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Abstract 

 

In clinical science and practice, text data, such as clinical letters or procedure reports, is stored in 

an unstructured way. This type of data is not a quantifiable resource for any kind of quantitative 

investigations and any manual review or structured information retrieval is time-consuming and 

costly. The capabilities of Large Language Models (LLMs) mark a paradigm shift in natural lan-

guage processing and offer new possibilities for structured Information Extraction (IE) from med-

ical free text. This protocol describes a workflow for LLM based information extraction (LLM-AIx), 

enabling extraction of predefined entities from unstructured text using privacy preserving LLMs. 

By converting unstructured clinical text into structured data, LLM-AIx addresses a critical barrier 

in clinical research and practice, where the efficient extraction of information is essential for im-

proving clinical decision-making, enhancing patient outcomes, and facilitating large-scale data 

analysis. 

The protocol consists of four main processing steps: 1) Problem definition and data preparation, 

2) data preprocessing, 3) LLM-based IE and 4) output evaluation. LLM-AIx allows integration on 

local hospital hardware without the need of transferring any patient data to external servers. As 

example tasks, we applied LLM-AIx for the anonymization of fictitious clinical letters from patients 

with pulmonary embolism. Additionally, we extracted symptoms and laterality of the pulmonary 

embolism of these fictitious letters. We demonstrate troubleshooting for potential problems within 

the pipeline with an IE on a real-world dataset, 100 pathology reports from the Cancer Genome 

Atlas Program (TCGA), for TNM stage extraction. LLM-AIx can be executed without any program-

ming knowledge via an easy-to-use interface and in no more than a few minutes or hours, de-

pending on the LLM model selected.  
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Introduction 

Development of the protocol 

Medical free text contains essential information, such as details about patient characteristics and 

therapy course and maps the patient journey substantially better than structured medical infor-

mation from electronic health records alone 1–3.This medical free text contains the main reasoning 

as well as observations from medical staff within a variety of different report types, such as clinical 

letters as well as documentation of different diagnostic and therapeutic procedures 4. In its un-

structured form, text is not available for quantitative analysis and is therefore not accessible for 

research, quality analysis or interoperable data exchange 5. Forcing medical staff into structured 

documentation, however, is not feasible due to time constraints and shortage of personnel in the 

healthcare system. This leads to an increasing documentation burden and decreases the time 

available for actual patient care 6. Therefore, systematically extracting information from free text 

is crucial for the medical field: It enables researchers to investigate rare diseases 7, allows better 

tracking, overview, and exchange of patient information among different inpatient and outpatient 

providers via a comprehensive health record, and systematic quality control assessment 8,9 . 

Previous methods to mine medical free text fall short because they are either not capable of 

processing large amounts of text and have limited capabilities to grasp context, or need task-

specific fine-tuning 10, whereas our method solely relies on in-context learning of large language 

models. In-context-learning enhances LLMs’ performance on new tasks by using examples or 

step-by-step instructions within the prompt 11,12. Additionally, narrative medical text comes from 

various source systems, which complicates a streamlined processing. Some reports may only be 

accessible in portable document format (PDF) from the clinical information system (CIS), others 

originate from secondary software in a variety of different formats.13 Data transformation pro-

cesses to harmonize all the data formats from their source systems within one central database 

are not ubiquitously established 14. We therefore present an open-source, LLM-based pipeline 

which tackles these challenges in medical information extraction (IE). Additionally, our pipeline 

extracts structured information elements that can be flexibly defined by the user. This is advanta-

geous compared to traditional IE, where predefined categories and relationships are extracted. 

Our approach offers a highly flexible process for handling large-scale unstructured data 15.  

 

Our pipeline is able to transform various types of unstructured medical text data—such as clinical 

notes, procedure reports or entire clinical letters—into structured CSV format, suitable for quanti-

tative analysis. This development was motivated by the need for a scalable solution that accom-

modates the technical expertise and deep medical domain understanding required for effective 

data utilization in healthcare. The method has been developed, applied and tested for several use 

cases, namely extracting suicidality of psychiatric admission notes 16, tested with different Large 

Language Models from Meta AI (Llama-2 models). Additionally, we extracted several symptoms 

and diagnoses for detection of decompensated liver cirrhosis from emergency room (ER) ad-

mission notes 17. Furthermore, we applied the pipeline for extracting adverse events from endos-

copy reports of endoscopic mucosal resection (EMR) and colonoscopies 18. All of these proof-of-

concept studies led to the development of the entire pipeline presented here, which comprise an 
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intuitive graphical user interface (GUI), data preprocessing, LLM-based IE as well as automated 

evaluation of the process within one pipeline. Previously, we introduced the LLM Anonymizer, 

which is a special case for IE with the purpose of anonymizing medical reports 19. 

 

The latest open-source LLMs can easily be implemented within the pipeline, which also facilitates 

benchmarking of different models in accurately extracting relevant entities and information based 

on the specific needs of requestors. Currently, all models available in Generative Pre-Trained 

Transformers (GPT)- Generated Unified Format (GGUF) can be included in the pipeline, such as 

Llama-2 with 7 billion parameters (7b), Llama-2 70b, Llama-3 8b, Llama-3 70b, Llama-2 “Sauer-

kraut” 70b, Phi-3, Mistral 7b and many more. By producing outputs in a CSV format, we enable 

seamless integration with existing data analysis tools and workflows, facilitating quantitative anal-

ysis without the need for specialized computational skills. As an example, existing databases such 

as cancer registries or clinical databases could be filled with the help of our pipeline.  

