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Abstract 1

Avian influenza A(H5N1) poses a risk to public health due to its pandemic potential should the 2

virus mutate to become human-to-human transmissible. To date, reported influenza A(H5N1) human 3

cases have typically occurred in the lower respiratory tract with a high case fatality rate. There is 4

prior evidence of some influenza A(H5N1) strains being just five amino acid mutations away from 5

achieving droplet transmissibility, possibly allowing them to be spread between humans. Three of 6

these amino acid mutations must occur within a single human host, though the exact probability of 7

such mutations occurring is not currently known. Here, we present a mechanistic within-host infection 8

model for influenza A(H5N1), novel for its explicit consideration of the biological differences between 9

the upper and lower respiratory tracts. These developments enable us to estimate a distribution 10

of viral lifespans and effective replication rates in human H5N1 influenza cases. We combine our 11

within-host model with a viral mutation model to determine the probability of an infected individual 12

generating a droplet transmissible strain of influenza A(H5N1) through mutation. For three required 13

mutations, we found a peak probability of approximately 10−3 that a human case of H5N1 influenza 14

produces at least one virion during the infectious period. Our findings provide insights into the risk of 15

differing infectious pathways of influenza A(H5N1) (namely the avian-human vs the avian-mammal- 16

human routes), demonstrating the three-mutation pathway being a cause of concern in human cases. 17

Additionally, our framework - combining a within-host infection model with a branching process model 18

for viral mutation - is generalisable to other pathogens, allowing mutation probabilities to be more 19

easily ascertained. Our findings are a starting point for further modelling of influenza A(H5N1) and 20

other pathogens where differing tissue susceptibilities and human-to-human transmission is of concern. 21
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1 Introduction 22

The influenza virus family is responsible for influenza infections (colloquially referred to as the ‘flu’) 23

in a variety of animals including humans, other mammals and birds. There are four main influenza 24

types (A-D); within type A influenza there is substantial public health concern around the avian 25

influenza A(H5N1) subtype, commonly known as bird flu. Influenza A(H5N1), which we will refer 26

to as H5N1 influenza, is highly pathogenic in avian species and considered panzootic, being widely 27

distributed in wild and domesticated birds [1]. There have been 911 reported cases of human H5N1 28

influenza worldwide as of 23 May 2024 [2]. These reported cases have generally been severe, with a case 29

fatality rate of 53% [3] although, at the time of writing, there is little evidence for human-to-human 30

transmission of H5N1 [4]. Nonetheless, the high prevalence of the infection in the avian population is 31

causing mounting concerns that under the right circumstances, an H5N1 strain could mutate to allow 32

human-to-human transmission. If this were to occur, transmission between humans is likely to allow 33

increased spread of the virus (at similar levels to the seasonal flu) with a resultant pandemic amongst 34

humans. 35

Previous flu pandemics, and seasonal flu outbreaks, are primarily infections of the upper respiratory 36

tract (URT) [5] due to the presence of SAα2,6 receptors that these strains preferentially bind to 37

for cell entry. H5N1 influenza, however, preferentially binds to SAα2,3 receptors present in the avian 38

respiratory and intestinal tracts [6–10], and these receptors are primarily found in the lower respiratory 39

tract (LRT) in humans. This not only makes it much more difficult for initial human infection to occur, 40

but also means that droplet transmission (the main source of seasonal flu transmission) is not viable, 41

hence the current lack of human-to-human transmission of H5N1 influenza. However, with suitable 42

mutations within humans, H5N1 influenza could evolve the ability to infect the URT as well as the 43

LRT. This is cause for concern for two reasons. Firstly, infections in the LRT may lead to greater 44

mortality due to increased risk of pneumonia and other related fatality risks [11]. Secondly, with the 45

ability to infect the URT, human-to-human transmission becomes more likely, increasing the pandemic 46

potential of H5N1 influenza [6, 8, 9]. 47

From our present knowledge base it is believed that five amino acid substitutions in H5N1 influenza 48

are required for human-to-human transmission to be possible, with two of these mutations having 49

already been seen in viruses sampled from the avian population [6]. It is believed that the other 50

three mutations are unlikely to evolve in avian species as they are deleterious to the virus in birds. 51

Consequently, between three and five mutations are required to take place in humans for droplet 52

transmission to be likely. 53

For pandemic preparedness, it is crucial that we have suitable tools available to quantify the chance 54

of an infected individual generating a droplet transmissible strain of H5N1 influenza through muta- 55

tion. However, the probability of such mutations in H5N1 influenza occurring within a human host is 56

presently unknown. To enable modelling analysis of this problem, there are two key limitations in the 57

existing modelling literature. The first is that previous models of H5N1 influenza within-host infection 58

dynamics in humans do not take into account the differences between the two tracts (URT and LRT). 59

Although there have been modelling efforts to account for the binding specificities of H5N1 influenza 60

in different areas of the respiratory tract [7], and it is understood that fluid dynamic effects/having 61

multiple patches impact contagion dynamics [12–14], to our knowledge no current research explicitly 62

models H5N1 influenza infection dynamics in the LRT and URT. The second is that although poten- 63

tial mathematical frameworks for the modelling of advantageous mutations (such as those required 64

for droplet transmissibility) do exist in the literature, these have explored the implications of the 65

frameworks as opposed to explicitly finding the mutation probabilities [6, 15, 16]. 66

In this paper, we present a combined modelling framework to address these two notable methodolog- 67
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ical gaps. The first modelling component is a novel within-host two-patch (both upper and lower 68

respiratory tract), ODE infection model for H5N1 influenza. By inferring patch-dependent disease 69

parameters, we seek to capture the biological differences in spreading capability of H5N1 influenza in 70

the two parts of the respiratory tract. The second modelling component is an enhanced branching 71

process model (BPM) for H5N1 influenza virus mutation, building on the work of Russell et al. [6]. 72

