimately results in increased renal phosphate wasfing.70 

Natural history 

Features of XLHR can be broadly divided into acute and chronic signs of hypophosphataemia. Signs of 

acute hypophosphataemia include muscle weakness, respiratory and cardiac insufficiency, 

neurological dysfuncfion, and blood disorder. Chronic signs include bone deformity, dental abscesses, 

stunted growth and bone and joint pain.71 Clinical symptoms usually appear in the first two years of 

life, becoming more obvious with delayed walking or slowing down of growth/ exacerbafion of leg 

bowing once toddlers become weight-bearing.72 

Genefics and epidemiology 

XLHR is caused by a mutafion in the PHEX gene. Although most pafients with XLHR have inherited a 

pathogenic variant from a parent, around 20% present with de novo mutafions, meaning that 

pathogenic changes to the gene have occurred spontaneously.73 XLHR is the most common type of 

hereditary rickets, and penetrance is generally assumed to be 100% with no sex differences in 

penetrance.71, 74 Prevalence esfimates range from 1.7:100,000 children to 4.8:100,000 children and 

adults.75 

Screening and diagnosis 

X-linked hypophosphataemia is not currently screened for in newborn programmes in the UK. It is 

generally diagnosed in early childhood (usually before the 2nd birthday) through a combinafion of 

clinical features, biochemical characterisfics, and radiological signs. Table Error! No text of specified 

style in document..1 summarises some key features of X-linked hypophosphataemic rickets. 

Table Error! No text of specified style in document..1. Key clinical, biochemical and radiological features of X-linked 
hypophosphataemic rickets 

Clinical features Biochemical characteristics Radiological signs 

- Short stature 
- Leg bowing/knock-

knees 
- Delayed 

walking/abnormal gait 
- Dental abscesses 

- Low serum 
phosphate* 

- High urine phosphate 

- Widening/cupping of 
metaphyses 

- Rachitic rosary of ribs 
- Sometimes “green 

stick” fractures 

*0-15 days: <5.6 mg/dL; 15-365 days: 4.8 mg/dL; 1-4 years: <4.3 mg/dL; 5-12 years: <4.1 mg/dL; 13-

15 years: <3.2(female) / 3.5(male) mg/dL; 16-18 years: <2.9 mg/dL 76, 77 

https://www.omim.org/entry/307800
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Treatment 

There’s no cure for X-linked hypophosphataemia, but it can be managed, with a goal of normalising 

serum phosphate concentrafion. This consists of oral supplementafion of phosphorus (20 to 40 

mg/kg/day) and calcitriol (acfive vitamin D, 20 to 30 ng/kg/day) mulfiple fimes a day.70 This 

management approach is not always effecfive, but evidence suggests that earlier intervenfion is 

beneficial.78  This strategy should include regular follow up to limit the risks of complicafions associated 

with treatment, which are commonplace. These include hypercalcaemia, hypercalciuria, kidney 

stones, nephrocalcinosis, impaired renal funcfion and can lead to chronic kidney disease.79   

An alternafive approach using burosumab injecfions was approved in the UK in 2018.80 Burosumab is 

an anfibody against FGF23, which leads to an increase in renal phosphate reuptake/reduced wasfing, 

increase in serum calcitriol, and increased gastrointesfinal absorpfion of phosphate.70 
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Familial haemophagocyfic lymphohisfiocytosis 

Background 

Familial haemophagocyfic lymphohisfiocytosis (fHLH) is an immunological disorder characterized by 

abnormal immune acfivafion in which overacfive macrophages target red blood cells. In terms of 

pathogenesis, fHLH involves a dysfuncfion of the cytotoxic perforin/granzyme pathway used by 

lymphocytes to target infected cells and downregulate the immune response as needed. The inability 

to neutralise overacfive macrophages leads to an escalafion of the immune response, including 

abnormal targefing of red blood cells and cytokine storms leading to organ damage. 