Overview of the protocol 

The protocol consists of four main stages: 1) Problem definition and data preparation 2) Data 

preprocessing, 3) LLM-based IE and 4) Output evaluation (Figure 1). The protocol facilitates any 

kind of IE from medical free text documents, with a variety of input formats possible. It is easy to 

use for clinical researchers without NLP expertise and allows the application of the latest LLMs 

for medical IE. We have shown that the protocol is broadly applicable to any kind of medical text 

data. The protocol is available in an open-source codebase on github (available at 

https://github.com/KatherLab/LLMAIx). Additionally, our method can be implemented on low hard-

ware resources (e.g., a single graphical processing unit (GPU) with 48GB video random-access 

memory (VRAM)), making it more accessible and cost-effective compared to systems with higher 

computational demands. 

Applications of the method 

The pipeline has been applied in several clinical use cases to demonstrate its versatility and ef-

fectiveness, and can be applied for any use case where quantifiable, structured data is required 

from unstructured medical text. Unlike traditional NLP methods that often require specific training 

and fine-tuning 20, this pipeline utilizes LLMs which excel in zero-shot applications, which refers 

to the ability of LLMs to make predictions on data that was not encountered during training, without 

requiring any task-specific fine-tuning. This makes LLMs ideal for processing a wide range of 

medical documents.  

Furthermore, the performance of LLMs can be optimized through direct interaction via prompting 

and prompt engineering 21,22. This facilitates in-context learning, a methodology wherein the user 

presents the desired output to the model and provides one or multiple examples of the correct 

solution 11. This approach is entirely based on model inference, eliminating the need for extensive 

retraining of the model.  

The procedure can be applied for a variety of purposes:  
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1. Interdisciplinary collaboration. When exchanging healthcare data across multiple centers 

for research, a uniform data standard is key. LLM information extraction based on a pre-

defined data standard could support interdisciplinary cooperation without the need of ex-

changing original text data, which may contain sensitive information that may remain on 

the sites where the data emerges.  

2. Clinical research. Quantitative research is only possible with quantitative data and cannot 

be performed with quantitative information hidden in free text data. Current practice is 

manual extraction of information from medical text by medical documentalists or scientific 

assistants. This is, however, time consuming and is complicated by personnel shortage in 

the healthcare sector. Additionally, the tool could support filling patient registries such as 

cancer registries and clinical trial documentation (e.g. by structured extraction of adverse 

events from free text clinical notes). 

3. To build quantitative downstream models. For example, to predict certain outcomes from 

other data modalities, such as radiology images, one needs outcome information about 

the respective patients which is usually hidden in free-text documentation. This information 

can be extracted with our pipeline and then serve as a label for predictive machine learning 

model training 23–25. 

4. Quality assurance and auditing. The tool could help to complete clinical data used for 

measuring quality of care. 

5. EHR Data integration. The structured information could enrich patients’ electronic health 

records to then reflect a more complex picture of patient history and treatment within an 

interoperable and accessible way for all healthcare providers.  

Comparison with other methods 

Until now, due to the shortcomings of other methods, the gold standard in medical IE is labor 

intensive, manual IE by medical documentaries or medical staff. Traditional methods such as 

machine learning named entity recognition (NER) methods typically require the extraction of fixed 

entities and offer limited flexibility. To name an example, they extract all names, dates and loca-

tions from a text, without being able to interpret the context. If only the surgery date was needed 

from a report, this could not easily be identified among all dates mentioned within a text.  

In contrast, our LLM-based approach allows for the flexible definition of entities to be extracted 

through advanced prompt engineering and in-context learning capabilities. This adaptability 

makes it more suitable for the dynamic and varied needs of medical data analysis.  

 

NLP in the pre-transformer area - Beginnings of pre-trained models 

Initially, IE relied on hand-crafted rules and required extensive manual efforts to define patterns 

which were limited in their adaptability to different domains 26,27. Machine learning techniques, 

which used labeled data to train models, improved the IE performance in the NLP domain 28. 

These methods leveraged features as part-of-speech tags; such as nouns, verb or adjectives 29, 

syntactic structures; such as noun phrases, verb phrases and adjective phrases 30, and lexical 

cues, which are words indicating a specific relation and entity, such as intensifiers like “very” in 

the sentence “she was very happy” 31, to improve the accuracy of entity recognition and relation 

extraction. Notable algorithms like Hidden Markov Models (HMMs) and Conditional Random 
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Fields (CRFs) were widely adopted for these tasks 32,33. Non-neural methods such as n-gram 

models 34–36, and neural network methods, particularly recurrent neural networks (RNNs) and 

convolutional neural networks (CNNs) were able to improve capturing contextual information 37. 

However, labeled data is scarce, particularly in the medical domain, and as a result, unsupervised 

and semi-supervised learning approaches were advanced simultaneously. They aim to utilize 

large amounts of unlabeled text to automatically discover patterns in the data. Word embeddings, 

which are representations of words in continuous vector spaces, such as Word2Vec or GloVe, 

further enhanced the generalizability across different contexts 38. ULMFit followed as one of the 

first approaches for pre-trained models 39. However, all of these methods suffered from limited 

context understanding in document level, do not capture polysemy, have a fixed vocabulary size, 

require large text corpora for training and were so far insufficient for IE in the medical field 40. 