Informed by the within-host model outputs, and including the distribution of infection lifespans and 73

real-time replication number estimates, we use the BPM to provide a more realistic estimate on the 74

evolutionary dynamics of a human H5N1 influenza infection. Combined, our modelling framework is 75

generalisable to other respiratory pathogens, allowing researchers to estimate the mutation chances 76

for a pathogen mutating specific traits. 77

2 Methods 78

Herein we summarise the three main methodological components of our study. We begin with a de- 79

scription of the novel within-host deterministic infection model and its calibration to both the canonical 80

H5N1 influenza dataset and case fatality rate (Section 2.1). This is followed by the introduction of 81

the branching process model for viral mutation and how it incorporated the within-host model re- 82

sults (Section 2.2). Finally, we list the methods and model realisations used to calculate both the 83

time dependent proportion of mutant virions in a host and the probability that a human-to-human 84

transmissible strain could arise from an infection (Section 2.3). 85

To simulate the within-host infection model (and its proxies) and the branching process model we 86

used Python 3.11 with packages: Numpy (version 1.26.4), Matplotlib (version 3.84), Scipy (version 87

1.13.0) and Pickle (version 4.0). We conducted the Approximate Bayesian Computation scheme for 88

fitting the within-host model in R 4.3 using the packages: tvmtnorm (version 1.6), KScorrect (version 89

1.4.0) and deSolve (version 1.40). A repository containing the data and code used to conduct this 90

study can be found at https://github.com/joshlooks/avianflu. 91

2.1 Within-host infection model explanation and fitting 92

Our within-host model for H5N1 influenza infection introduced key biological processes not present in 93

other models in the literature. This model development subsequently forms the basis of the remaining 94

results presented in this paper. Here we outline the canonical dataset used for fitting the intra-host 95

model (Section 2.1.1), provide the biological description of the infection model (Section 2.1.2) and 96

state the corresponding ODE system (Section 2.1.3). We then explain how the model parameters 97

were calibrated using literature (Section 2.1.4) and an Approximate Bayesian Computation scheme 98

(Section 2.1.5). Lastly, introducing mortality into our two-patch model was of utmost importance 99

for informing how likely human-to-human transmission may be. The relatively high case fatality rate 100

of H5N1 influenza could hamper its ability to mutate in the body since those infected may be likely 101

to die before the virus has a chance to mutate to become human-to-human transmissible. We thus 102

conclude this section by outlining how we fit the model outputs to mortality data (Section 2.1.6). 103

2.1.1 Data 104

We made use of the ubiquitous dataset in the literature corresponding to the viral titres of six hospi- 105

talised H5N1 influenza patients in Vietnam in 2004 and 2005 [17]. The titrations were formed from 106

pharyngeal swabs taken daily after presentation at the hospital. These measurements corresponded 107

to the viral load in the URT only, with viral loads varying in many orders of magnitude between 108

patients on the same estimated day post infection (Fig. 1). We anticipated that this characteristic of 109

the data, and the small, noisy sample, could pose issues around parameter identifiability and model 110
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Fig. 1. Viral titres from pharyngeal swabs of hospitalised H5N1 influenza patients in
Vietnam. Data from de Jong et al. [17]. We used this dataset to calibrate all models included in
this paper.

generalisation to an ‘average infection’ during model fitting. Nonetheless, this dataset is the most 111

recent and complete human infection data available for H5N1 influenza. Prior studies attempting to 112

calibrate models to these data have gathered an understanding of related biological processes [7, 18]. 113

It thereby provides an entry point for calibration of our proposed model and the exploration of its 114

infection dynamics. 115

2.1.2 Deterministic two-patch infection model description 116

We first built a deterministic two-patch ordinary differential equation infection model, with the URT 117

and LRT each having their own internal processes. The URT and LRT then interact via the diffusion 118

of the free virus between each patch and an advection term, describing the movement of free virus 119

between patches via physical movement of fluid. The advection term can be considered the transfer of 120

mucus (through coughing or mucociliary clearance by cilia ) from the LRT to the URT. A graphical 121

depiction of the above processes is shown in Fig. 2. 122

For the within-patch processes (the cells subfigure in Fig. 2), we modelled each respiratory tract 123

compartment as having a set of uninfected epithelial cells (or ‘target cells’, T ) to which the H5N1 124

influenza virions (V ) may bind. After infection by a virion, the cells move into an eclipse/latent 125

phase (E) where they are infected by the virus but do not produce any additional virions. After an 126

exponentially-distributed period of time, the cells leave the latent phase and enter the infected phase 127

(I), producing free virions. LRT models for Influenza A have been studied previously; we based our 128

more complex two-patch model on a model of the infection in the LRT by Handel et al. [19]. We note 129

in particular that the key difference between the URT patch and the LRT patch is that it is generally 130

considered that the URT can be modelled using a ‘target-cell limited’ approach. In other words, there 131

is limited immune response in the URT and the dynamics of the virus are entirely governed by the 132

number of uninfected cells alive. Thus, we only considered an immune response in the LRT patch. 133

The adaptive immune response (X) has a humoral component comprised of B-cells and antibodies, as 134

well as a cellular component, comprised of T-cells. The humoral component causes the IR to increase 135

proportionally to the viral load in the LRT, and the clonal expansion of the T-cells causes the IR to 136
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Fig. 2. LRT and URT explicit within-host respiratory infection model schematic.
Compartments listed are uninfected/target cells (T ), free virions (V ), eclipse/latent cells (E),
infected/virion-producing cells (I) and the adaptive immune response (X). Note that the subscripts
U,L represent the URT- and LRT-based compartments respectively. The different colours represent
the processes in the URT (in blue) and in the LRT (red). Arrows show the spread of the contagion
through the host. The dashed arrows in the virus compartment indicate the coupling of the two
patches through advection and diffusion. Parameters descriptions are found in Table 1.
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grow exponentially, as in Handel et al. [19]. X can be considered to represent antibodies in the host. 137