Natural history 

In fHLH, key downregulafion mechanisms of the immune system are defecfive. Specifically, T-cells and 

Natural Killer (NK) cells have defecfive perforin/granzyme pathway (which is used by lymphocytes to 

trigger lysis of targeted cells, including overacfive macrophages). This leads to a proliferafion of 

lymphocytes and overacfive macrophages which aftack red blood cells causing anaemia. The cytokine 

storm associated with the unbridled immune response can lead to fatal mulfi-organ failure. fHLH 

usually manifests in infancy, with minor infecfions triggering an abnormal immune response. The 

prognosis for fHLH is poor but new treatments are promising.81 

Genefics and epidemiology 

Different genes are associated with different types of fHLH.82  fHLH is inherited in an autosomal 

recessive paftern.83 Informafion pertaining to genes and pathophysiology of different types of fHLH 

are provided in Table Error! No text of specified style in document..2. Here, the focus is on types of 

haemophagocyfic lymphohisfiocytosis that specifically involve the malfuncfion of the 

perforin/granzyme cytotoxic pathway. 

Table Error! No text of specified style in document..2. Types of haemophagocytic lymphohistiocytosis affecting the 
perforin/granzyme pathway 

HLH subtype (OMIM) Gene involved Pathophysiology 

fHLH type 2  
(OMIM 603553) 

PRF1 Affects perforin (a protein on the lytic granule that 
lets the granzymes into the target cells) 

fHLH type 3  
(OMIM 608898) 

UNC13D Affects munc13-4 (a protein that is involved in the 
fusion of the lytic granule and the target cell 
membrane) 

fHLH type 4  
(OMIM 603552) 

STX11 Affects syntaxin-11 (a protein involved in the docking 
of the lytic granule to the target cell) 

fHLH type 5  
(OMIM 613101) 

STXBP2 Affects munc18-2 (a protein involved in the fusion of 
the lytic granule and the cell membrane)  

 

There is liftle informafion about the prevalence of these disorders though they are rare. 84 The 

prevalence in Sweden is esfimated to be 1.8:100k and 1:100k in Texas.85, 86 

Screening and diagnosis 

Familial HLH usually presents in infancy with symptoms including fever, enlarged spleen and liver, 

lymphadenopathy, and an array of neurological symptoms. Complicafions of fHLH can include 

anaemia, haemorrhage and secondary infecfion linked to decreased red blood cell, platelet, and 

https://www.omim.org/entry/603553
https://www.omim.org/entry/608898
https://www.omim.org/entry/603552
https://www.omim.org/entry/613101
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neutrophil counts. These non-specific signs and symptoms associated with the rarity of fHLH can 

render diagnosis difficult. Classical fHLH laboratory findings can help with diagnosis, including high 

ferrifin, abnormal cell counts, disturbed liver funcfion markers.83 Table Error! No text of specified style 

in document..3 summarises the diagnosis criteria for fHLH. 

Table Error! No text of specified style in document..3 Diagnostic criteria for familial haemophagocytic lymphohistiocytosis 
(adapted from 87)  

Diagnostic can be established if either A or B is fulfilled: 

A. Genetic variation 
consistent with fHLH 

B. Any 5 of the following: 
- Fever >38.5°C 
- Splenomegaly 
- Abnormal cell counts 

o Haemoglobin <9g/dL (<100g/dL for infants 4 weeks 
and under) 

o Platelets <100x109/L 
o Neutrophils <1.0x109/L 

- High fasting triglycerides >3.0 mmol/L (>265mg/dL) and/or 
low fibrinogen (≤1.5g/L) 

- Haemophagocytosis in bone marrow, spleen, liver, lymph 
nodes, or other tissue 

- Decreased NK cell activity 
- Ferritin ≥ 500μL 
- High soluble IL-2 receptor ≥2,400U/mL 

 

Treatment 

Treatment of acute disease consists of supressing the immune response, through immunotherapy (i.e., 

corficosteroids) and chemotherapy but an important proporfion of pafients do not respond to these 

approaches. The only curafive treatment currently available is allogeneic haematopoiefic stem cell 

transplantafion.88 
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