 

New prospects with LLMs 

The development of the transformer architecture, a deep learning architecture that is based on 

multi-head attention 41,42, substantially changed the NLP landscape:  Especially the introduction 

of Bidirectional Encoder Representations from Transformers (BERT) and Generative Pre-trained 

Transformer (GPT) advanced the field. These models capture language patterns and context, 

and subsequent fine-tuning of pre-trained models on specific tasks achieved good results in entity 

recognition 43. BERT-based models have also been established for the biomedical domain (Bi-

oBERT, SciBERT, ClinicalBERT, BioMedRoBERTa) and tested on several benchmark datasets 

(GLUE, MuliNLI, SQuAD) 44,45. Nevertheless, BERT models require fine-tuning for successful IE, 

which requires procedure and programming knowledge and have very limited context length 10. 

 

LLMs, which have larger parameter sizes than BERT-based language models, have shown great 

potential in classical IE tasks 46. They offer a high zero-shot performance and shift the task solving 

field towards immediate prompt engineering instead of fine-tuning and model training. In-context-

learning, which does not alter the model's weights and has the advantage of using purely natural 

language, potentially allows medical staff without programming knowledge to seamlessly inte-

grate these tools into their daily routines. Furthermore, it provides maximum flexibility to extract 

contextually relevant information as specified by the requester, requiring minimal programming 

knowledge, making it ideal for the information extraction process in the medical field 47. The 

strength of our approach lies in its robust performance across datasets of any size, ensuring 

efficiency and accuracy whether analyzing a single report or aggregating insights from a vast 

collection of documents. 

Experimental design 

To validate the efficacy of our protocol, we conducted experiments across different datasets in 

different languages and clinical settings. Each use case was designed to test the protocol’s ability 

to accurately and efficiently process unstructured text into structured data while addressing spe-

cific clinical questions. The performance metrics included accuracy, sensitivity, specificity, F1-

score and precision, and the ability to maintain data integrity and privacy. 
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Expertise needed to implement the protocol 

We have designed the pipeline to require almost no programming knowledge with a user interface 

that allows intuitive data processing for non-technical users, however, pipeline setup requires 

some knowledge about virtual environments and navigating a terminal.  

Additionally, a useful application requires domain knowledge, therefore it is crucial that medical 

experts clearly define the entities of interest to enable concise and effective prompting, which is 

central to the protocol's operation. This requirement highlights the importance of having a well-

understood and agreed-upon definition of the entities among the clinical team members to facili-

tate the accurate extraction of information.  

Limitations 

While our pipeline significantly enhances the accessibility and utility of unstructured medical text 

data, it does have limitations: 

● Dependence on High-Quality Data Inputs: The effectiveness of the LLM is contingent on 

the quality and diversity of the input data. Handwritten documents and poorly scanned 

files may not be effectively processed by the implemented Optical Character Recognition 

(OCR) engines. 

● Computational Resources: Despite the possibility to run the pipeline on consumer hard-

ware, the necessity for a GPU with substantial VRAM may limit implementation in re-

source-constrained settings. Models with larger parameter sizes (such as Llama 3.1 405B) 

may require additional hardware to be tested. 

● LLM inherent constraints: LLMs may generate information or statements that are factually 

incorrect, misleading, or fabricated, so called “hallucinations”. They can be mitigated by 

adjusting hyperparameters and providing proper in-context learning, though it cannot be 

completely eliminated. However, LLM-AIx can still reduce IE time, even with a human in 

the loop. When using a homogeneous dataset, the error rate in IE can be considered 

comparable to that of a small evaluation subset 18.   

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.09.02.24312917doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.02.24312917
http://creativecommons.org/licenses/by/4.0/


 

9 

Materials 

Data 

The unstructured text data used to run the pipeline can have different formats. Our pipeline allows 

processing of portable document format (PDF), raw text (TXT) or comma-separated values (CSV) 

as well as EXCEL files.  

Hardware 

The pipeline can be run fully locally on consumer hardware (such as NVIDIA RTX 4090 or Apple 

Silicon M2 of a macbook).  We ran the pipeline with one Graphics Processing Unit (GPU), 

equipped with 48 gigabytes (GB) of video random-access memory (VRAM) with a NVIDIA RTX 

A6000. In theory, the pipeline can be deployed on consumer hardware with any GPU (minimum 

12 GB of VRAM). Processing times, context length and memory may limit the deployment on 

consumer hardware to smaller LLMs and datasets.  

To enable use on comparatively low-resource hardware, we employed only quantized models (4- 

and 5-bit quantization), which are smaller than unquantized LLMs but maintain comparable per-

formance 48. 

Software 

The pipeline can be used through a graphical user interface without any programming knowledge. 

It can be downloaded as a Docker image for a quick setup, including all its dependencies except 

the model files in GGUF format. 

Alternatively, manual setup is possible by installing the required python packages as well as ad-

ditional software packages (tesseract, llama.cpp) as it is described in the README.md file 

(https://github.com/KatherLab/LLMAIx). All software packages require a minimum of Python 3.12.  

 

The data preprocessing stage includes different options of OCR for processing image-only PDFs. 

We implemented the popular open source OCR “tesseract” via the package OCRmyPDF, as well 

as potentially superior alternatives such as “surya” 49, which can be selected by the User. Default 

OCR is tesseract. 

 

The protocol adopts the llama.cpp framework which enables the application of a variety of LLMs, 

formatted in GGUF. It allows LLM inference with state-of-the-art performance on a variety of hard-

ware locally and in the cloud 50. It is an open-source project that enables the use of Llama (Large 

Language Model Meta AI) models in C++.  
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Equipment Setup 

To set up the pipeline, two main steps are necessary: 1) Model download, 2A) Docker pipeline 

setup or 2B) Manual pipeline setup:   

1) Download the desired models in GGUF format onto your local system.  