2.1.3 ODE system 138

The within-host dynamics of H5N1 infection obeyed the following system of ordinary differential equa- 139

tions. We note that a subscript U denotes that the compartment / parameter is for the URT, while 140

a subscript L denotes that the compartment / parameter is for the LRT. 141

142

dTU

dt
= −βUTUVU

dEU

dt
= βUTUVU − gEU

dIU
dt

= gEU − dIU

dVU

dt
= pUIU − cVU − γβUTUVU −D(VU − VL) + aVL

dTL

dt
= −βLTLVL

dEL

dt
= βLTLVL − gEL

dIL
dt

= gEL − dIL

dVL

dt
= pLIL − cVL − γβLTLVL − kVLX +D(VU − VL)− aVL

dX

dt
= fVL + rX

with βU and βL the rate of infection in the URT and LRT, g the latent transition rate of infected cells, 143

d the mortality rate of infected virus producing cells , pU and pL the virus production rate in the URT 144

and LRT, c the morality rate of free virions, γ the conversion rate between infection and viral titre, f 145

the recruitment rate of adaptive immune response, r the expansion rate of adaptive immune response 146

and k the kill rate of adaptive immune response, D the rate of diffusion and a the rate of advection. 147

2.1.4 Model parameterisation from the literature 148

We obtained values from the literature for a subset of parameters in our ODE model. From Dobrovolny 149

et al. [18], we set the latent state duration of infected cells (1/g) as 1/4 days, the lifespan of infected 150

virus producing cells (1/d) to be 1/5.2 days and the lifespan of free virions (1/c) as 1/2 day. We also 151

highlight that Dobrovolny et al. [18] noted that their values were consistent with other research in the 152

area. 153

For the immune parameters, we took the approach found in Handel et al. [19]. Although this was 154

fitted to mice data, studies have shown that the mice immune system is a suitable analogue for the 155

immune system found in humans in vivo [20]. Further, parameters are likely transferable through 156

the comparison of mice and human metabolic rates - mice have a metabolic rate seven times that of 157

humans [21]. We converted from plaque-forming unit (pfu) into TCID50 (Tissue culture infectious 158

dose 50%), with pfu being proportional to TCID50 by a factor of 0.56 [22]. 159
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It was also important to select an initial number of target cells and initial viral load. We took the 160

estimated values of TU = 4× 108, TL = 6.25× 109 from Ciupe and Tuncer [23], which were calculated 161

using the average surface area of an epithelial cell and of the human respiratory tract. We took the 162

initial viral load (V0 = 1.3× 103 TCID50/ml) from the fitted values of the single-target-cell model in 163

Dobrovolny et al. [7]. 164

There was little information in the literature regarding rate of infection βU and βL, virus production 165

rate pU and pL, conversion rate between infection and viral titre γ, rate of diffusion D or rate of 166

advection a. These parameters of interest were also chosen as they have been found to have the 167

biggest impact on the observed disease dynamics [7, 14, 18]. It is also worth noting that setting 168

γ = 0 leads to similar results (and is normally ignored in human models [14, 18, 19]). This parameter 169

represents the conversion rate between the viral titre (in TCID50) and the number of free virions used 170

to infect a target-cell. Setting this parameter to zero indicates that there is no noticeable change in 171

the viral titre due to the infection of target-cells. By re-introducing this parameter (allowing it to 172

be non-zero), we gained an extra degree of freedom in the model that allowed for more biologically 173

realistic parameter values and peak shapes to be observed during parameter fitting. 174

We state the default model parameters, for non-fitted parameters, in Table 1. Some of the selected 175

parameter values are similar to literature values for models fitted to H1N1 infection data within 176

humans [24–26]. However, previous studies on H5N1 influenza infection in humans found that these 177

values gave good fits to the data, and that the other aforementioned parameters that we fitted for 178

were the main contributors to viral dynamics [7, 18]. 179

2.1.5 Model calibration and parameter inference 180

To calibrate the model, we made use of the dataset outlined in Section 2.1.1. We note that this 181

corresponds to the viral load in the URT only, and so we could only fit the model dynamics based 182

on this compartment. Parameter identifiability is a problem for most mathematical biology models, 183

and this was especially true for our fitting process as we have less than 20 data points available, all of 184

which correspond to hospitalised individuals who died from the infection. 185

To fit the parameters we employed an Approximate Bayesian Computation Sequential Monte Carlo 186

M Nearest Neighbours (ABC-SMC-MNN) method based on the pseudo-code found in Minter and 187

Retkute [27], using methods originally developed by Filippi et al. [28] and Toni et al. [29]. Due to 188

the lack of data, and its continuous nature, an exact likelihood function for data fitting is difficult to 189

justify, thus we adopted an ABC inference scheme. With large order of magnitude differences across 190

our data points, we chose the summary statistic (c) to be the model error on a log-scale, where y is 191

the data, N is the number of data points and x is the model predictions: 192

c =
N∑
i=1

((log (yi))− log (xi))
2

We chose the perturbation kernel to be a truncated-multivariate-normal distribution (truncated to 193

take into account the prior). For the prior distributions, we assumed log-uniform prior distribution 194

for all variables (see Table 1 for the prior distribution ranges). We selected log-uniform priors as it is 195

an uninformative prior and because the parameters were likely to be skewed towards lower orders of 196

magnitude (such that our prior belief was the parameters being uniform on a log-scale). We informed 197

the parameter ranges of the priors by first taking a least-squares fit (to both the normal and log-scale 198

data); we then took a wide range around those values to define the prior bounds. Furthermore, we 199

also assumed the spreading rate in the LRT (βL) to be greater than that in the URT (βU ). This 200
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Table 1. List of parameters and their descriptions. For fixed parameters we state their value
and associated references. For inferred parameters we list their prior distribution (we use lU as a
notation for the log-uniform distribution). We provide unit information for each parameter in
parenthesis after the parameter description.