2A) Edit docker-compose.yml with the correct model path and follow the instructions. Then run 

the docker image as described in the README.md. 

2B) Download the pre-built llama.cpp from Github and follow the installation instructions 50. Then 

clone the pipeline-Github repository. Create a virtual environment and install all necessary python 

packages within the environment. The detailed implementation of all dependencies and setup is 

described in the README.md file.  

Procedure 

Stage 1: Problem definition and data preparations 

⚫TIMING  

🔹 TROUBLESHOOTING 

🏴PAUSE POINT 

 

1. Define the use case:   

⚫TIMING: variable 

Preparation for utilizing our protocol involves users to define their specific extraction tasks 

clearly. This includes specifying the nature of the information to be extracted (for example, 

identifying complications from endoscopy reports), the format and volume of the data un-

der analysis, and the desired output categories for subsequent analysis. To accommodate 

documents in various formats (TXT, PDF, or CSV), our protocol standardizes the data into 

a uniform format (CSV) through automatic conversion and compilation. This standardiza-

tion is critical for ensuring consistent analysis across diverse datasets. 

 

2. Assess the input data:   

⚫TIMING: variable  

Identify the raw text data and the format that is available. A patient can have multiple 

documents, the processing happens per document. If the user plans to process CSV or 

EXCEL files, the text needs to be filled in a dedicated column, called “report”. Additionally, 

each text document needs a unique ID in the column “id”. If the user plans to upload single 

files for each document (e.g. PDF), the files need to be named by the unique ID. Con-

sistency in data labeling needs to be ensured in this data preparation step.  

 

3. Define the validation strategy:  

⚫TIMING: variable  
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This can either be done with document-wide labels (IE-Pipeline) or annotated text data 

(IE-Anonymizer). 

4. Prepare ground truth data:  

⚫TIMING: variable  

If automated evaluation of the LLM IE pipeline will be performed, a ground truth table of 

the data or a data subset needs to be provided. If there are unique labels per document, 

the ground truth needs to be provided in tabular format (CSV or EXCEL), containing all 

variables that should be extracted as columns and the corresponding ground truth, with 

the same characteristics as defined for IE. If text annotations and respective labels are 

supposed to be compared to the LLM output, annotated JSON files (one for each docu-

ment) need to be zipped. We recommend annotation with INCEpTION 51, for which the 

annotation comparison of this pipeline has been optimized.  

5. Download the desired LLMs  

⚫TIMING: variable  

If not performed beforehands, the user needs to create a folder on the local computer and 

download the desired LLMs to that folder. All models must be downloaded in GGUF format 

and can be accessed via huggingface.com. Hugging Face is a company and open-source 

community that provides a wide range of tools and libraries for NLP and machine learning. 

We tested several models within the pipeline, among them Llama-3.1 52 and Llama-3 53 

models, Mistral 54, Llama-2 55,56, Gemma 57 and Phi-models 58. 

6. Setup for running the pipeline 

⚫TIMING: ~5 minutes  

The pipeline can either be run via docker image or set up and started manually. Detailed 

descriptions can be found in the README.md. The procedure will be described with the 

Docker version. Docker needs to be installed 59.  

Stage 2: Data preprocessing  

 

7. Pipeline initiation:   

⚫TIMING: ~1 min  

A Docker The docker-compose.yml must be adapted with the correct model path as de-

scribed in the README.md. Then, run the docker image with “docker-compose up”.  

B Manually To initiate the pipeline, the user activates their virtual environment and navi-

gates into the repository via terminal. There, the app can be started with the terminal com-

mand “python app.py –model_path USERMODELPATH”. The application will then be 

loaded on the local server and can be run browser based. Click on the link provided in the 

terminal. (Default: http://localhost:5000). The user chooses the IE-mode based on prefer-

ences, either IE or anonymization mode can be chosen (Figure 2). 

8. Preprocess the data:  

⚫TIMING: variable depending on the amount of reports which necessitate OCR recog-

nition.  

After the data has been prepared, it can be preprocessed. The “Preprocessing” tab allows 
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to upload the data files by clicking the “Upload Data” button. PDF files can be uploaded, 

both “image-only” or PDF documents with a text layer. The name of the PDFs should 

contain the document id and match the annotated ground truth file id. Additionally, EXCEL 

or CSV files can be uploaded. They also need to contain an “id” column and a “report” 

column, containing one report per line. Once all documents are uploaded, the user can 

select the desired OCR method from a drop-down menu and specify the number of char-

acters. If needed, the document will then be split to accommodate the limited context win-

dows of certain models. After clicking the “Preprocess Files” button, a progress bar ap-

pears and indicates the preprocessing status. As soon as finished, the preprocessed data 

needs to be downloaded as a zipped folder. This zip folder contains all original documents 

in a separate PDF file as well as a CSV file. (Figure 2) 🏴🔹 

Stage 3: LLM-based information extraction 

9. Prepare the LLM based information extraction (Figure 3)  

⚫TIMING: Depends on the amount of variable and complexity of the prompt, ~2 min. 

Model Selection  

The user specifies the desired model by choosing it from the drop-down menu. We have 

predefined the most common open source models. Additional models can be added by 

downloading them to the predefined model folder and adding them to the “yaml file”. 

Upload the preprocessed zip file  

With the “upload” button, the preprocessed zip file can be uploaded for further processing.  

Prompt definition  

The prompt can be defined in the “Prompt” field and can be customized according to the 

user's needs. At the location of “report” in parenthesis, the respective report will be in-

serted, therefore this element needs to stay within the prompt as is. The location can be 

varied upon necessity. We recommend a prompt that is structured in two main parts: Giv-

ing background to the model and instructing the model  with the task. If the IE-task is more 

complex, it can be helpful to insert examples for few-shot prompting that leverage in-con-

text learning of the models. It is important to demonstrate examples in the same format as 

the output is desired.   

Grammar specification  

The section “Grammar” contains a JSON schema defining the output structure of the 

model. The grammar based sampling approach that is applied here enables the user to 

flexibly define the features to be extracted from the text and their possible outcomes. The 

desired model output JSON schema can either be adapted manually (error-prone and 

therefore not recommended) or with the “Grammar Builder”. The user can assign a label 

name for the information to be extracted and select the desired output format (string, bool-

ean, categories, number) and further specify the categories (in a comma-separated list) 

and the character length of the string and number. Once defined, the grammar can be 

downloaded and stored as a CSV file by clicking the “Save Configuration” button. When-

ever the same configuration is required again, it can be uploaded via the “Load Configu-

ration” button. Once the grammar is set up correctly, the user loads it into the “Grammar” 

section with the button “Generate Full Grammar”.  
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If prompt, grammar and hyperparameters are correctly defined and the preprocessed file 

is uploaded, clicking the button “Run LLM Processing” initiates the process.  

 

10. Run the LLM based information extraction  

⚫TIMING: variable, depending on model size and number of reports.  

First, the respective model will be uploaded onto the local server. This might take a few 

seconds up to several minutes, depending on the model size and hardware specifications. 

When the model is loaded, processing starts and a progress bar indicates the remaining 

amount of reports and time for the process. The remaining time is corrected after each 

report is processed. After the process is finished, the user can download and store the 

processed zip file. This file contains all original reports as PDFs, the preprocessed CSV 

as well as an output CSV that contains all LLM answers as well as meta-information in-

cluding prompt and hyperparameter settings. 🏴🔹 

Stage 4: Output evaluation 

⚫TIMING  

🔹 TROUBLESHOOTING  

 

11. Run evaluations  

⚫TIMING: variable, depending on number of reports. ~1-2 sec/report  

A Run evaluation in Information Extraction Mode  

The “Label Annotation Viewer” enables the uploading of both the output ZIP file and the 

ground truth CSV file. It is essential to ensure that the IDs and variable names are unique 

and matching in both files. (Figure 4 A)The process can be initiated by clicking “Label 

Annotation Metrics Summary” to obtain all metrics and “Label Annotation Viewer” to review 

results on a document-by-document basis. Before results are obtained, data types of the 

extracted variables have to be confirmed to ensure proper evaluation (Figure 4 B). 

B Run evaluation in Anonymizer Mode 

To evaluate the output in the Anonymizer mode, the output zip file can equally be up-

loaded. The ground truth needs to contain annotations for the individual reports in JSON 

format. For annotation tasks, we used the  open source annotation tool "INCEpTION” 51. 

The annotated JSON exports need to be zipped and can then be uploaded equally to the 

IE evaluation. 🔹 

 

12. Revise Metrics and Files 

⚫TIMING: variable, up to the user’s preferences  

The “Label Annotation Summary” provides global metrics for the experiment by comparing 

the output data to the ground truth data. For boolean IE, it presents a comprehensive set 

of metrics, including Accuracy, F1 Score, Precision, Recall, False Positive Rate, and False 

Negative Rate, both across all reports and variables, and for each variable individually. A 

confusion matrix visualizes true and false positives and negatives (Figure 5A). For cate-

gorical variables, the confusion matrix shows matches between ground truth categorical 
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values and output values. For string variables, a string match is displayed. In anonymiza-

tion tasks, a character-wise overview of truly and falsely redacted characters is given, both 

as a global metric and for each patient identifier individually. Additionally, each report is 

listed below the metrics overview. Users can individually select and review each report to 

double-check and compare the LLM output with the original text and ground truth annota-

tion (Figure 5B).   
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Timing 

The time required to complete this protocol varies depending on the size of the dataset, the LLM’s 

size and the available computational resources. The most time-intensive steps are Step 9 “Pre-

pare the LLM based information extraction”, 10 “Run the LLM based information extrac-

tion” and Step 12”Revise Metrics and Files”.  The time estimates provided in Table 1 are based 

on running the protocol on the example dataset (comprising n=100 TCGA pathology reports with 

Llama 3.1 70B model) using a NVIDIA RTX A6000 GPU on a Windows workstation. 

 

Anticipated Results 

Our protocol has demonstrated its efficacy and versatility through application to diverse datasets, 

notably including the MIMIC dataset17 and for psychiatric16 and endoscopy report analysis. We 

demonstrate the pipeline results for both anonymization and IE of eight fictitious clinical letters for 

patients with pulmonary embolism. Llama-3 70B correctly identified all patients’ first name and 

last name, gender, age, date of birth and patient id which led to correct redaction of this infor-

mation in the reports. The character-wise evaluation results in 99.9% specificity and 100% sensi-

tivity for the anonymization of 8 clinical letters, with 98.2% precision for full name redaction, 94.3% 

precision for first name and 90% for last name redaction (Table 2). The discrepancy of IE for all 

personal identifiers (100% precision and sensitivity) and the redaction metrics is because one 

fictitious patient’s last name matched the provider's last name (“Miller”, see Supplement) and 

was therefore also redacted in the exact string match redaction from our pipeline. 