Parameter Value Prior
βU Rate of infection, URT

(day−1)
- lU(1× 10−8, 1× 10−6)

βL Rate of infection, LRT
(day−1)

- lU(1× 10−7, 1× 10−5

1/g Productively infected cells
(days)

1/4 [18] -

1/d Lifespan of infected, virus-
producing cells (days)

1/5.2 [18] -

pU Virus production rate, URT
(day−1)

- lU(1× 10−4, 1)

pL Virus production rate, LRT
(day−1)

- lU(1× 10−4, 1)

1/c Lifespan of free virions (days) 1/2 [18] -
γ Conversion between infec-

tious virions and TCID50 /
PFU (unitless)

- lU(1× 10−6, 2× 10−3)

f Recruitment rate of adaptive
immune response (day−1)

0.56 × 2.8 × 10−6/7 [19] (fig
6)

-

r Expansion rate of adaptive
immune response (day−1)

0.27/7 [19] (fig 6) -

k Kill rate of adaptive immune
response (day−1)

20 [19] -

D Rate of diffusion of free viri-
ons (day−1)

- lU(1× 10−3, 1)

a Rate of advection (day−1) - lU(1× 10−3, 1)

is because H5N1 influenza preferentially binds to proteins more commonly found in the LRT as the 201

type of receptor expression in the LRT is more similar to the avian respiratory tract [7, 30–32]. The 202

chosen hyper-parameters for the algorithm were to run the method adaptively, with an error tolerance 203

in the first generation of 150. The error tolerance for subsequent generations was then set at the 40th 204

percentile of the previous generations’ particles. We set the algorithm to terminate either after 10 205

generations, or when the error tolerance changed by less than 1% between subsequent generations. The 206

algorithm converged after four generations, with a final (adaptive) error threshold of 121.2 (compared 207

to a 121.8 tolerance in generation three). The error threshold in the final generation had similar error 208

to the least-squares fit value of 120.9. 209

2.1.6 Mortality 210

It is currently believed that a leading cause of death amongst H5N1 influenza patients is a phenomenon 211

known as a ‘cytokine storm’ [33]. This occurs when the immune response to the virus is elevated to 212

the point where the body overwhelms itself, causing massive inflammation and ultimately death [34]. 213

Since a cytokine storm results from the immune system’s sustained response to viral load, for our 214
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two-patch model we took cumulative viral load as a proxy for mortality. In particular, we considered 215

the integral of the logarithm of the viral load over time as our metric for mortality: 216∫ t

0
log (VU (s) + VL(s))ds > M

with M a constant. To determine the value of M , we took the case fatality rate of 53% given in Sah 217

et al. [3] and found the value of M that corresponded to said case fatality rate from the results of our 218

stochastic simulations. In doing so, we set M = 119.890. 219

We also conducted a sensitivity analysis of our results to a lower case fatality rate of 20%. This value 220

was taken from Dobrovolny et al. [18] for individuals treated with neuraminidase inhibitors and lead 221

to a higher M value of 153.092. 222

Introducing the proxy for mortality given above, we calculated the total length of infection for each 223

of our infection simulations. We considered the infection to be finished when either a patient dies or 224

their total viral load fell below VU + VL < 104, i.e. 225

T = sup
t
{t ∈ R+ : 1{patient alive}(t)[VU (t) + VL(t)] > 104}

From this, we calculated an empirical distribution for T that we used to model viral mutations within 226

humans (Fig. 3(a)). When taking a case fatality rate of 53%, most of the empirical distribution for 227

T occurred between eight to ten days post infection, having reasonable correspondence to previously 228

recorded infections of (and modelling efforts for) H5N1 influenza infections lasting for around ten 229

days [6, 7, 18]. When instead assuming a case fatality rate of 20%, most of the empirical distribution 230

for T was between eight and twelve days (Fig. 3(b)). 231
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Fig. 3. Viral lifespan (T ) distributions under each case fatality rate assumption. The
assumed case fatality rates were (a) 53% and (b) 20%, respectively. We obtained the viral lifespan
distributions by determining when either the viral load dropped below 104 or the integral under the
log curve reached a value M . We performed the fitting method outlined in Section 2.1.6.
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2.2 Mutation modelling and viral dynamics 232

From outputs that could be generated from our two-patch within-host model, we next needed an 233

additional modelling component that would enable us to calculate the proportion of virions with 234

zero, one, two, three, four and five mutations, and the probability that any given virion within the 235

body had this number of mutations. In this section we outline our adapted stochastic branching 236

process mutation model used for this purpose. This model contains biologically informed values for 237

key model parameters, informed by the incorporation of results from the within-host infection model, 238

thus providing a prominent modelling advance. 239

We adapted the stochastic branching process mutation model for viral mutation introduced in Russell 240

et al. [6], in which viral replication occurs at fixed time intervals of length ∆ with a mutation rate 241

µ and replication rate r. The total number of viruses with j mutations at each time step tk = k∆ 242

(with k ∈ N and tk < T ), N (j)
tk

, is then given as a Poisson random variable: 243

N
(j)
tk

∼ Poi(r
5∑

i=0

N
(i)
tk−1

µij)

where 244

µij = P(Mutates from i to j mutations) =


µj−i for i < j

1− 1{i < 5}
∑5

j=i+1 µ
j−i for i = j

0 otherwise

Note that the rate of N (j)
tk

is a summation due to the additive property of the Poisson random variable. 245

We adapted the above process to allow for model parameters to be informed from the fitted within- 246

host infection model. We allowed r to be a function of time, r(tk), rather than a fixed value. Our 247

branching process was thus instead defined by: 248

N
(j)
tk

∼ Poi(r(tk)
5∑

i=0

N
(i)
tk−1

µij)