The fictitious clinical letters report about the clinical course of patients with pulmonary embolism, 

all of them having different constellations of etiology and risk profiles for this disease. Therefore, 

we aimed at extracting the presence of leading symptoms such as shortness of breath, chest 

pain, leg pain or swelling, heart palpitations, cough and dizziness from the clinical letters (Table 

3). Additionally, information about the embolism side (left, right or bilateral) should be extracted. 

All symptoms’ presence was correctly identified with 100% precision and sensitivity, except for 

the symptom “heart palpitations”, which was missed in one clinical letter.   

For demonstrating the capacity of our pipeline, we additionally used a dataset previously used for 

IE with n=100 TCGA pathology reports of patients with colorectal cancer, aiming at extracting 

information about TNM-stage.60 We ran the experiment with Llama 3.1 70B parameter model and 

achieved an overall accuracy across all variables extracted of 87%. Extracting the T-stage was 

accurate in 89% of the reports (F1 Score 0.57, Precision 52%, Recall 68%). The N-stage was 

accurately extracted in 92% of all reports (F1 Score 0.86, Precision 85%, Recall 87%). The M-

stage was accurately extracted in 82% (F1 Score 0.69, Precision 68%, Recall 93%). The number 

of lymph nodes examined was correctly extracted in 87%. The number of lymph nodes positive 

for cancer cells was correctly extracted in 90%. Whether the resection margin was tumor free 

could be identified with an accuracy of 86% (F1 Score 0.92, Precision 87%, Recall 99%, FPR93%, 
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FNR 1%). The extraction of whether lymphatic invasion was present or not achieved an accuracy 

of 86% (F1 Score 0.82, Precision 70%, Recall 100%, FPR 21%, FNR 0%). 

A report-by-report error analysis revealed an erroneous ground truth for some reports . When 

correcting the mistaken ground truth, overall accuracy increased to 88%, 90% for T-stage, 92% 

for N-stage, 82% for M-stage, 87% for the lymph nodes examined, 90% for cancer-positive lymph 

nodes, 91% for the tumor free resection margin and 87% for lymphatic invasion (All metrics are 

shown in Table 2). In some cases, the original report contained conflicting information, e.g. it was 

described: “resection margin negative (carcinoma less than 1mm from the radial margin)” which 

is in fact oftentimes defined as “resection margin positive”, because there is a high risk of tumor 

recurrence.61–63 Another example was that “M0 Mx” was supposedly accidentally stated at the 

same time and “M0” extracted by the LLM. In four cases, the error occurred from wrong OCR 

recognition of the low-quality scans or handwriting within the report. The LLM identified the right 

characters, which were already incorrectly stored in the document by OCR (e.g. “N1” was recog-

nized as “N:”, “MA” was recognized as “M1” and the roman numbers “I/IV” for positive lymph 

nodes were recognized as “1/9” and cited by the LLM as such). We repeated preprocessing of 

the documents and forced OCR with a different OCR engine, “Surya” and found a slight increase 

in performance metrics (Table 4). Detailed guides through the experiments with screenshots, also 

containing prompts and grammar used, are given in the Supplement.  

These examples demonstrate the successful application of the LLM-AIx-Pipeline for clinical re-

search questions and use cases. It facilitates extracting information from unstructured medical 

reports with LLMs, thus enabling a structured downstream processing of relevant healthcare data. 
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Troubleshooting 

Step Problem Possible Reason Solution 

Data preprocessing 

6 Expecting xx lines in, saw yy Erroneous CSV, wrong encoding Make sure you store the data in proper CSV files 
and ensure UTF-8 coding.  

LLM-based information extraction 

10 Model could not be loaded on 
Server 

GPU capacity exceeded, too many 
processes are running in parallel or 
model is too big for hardware re-
sources 

Terminate other processes running on the GPU. 
If model size is the problem, use a smaller model 
or higher quantization.  

10 LLM processing very slow Pipeline is run on CPU of consumer 
hardware 

Loading the LLM to a gPU, if available, increases 
the speed of the process. Default model upload 
in the pipeline is GPU upload. 

10 Empty LLM output LLM output is invalid JSON because 
the model did not answer anything, 
did respond with invalid json or the 
answer was cut off because n_pre-
dict is too low.  

Increase n_predict. Test with less complex 
grammar, prompt and other models. 

10 Empty LLM output N-predict might be too low Increase n_predict. Test with less complex 
grammar, prompt and other models. 

Output Evaluation 

11 Mismatch LLM output with an-
notation 

LLM hallucinated 
Supplementary Figure 12 

Improve explanation for this variable in prompt 
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11 Mismatch LLM output with an-
notation 

Ground truth is wrong Refine the ground truth through expert discus-
sion 

11 Mismatch LLM output with an-
notation 

Input text data is conflicting. Sup-
plementary Figure 13, 14 

Refine the ground truth through expert discus-
sion 

11 Mismatch LLM output with an-
notation 

Annotation is coarser than LLM 
Supplementary Figure 15 

Refine the ground truth through expert discus-
sion 

11 Mismatch LLM output with an-
notation 

Annotation is more detailed than 
than LLM 
Supplementary Figure 16 

Refine the ground truth through expert discus-
sion 

11 Mismatch LLM output with an-
notation 

Classes are not sufficiently distin-
guishable, e.g. model is unable to 
distinguish between “no” and 
“none”. 
Supplementary Figure 17 

Classes need to be defined clearly mutually ex-
clusive and commonly exhaustive and close to 
interpretation of natural language. E.g. If the 
presence of “lymphatic invasion” is questioned, 
the answer options are either “yes”, “no” or “not 
mentioned”. These classes are closer to human 
language and therefore clearer for an LLM than 
“yes, no, none”. 