The function r(tk) represents the viral replication rate as derived from our two-patch within-host 249

model. To define it, we first express a partition P of [tk, tk+1] such that tk = τ0 < τ1 < · · · < τm = tk+1 250

with τi+1 − τi = δ where δ is the rate at which the ODE system is updated when solved numerically. 251

It is then given by the product of the weighted sum of the number of virions created and destroyed 252

at each time step δ in each tract: 253

r(tk) =
m∏
l=1

∑
S∈{U,L}R

(S)
τl K

(S)
τl V

(S)
τl−1

Vτl

which is dependent on these four functions (with S ∈ {U,L}, denoting whether the value corresponds 254

to the URT or LRT and N,V,D, p, I, c, V, β, T, k,X and V are as described in Section 2.1.3): 255

The growth rate of new virions R
(S)
τl = 1 +

N
(S)
τl −N

(S)
τl−1

Vτl−1

, 256

257
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The death rate of existing virions K
(S)
τl = 1−

D
(S)
τl −D

(S)
τl−1

Vτl−1

, 258

259

The rate of virion production dN (S)

dt
= p(S)I(S), 260

The rate of virion removal dD(S)

dt
= cV (S) + β(S)T (S)V (S) + 1{S=L}kXV (S). 261

2.3 Mutant virion proportions and probabilities 262

Our final piece of analysis involved exploring the time dependent proportion of mutant virions in a 263

host and the probability that a human-to-human transmissible strain could arise from an infection. 264

H5N1 influenza requires five mutations to achieve droplet transmissibility between humans. Previous 265

studies have found that up to two of the required five mutations can naturally occur in birds [6]. 266

Depending on the number of mutations that have occurred prior to the human H5N1 influenza case, 267

mutant virions then require either three out of three, four out of four, or five out of five of the required 268

mutations for droplet transmission. Results from the branching process model allowed us to inform 269

the probability that at any given time during the infection, the human host has at least one virion 270

with the necessary number of mutations required for human-to-human transmission. Note that we 271

term ”X out of X mutations” for instances where the required total five mutations to achieve droplet 272

transmission could be obtained during the infection episode of the human case (i.e. acquiring three 273

or more mutations during the human infection case episode). 274

We ran the branching process model for viral mutation over the 1000 posterior predictive trajectories 275

acquired via the procedure outlined in Section 2.1.5. We initialised the starting viral load as 106 276

virions in each realisation. Our reasoning for that choice is as follows. The initial viral count in our 277

two-patch within-host model was 1.3×103 TCID50/ml. For influenza A virions, the viral count per ml 278

is around four orders of magnitude greater than the TCID50/ml value [35]. Using these two pieces of 279

information, this gave us a viral density of approximately 107 virions per ml. Then, taking an initial 280

infected droplet of size 10−1ml, we arrive at an initial viral count of 106 virions. In these simulations 281

we also took ∆ (the period between replications) to be six hours, noting that δ (the update rate of 282

the two-patch within-host model solutions) is 0.001 days. This corresponds to the virions making two 283

replication cycles (one from cRNA to vRNA and then back to cRNA) every 0.5 days, as in Russell 284

et al. [6]. 285

We ran two sets of simulations of the branching process model. The first was a set of one million BPM 286

realisations (1000 copies of each of the 1000 sets of parameter samples in the posterior distribution), 287

seeding the infection with an initial viral load of 106 virions. 288

The second was a set of 1000 BPM realisations (one for each of the parameter sample sets in the 289

parameter posterior distribution) with 106 × 106 initial virions (to simulate one billion people, but 290

combining BPMs to save on computation time). This provided a higher precision in the calculation 291

of mutation virus proportions. 292

We also calculated the probability that an individual had at least one virion exhibiting a specific 293

number of mutations. This provided another indication of the likelihood of an infection mutating to 294

allow for human-to-human droplet transmission. This probability calculation was, however, intractable 295

for the BPM that simulated one billion people as it required being able to differentiate between 296

individuals (not possible here as we combined BPMs as it is computationally expensive to run the 297

number of individual realisations needed to achieve the required level of precision). We thus introduced 298
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an upper-bound estimate for this probability at time t. Using this approximation allowed for a 299

probability approximation to be produced for a much higher number of BPM realisations. 300

The approximation was as follows. Let Vt be the (mean) virion count for an individual at time t, 301

and V
(i)
t be the (mean) number of virions with i mutations for an individual at time t. Additionally, 302

given an (average) infected individual, let A be the event that this individual has no virions with i 303

mutations at time t and Bk be the event that virion k in this individual does not have i mutations at 304

time t, where k = 1, 2, ..., Vt. Then, 305

P(An individual at time t has at least one virion which has undergone i mutations) 306

= 1− P(A) 307

= 1− P(
⋂Vt

k=1Bk) 308

= 1−
∏Vt

k=1 P(Bk |
⋂

j<k Bj) 309

≤ 1−
∏Vt

k=1 P(Bk) 310

= 1−
∏Vt

k=1(1−
V

(i)
t

Vt
) 311

= 1− (1− V
(i)
t

Vt
)Vt = p̂

(i)
t , i = 0, 1, 2, 3, 4, 5 312

313

To justify the inequality, we first note that if an arbitrary virion at the current timestep has imutations, 314

the probability that any other virion has that number of mutations would increase. This is because 315

there is a chance that virions with the same number of mutations could have the same parent. The 316

joint probability events (Bk |
⋂

j<k Bj) takes into account this positive correlation (but the event Bk 317

by itself does not), i.e. P(Bk |
⋂

j<k Bj) ≥ P(Bk) 318

Additionally, since each virion is equally likely to mutate, we used the proportion of virions with i 319

mutations to get that P(Bk) = 1− V
(i)
t

Vt
∀k. 320
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3 Results 321

3.1 Fitting the two-tract within-host respiratory infection model to H5N1 in- 322

fluenza viral titre data 323

Having developed our within-host respiratory infection model, with infection dynamics in the LRT 324

and URT modelled explicitly, it was important to ascertain whether it could reproduce the observed 325

H5N1 influenza viral titres (Fig. 1) whilst maintaining biologically reasonable parameters. Resultant 326

parameter posteriors would then be used as inputs to the branching process model. 327

We ran the ABC-SMC-MNN routine and obtained 1000 samples of the posterior distribution for seven 328

fitted parameters: βU , βL, pU , pL, γ, D and a (Fig. 4). We note that even for the posteriors that 329

had similarities to a log-uniform distribution (βL, pL, γ,D, a), the range and probability mass of these 330

distributions shifted compared to the prior. This is reinforced by a least-squares fit producing a 331

similar profile to the median of the posterior-predictive distribution (Fig. 5(a)). The least-squares fit 332

parameters can be found in Section S1. 333

Comparing the inferred posterior distributions for the URT and LRT spreading rate parameters, the 334

95% credible interval for the spreading rate in the URT (βU ∈ [2.47 × 10−7, 5.85 × 10−7]) was at a 335

lower range than in the LRT (βL ∈ [1.10 × 10−7, 6.56 × 10−6]). This difference possibly corresponds 336

to the preferential binding of H5N1 influenza to the epithelial cells in the LRT than in the URT. The 337

production rate in the URT (pU ∈ [0.184, 0.568]) was higher than in the LRT (pL ∈ [0.0005, 0.070]), 338

likely due to the higher target-cell count (and thus maximum production rate) in the LRT. There 339

was a clear negative correlation between βU and pU (relating to the previous discussion), which is to 340

be expected as an increase in the spreading rate would lead to target-cells being infected sooner and 341

hence a larger infection time available to produce virions (meaning that a lower pU is required) and 342

vice-versa. The 95% credible interval for γ was at a low range of [2.07× 10−6, 1.90× 10−4], indicating 343

that the parameter was needed to delay the peak time, but only at smaller values. The 95% credible 344

intervals for the diffusion (D ∈ [0.002, 0.666]) and advection (a ∈ [0.002, 0.130]) coefficients are quite 345

wide, possibly indicating that the intra-patch processes contribute more to the total viral dynamics. 346

Through simulation of our model using the 1000 parameter sets representing samples from the target 347

posterior distribution, we next checked the correspondence between the posterior predictive distribu- 348

tion for VU and the empirical viral titre data (Fig. 5(a)). The predictive interval lay within the middle 349

range of the dataset. The qualitative shape (including peak height and time) of the median was very 350

similar to other models [7, 14, 18, 36]. We note that although some of the data points did not fit 351

within the prediction interval, this was due to the many orders of magnitude difference in the differ- 352

ent viral titre curves between patients on the same day post infection (Fig. 5(b)). Furthermore, the 353

trajectory resulting from parameters obtained via a least-squares optimisation approach (Section S1) 354

resided within the 99% posterior predictive interval. For the least-squares optimisation five different 355

starting parameter sets were chosen and the resultant local mode with the lower error was selected. 356

Although not guaranteed, we are confident that this is likely the global optima as multiple starting 357

points converged to this value. This outcome supports the parameter posterior distributions acquired 358

by the ABC approach successfully incorporating the posterior. 359

Lastly, inspection of the peak time distribution of viral titre realisations from the posterior predictive 360

distribution showed almost all of the density of peak viral titre occurring between 4 and 5.5 days post 361

infection (Fig. 5(c)). This observation provided further assurance in the concordance between the 362

fitted model and the empirical data. 363
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Fig. 4. Parameter posterior distributions. We obtained 1000 samples of the target posterior
distribution using the ABC-SMC-MNN method outlined in Section 2.1.5. Diagonal panels show the
marginal distributions for: rate of infection in the URT (βU ) and the LRT (βL), virus reproduction
rate in the URT (pU ) and the LRT (pL), conversion rate between infection and viral titre (γ), rate of
diffusion of free virions (D) and the rate of advection (a), respectively. Off-diagonal panels show
bi-parameter distributions, where the contour shading intensity corresponds to the probability
density value (lighter for higher probability density). Parameters (βL, pL) in the LRT tended to be
higher than the URT (βU , pU ), agreeing with the biological preference for H5N1 influenza to infect
the LRT.
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3.2 Viral dynamics and branching factor by survival status 364

Having acquired posterior predictive trajectories for the viral load, we fit the resultant values using 365

the mortality proxy (Section 2.1.6). This process allowed for the separation of simulated stochastic 366

viral dynamics into individual who cleared the infection and those who died (Fig. 6(a)). 367

Noting that the virion count is proportional to the viral titre (and so should follow the same dynamics), 368

we can see that the median shape of the BPM is similar to the median of the within-host ODE model 369

(Fig. 5(a)). We do see high peaks for a small number of individuals early in the infection, with 11.3% 370

of all realisations peaking in days 0-4, with these trajectories arising due to stochasticity. In the 371

initial days post infection, the simulations have not had time for the instantaneous replication rate to 372

‘average out’ over time. Thus, at these early times, the range of viral load is much higher. We also 373

see that individuals with an earlier peak in viral load are those who survived infection. Indeed, while 374

their peak is higher, the infection dies off much earlier, and so they do not get such a sustained viral 375

load (and thus the area under the curve in the mortality proxy, is lower). Individuals who exhibited 376

a slightly later peak and were then unable to fight off the infection quickly died. 377

For the posterior distribution of replication rates (r(t)) trajectories, in the majority of realisations r(t) 378

between days zero and four is essentially constant (Fig. 6(b)), corresponding to the exponential growth 379

of v (Fig. 6(a)). A handful of trajectories exhibited very high values, again, due to early stochasticity. 380