11 Mismatch LLM output with an-
notation 

Wrong OCR due to bad quality 
PDFs. 
Supplementary Figure 18  

If documents contain a high share of hand-writ-
ten information and PDFs are of very bad qual-
ity, text cannot be extracted correctly, the extrac-
tion failure therefore arises from data prepro-
cessing and can be overcome by selecting an-
other OCR method for preprocessing. “Surya” 
surpasses “tesseract” in general and the vi-
sionLLM Phi or trOCR are better in detection 
hand written text.  

11 Mismatch LLM output with an-
notation 

The LLM output is accurate but has 
minor character discrepancies com-
pared to the annotation. 
Supplementary Figure 19 

Desired output needs to be specified as detailed 
as possible within the prompt and grammar.  
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11 Mismatch LLM output with an-
notation 

Information is present but could not 
be detected by the LLM. 
Supplementary Figure 20 

Add a more detailed explanation within the 
prompt and give few-shot examples. 

11 Mismatch LLM output with an-
notation 

LLM extracts information better than 
human rater. 
Supplementary Figure 21 

Refine the ground truth through expert discus-
sion 

11 Mismatch LLM output with an-
notation 

LLM lacks implicit knowledge. Sup-
plementary Figure 22 

Desired output and definition needs to be speci-
fied as detailed as possible within the prompt. 
Add few-shot examples.  

11 Mismatch LLM output with an-
notation 

Output categories are misdefined. 
Supplementary Figure 23 

Make sure the output categories are the same 
as in annotated ground truth 
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Data availability 

All research procedures were conducted in accordance with the Declaration of Helsinki. Ethics 

approval was granted by the ethics committee of Technical University Dresden, reference number 

BO-EK-400092023.  

Code availability 

The open-source software for the implementation of the IE experiments is available on GitHub 

under a CC-BY-NC license (https://github.com/KatherLab/LLMAIx).  
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Figures 

Figure 1 - Information Extraction Workflow. A The information extraction pipeline follows a 

common path that includes data preprocessing, optional Optical Character Recognition (OCR), 

document splitting, and support for various file formats (CSV, Excel, PDF, or TXT). B After pre-

processing, users can specify model parameters such as hyperparameters, prompts, and de-

sired output structure. Once these are defined, the LLM-based information extraction process 

begins. B The resulting ZIP file contains the output CSV with LLM predictions of the desired in-

formation and the original reports. The evaluation process offers two options. D If the pipeline is 

used for information extraction, it identifies and extracts the required information into a CSV file. 

This extracted CSV file can then be compared to a ground truth CSV file. Confusion matrices 

and comprehensive performance metrics are generated to visualize and evaluate the pipeline's 

performance. E If the pipeline is used for document anonymization, the original documents are 

redacted to obscure personal identifiers and can be compared to annotated data files. The pipe-

line automatically generates confusion matrices that visualize matching and mismatching char-

acters, facilitating easy performance evaluation. The anonymization part of this figure is based 

on the workflow depiction of our previous publication19.  
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Figure 2 - Preprocessing Procedure GUI - Stage 2, 7-8. A Schematic depiction of the prepro-

cessing stage. Files can be uploaded and will be split to smaller document chunks if necessary 

according to the split size determined. A zip file containing original documents and a CSV file 

that organizes all documents for LLM processing can be downloaded in the end B When the 

browser based application is started, the mode of action can be chosen, which is either the 

“LLM Anonymizer” or the “LLM Information Extraction”. Both modes have the same prepro-

cessing and data processing, however the evaluation part differs. Modes can be switched at any 

time during the process by adapting the drop-down menu in the upper right corner. C The user’s 

documents can be uploaded in the preprocessing step. Images, as well as portable document 

format (PDF), raw text, as well as excel or comma separated value (CSV) files are allowed. The 

split size, which can be determined according to the expected context window size of the LLM, 

is 14000 characters per default but can be adapted if necessary. By clicking the “Preprocess 

Files” button, the preprocessing starts. Progress is indicated with a progress bar. The “Down-

load” button allows you to download and store the preprocessed zip file which will be needed in 

further processing steps.  
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Figure 3 - LLM-processing Procedure - Stage 2, 7-8 . A Schematic depiction of the LLM-pro-

cessing stage. The large language model (LLM) based information extraction requires uploading 

of the preprocessed zip file. Then LLM Settings can be determined. The prompt field allows in-

serting a specific prompt. At the “{report}” indicator, your original report text will be inserted. Ad-

ditionally, LLM hyperparameters can be set (Temperature and tokens to be predicted (n_pre-
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dict)) and the desired model can be chosen via a dropdown menu. To ensure a consistent out-

put structure, the model can be given a JavaScript Object Notation (JSON) schema. This can 

either be defined manually, which is prone to errors. Therefore, we implemented a “Grammar 