In particular, individuals who died as a result of infection saw a less steep decrease in r(t) after four 381

days, corresponding to the more sustained viral load exhibited (Fig. 6(a)). 382

Studying the relationship between viral lifespan and peak replication rate (r(t)), there was a strong 383

negative correlation between the two variables (Fig. 7). Infections with a smaller peak value of 384

r(t) exhibit a much more sustained period of infection. Similar to what was observed in Fig. 6(a), 385

individuals with a smaller but sustained r(t) are more likely to die from the disease (due to a higher 386

area under the curve). As a consequence, the maximum length of time an individual was likely to be 387

infected for in the within-host model was around 10 days. After this amount of time post infection, 388

individuals have either fought off the virus, or died as a result of their infection. 389

When instead considering a case fatality rate of 20%, with individuals on average surviving longer 390

given a lower case fatality rate, the range of viral lifespan became broader and reached up to 14 days 391

(Fig. S1. This contrasted to the viral lifespan distribution obtained in our main analysis (using a case 392

fatality rate of 53%), with more individuals being overwhelmed and dying, or alternatively clearing 393

the virus after around 10 days (Fig. 3(b)). Despite these changes to the viral lifespan distribution, we 394

observed similar viral dynamics. In particular, the peak time of infection was unaffected as decreasing 395

the fatality rate merely meant that the individual trajectories were simulated for longer before they 396

either drop to the point where we consider the individual no longer infected or the infected individual 397

dies. 398
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Fig. 5. Posterior predictive distributions. (a) Posterior predictive distribution for VU

compared to the empirical data. We produced the posterior predictive distribution using the 1000
parameter samples from our inferred parameter posterior distribution in Fig. 4. We display the
median (blue solid line), 99% pointwise prediction interval (shaded region) and the least-squares fit
(dotted red line). Both the optimisation fit and ABC posterior show reasonable concordance to the
main data trends. (b) As for (a), but showing all posterior predictive trajectories as opposed to the
distribution summary. (c) Posterior viral titre peak-time distribution showing that the majority of
infections peak around day five. This is consistent with the data which shows a peak around day five
to day six (post infection).
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Fig. 6. Posterior predictions for v, r(t). Both plots show the 1000 posterior trajectories, with
the blue lines representing H5N1 influenza patients who survive the infection (cleared the virus) and
the red lines representing patients who died due to the infection (where the distinction is made using
the method in Section 2.1.6). (a) Virion count distribution found using the parameter posterior in
Fig. 4. The viral count trajectories for deceased patients are lower and more sustained than
surviving patients. These were calculated from the one million BPM realisations each with an initial
viral load of 106 and a mutation chance of 10−5 per replication. (b) Distribution of r(t) calculated
from the posterior predictive distribution shown in Fig. 5(a). Surviving patients tended to have
higher r(t) in the first 4 days of infection, which then declined below one(indicating a decreasing
virion count) more rapidly than for dying patients.
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Fig. 7. Maximum r value vs viral lifespan. We observe a strong negative correlation between
maximum r value and the viral lifespan. Maximum r values taken from Fig. 6(b) and corresponding
viral lifespans are shown in Fig. 3. Blue circles represent H5N1 influenza patients who survive the
infection (cleared the virus). Red circles represent patients who died due to the infection (where the
distinction is made using the method in Section 2.1.6). Surviving individuals tended to have higher
maximum r(t) values.
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3.3 Human-to-human transmission probabilities 399

With estimates for the viral lifespan distribution and effective replication number from the parameter 400

posterior distribution, we used our BPM to investigate viral mutation dynamics. Recall that we 401

performed two sets of BPM realisations: one set with one million BPM realisations (1000 copies of 402

the 1000 sample sets in the posterior parameter distribution) that each had an initial viral load of 403

106 virions; a second set with 1000 BPM realisations (one for each sample comprising our parameter 404

posterior distribution) that each had an initial viral load of 106 × 106. 405

From the first set of one million BPM realisations (see Section 2.3) we calculated the proportion of 406

mutant strains over time (Fig. 8(a)) and probability of having at least one virion with x mutations over 407

time (Fig. 8(b)). We found that virions with the required number of mutations for human-to-human 408

transmission (three or more) made up a very small proportion of the viral load - around five orders of 409

magnitude less than the strain with the next smallest proportion. 410

The derived probability approximation (Section 2.3) gave a generally sound upper bound, following 411

a similar shape as the exact probability. A couple of exceptions were when a mutation first occurred 412

and when the virus population died off near the end of the infection (Fig. 8(b)). This reflected the 413

dependence on the population of other mutants being more pronounced at lower numbers of virions 414

(where the presence of a four mutation strain, for example, is almost purely from mutations from zero, 415

one, two, three strain virions). When a strain reaches ‘persistence levels’ within the total population, 416

the estimate as an upper bound is more robust as the majority of each strain comes from the replication 417

of said strain (and not via mutation). We note that the probability of at least one virion having the 418

required four out of four mutations is zero for almost all of the infections simulated, apart from the 419

time period between five and seven days where two out of the one million BPM realisations had at 420

least one virion with these mutations before both strains died out. 421

The set of BPM realisations with a higher starting load (of 106×106 initial virions) allowed for a more 422

precise computation of the proportion of mutant virions (Fig. 8(c)). Although some virions mutated 423

further along the pathway to droplet transmission (compared to the realisations with a lower initial 424

viral load), they only made up a very small proportion of the total virion count. Similarly, for the 425

estimates of the probability of observing at least one mutant with the required number of mutations 426

(Fig. 8(d)), probabilities of obtaining either four or five required mutations for droplet transmission 427

were very low across the entire infection duration. 428

In the case where we considered a lower case fatality rate of 20% (rather than a case fatality rate of 429