Builder” that allows to define your feature name and values to be extracted. The grammar con-

figuration shown in B can be downloaded and stored on your local computer and loaded when-

ever needed. With the button “Generate Full Grammar”, it will be loaded to the processing 

mask. Afterwards, “Run LLM Processing” starts the information extraction. The model chosen 

will then be loaded on the local Graphical Processing Unit (GPU), before the information extrac-

tion starts. This is indicated by a loading circle in the Graphical User Interface (GUI) or the up-

loading dot indicators in the terminal. As soon as the model is successfully loaded to the GPU, 

the LLM-based processing starts and progress is indicated with a progress bar.  
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Figure 4 - Information extraction evaluation initiation- Stage 4, 11A. A Schematic depiction 

of the evaluation process. LLM output and human made ground truth can be compared auto-

matically and metrics as well as confusion matrices will be calculated and displayed. Those can 

be downloaded in a metrics-zip file which contains metrics, figures, original documents and LLM 

output. B The LLM Annotation Metrics and Viewer requires upload of the LLM output file (zip-

file) and the annotated file (CSV or EXCEL). After initiating the comparison of output file and 

ground truth file with the “Label Annotation Metrics Summary” button, the label data types of the 

extracted information variables need to be confirmed. (C) 
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Figure 5 - Evaluation of Information Extraction Results GUI, Stage 3, 9-11. A Upload the 

output zip file and the ground truth file. IDs have to match with the document IDs for prepro-

cessing and feature labels have to match the feature names defined for processing. Start the 

evaluation process by clicking “Label Annotation Metrics Summary”. B The label annotation 

summary provides global metrics accuracy and F1 score, but also allows to check each docu-

ment individually for all features as well as each feature individually. C Clicking on the respec-

tive report displays the original text and the model output as well as respective ground truth pro-

vided. This enables a seamless evaluation and document revision process.  
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Tables 

Table 1 - Short description of Information Extraction procedure 

Step Name Timing for TCGA report exam-
ple 

Stage 1: Problem definition and data preparations 

1 Define the use case predefined 

2 Assess the input data predefined 

3 Define the validation strategy predefined 

4  Prepare the ground truth data predefined 

5 Download the desired LLMs  ~20 min 

6 Setup for running the pipeline ~2 min 

Stage 2: Data preprocessing 

7 Pipeline initiation ~1 min 

8 Preprocess the data ~5 min 

Stage 3: LLM-based information extraction 

9 Prepare the LLM based information extraction ~5 min 

10 Run the LLM based Information Extraction ~60 min 

Stage 4: Output evaluation 

11 A Run evaluation in Information Extraction Mode 
B Run Evaluation in Anonymizer Mode ~5 min 

12 Revise Metrics and Files 

~60 min 
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Table 2 - Results LLM-Anonymizer (Macro-Averages) 

 All labels Patient 
name 

First name Last name Sex Patient id Age Date of birth 

Accuracy in 
% 

99.9 99.9 99.9 99.8 100 100 99.9 100 

F1 0.994 0.988 0.969 0.944 1.0 1.0 0.958 1.0 

Precision in 
% 

98.9 97.7 94.3 90.0 100 100 93.8 100 

Recall in % 100 100 100 100 100 100 100 100 

FPR 0.0008 0.001 0.0013 0.0026 0.0 0.0 0.0001 0.0 

FNR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

Table 3 - Results Information Extraction Pulmonary Embolism on Fictitious Reports 

 Shortness of 
breath 

Chest pain Leg pain or 
swelling 

Heart palpita-
tions 

Cough Dizziness Embolism 
side 

Accuracy in % 100 100 100 88.0 100 100 100 

F1 1.0 1.0 1.0 0.8 1.0 1.0 1.0 

Precision in % 100 100 100 100 100 100 100 

Recall in % 100 100 100 67.0 100 100 100 

FPR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

FNR 0.0 0.0 0.0 0.33 0.0 0.0 0.0 
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Table 4 - Results after adapting the erroneous ground truth and adjusting the categories 

 All T stage N stage M stage Number of 
lymphnodes 
examined 

Number of 
positive 
lymphnodes 

Tumor free 
resection 
margin 

Lymphatic 
invasion 

Data type  categorical categorical categorical number number boolean boolean 

Accuracy in 
% 

88.0 90 92 82 87 90 91 87 

F1  0.57 .86 0.69   .95 0.85 

Precision in 
% 

 52 85 68   92 77 

Recall in %  68 87 93   99 95 

FPR       0.89 0.18 

FNR       0.01 0.05 
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Table 5 - Results after adapted OCR method (output-categories and boolean) 

Standard Prompt: “You are a helpful medical assistant. You are supposed to extract information from a pathology report from a pa-

tient with colorectal cancer. I need to know the TNM stage of the patient. This is a system to describe the amount and spread of can-

cer in a patient's body, using TNM. T describes the size of the tumor and any spread of cancer into nearby tissue; N describes 

spread of cancer to nearby lymph nodes; and M describes metastasis (spread of cancer to other parts of the body). If you find no 

information about the T, N or M stage, give Tx, Nx or Mx, respectively. If there is "pT1" or "pN", just skip the "p" and give "T1" etc. 

Additionally, I need information about the number of lymph nodes examined and the number of positive lymph nodes. Let me know if 

the resection margin was tumor free and if there was lymphatic invasion. If you do not find information about resection margin or lym-

phatic invasion, say "not mentioned". 

 

This is the report: 

{report} 

” 

 All T stage N stage M stage Number of 
lymphnodes 
examined 

Number of 
positive 
lymphnodes 

Tumor free 
resection 
margin 

Lymphatic 
invasion 

Accuracy in 
% 

89 90 92 88 88 91 91 88 

F1  0.6 0.86 0.74   0.95 0.86 

Precision in 
% 

 58 85 70   93 81 

Recall in %  67 87 96   98 93 

FPR       0.88 0.15 

FNR       0.02 0.07 
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