53%), we observed similar mutation probabilities (Fig. S3). As expected, by lowering the case fatality 430

rate the overall viral dynamics remained near identical for the majority of the infectious period. As 431

such, the mutation probabilities were not affected until the end of the infection, by which point the 432

peak of the mutation probabilities had already occurred. 433
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Fig. 8. Mutated virion statistics with respect to time elapsed post infection, computed
from BPM realisations. Line shading corresponds to the number of mutations (one mutation the
lightest shading through to five mutations being the darkest shading). In all BPM simulations we
fixed the probability of mutation at 10−5 per replication. In panels (a&b), each realisation had an
initial viral load of 106. We ran 1000 realisations of each of the 1000 posterior parameter sets
(Fig. 4). In panels (c&d), each realisation had an initial viral load of 106 × 106. We ran one
realisation of each of the 1000 posterior parameter sets (Fig. 4). (a,c) Proportion of total virions
with the specified amount of mutations. There were a very small proportion of virions that have the
required number of mutations to achieve droplet transmission (three or more mutations). (b,d)
Probability of having a mutation strain. We present the estimated probabilities as the dashed lines
with circle markers. We present the actual probabilities as solid lines. Probability estimate
derivation follows that given in Section 2.2. The estimated probabilities are a clear upper bound on
the true probabilities. Depending on the number of mutations in the initial infecting virions, there
was a low probability of achieving the required number of mutations near the beginning on the
infection lifespan (which would allow more replication of the mutant strains).
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4 Discussion 434

This paper presents a novel two-patch within-host model for an H5N1 influenza infection in a human 435

host. Compared to existing literature, we explicitly model the lower and upper human respiratory 436

tracts; this formulation enables us to mechanistically model the different biological responses to the 437

infection in each tract. We also extend the earlier work of Russell et al. [6] to allow for more realistic 438

modelling of virus mutations within a host. With these modelling developments we explored the 439

risk of developing a human-to-human transmissible form of H5N1. Together these methods provide a 440

general framework for combining within-host infection and within-host mutation models, which may 441

be readily adapted to other (primarily respiratory) contagions. 442

The fitted within-host model displayed a preference for H5N1 influenza to spread in the LRT compared 443

to the URT. This finding conforms with biological observations of a greater ease of spread for H5N1 444

influenza in the LRT (compared to the URT) [7, 8]. Also evident was the multi-modal nature of 445

URT parameter posteriors. This is likely due to the URT behaving like a target-cell-limited model, 446

in that the spread is only limited by the population of target-cells (as all of them become infected). 447

Contagion dynamics are therefore less sensitive to the parameter values in the URT, resulting in the 448

multi-modality of the parameter posterior distributions. Due to the higher target-cell numbers in 449

the LRT, once the virus reaches the LRT the dynamics are much more sensitive to these parameters 450

(βL, pL). As a consequence, the posterior has a much tighter peak around the mode. As previously 451

stated, the qualitative shape of the median posterior predictive trajectory for viral titres in the URT 452

is very similar to other models found in the literature [7, 14, 18, 36]. 453

The analysis of the relationship between maximum effective replication number/growth rate, and peak 454

viral load and infection lifespan revealed a negative correlation between these two variables. For the 455

majority of instances where peak viral load was predicted to occur before day four, there was a second, 456

smaller peak later in the period of infection at around day four, which previous studies have indicated 457

are to be biologically expected [19]. Under our default modelling assumptions all posterior predictive 458

viral lifespans were less than 11 days. This is in agreement with the scenarios presented in Russell 459

et al. [6], where they take the length of infection to be 10 days. 460

The modifications we made to an existing BPM for viral mutation, namely incorporating time- 461

dependent replication rates and a realistic infectious duration distribution, gave comparable results 462

to Russell et al. [6]. As the upper bound on the probabilities (of having at least one virion with x 463

mutations) were of extremely low orders of magnitude, it seems highly unlikely that a typical human 464

infection would lead to the arrival of a strain with four or five mutations. There is a much higher 465

probability of having at least one virion with the (minimal) required three mutations, which may 466

indicate that, with a large enough outbreak, we would expect a human-transmissible strain to evolve 467

within at least one individual. Nonetheless, the proportion of virions with this strain is still expected 468

to be very low and so transmission of such strains (even if present) is unlikely [6]. In contrast, strains 469

with one or two mutations were generally highly prevalent amongst the virion population. Current 470

outbreaks in mammals (in particular the large number of infections in the US dairy industry [37]), 471

whose respiratory tracts are more similar to humans than avian species, may mean that human sec- 472

ondary infections from these animal cases are caused by a strain that is further along the mutation 473

pathway to droplet transmissibility. Thus, there may be a higher than modelled risk of reaching the 474

required number of mutations if a human is infected by a strain transmitted from other mammals, 475

rather than birds. Russell et al. [6] considers differing initial mutations and also differing fitnesses 476

of mutant strains. They conclude that although this does increase the proportions and probabilities 477

stated, they are still sufficiently small such that these changes are unlikely to lead to a meaningful 478

increase in the probability of human-to-human transmission, with which we concur. 479
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Our work has not considered the probability of virions in the respiratory tracts being present in 480

exhaled droplets and instead focused on the probability of mutating a droplet-transmissible variant. 481

Consequently, the probabilities present in this paper are not equivalent to the probability of any H5N1 482

influenza infection in a human leading to a droplet transmissible virus. Nonetheless, our work does 483

provide a framework for making this calculation. In the future, the development of a proxy or a further 484

calculation from the results presented is required to make a conclusion on this transmission probability. 485

In principle, any time that p(i)t > 0, there is a chance of human-to-human droplet transmission, with 486

higher proportions of mutant strains corresponding to a higher likelihood of droplet transmission, 487

though the exact relationship between these two entities is unclear. Our results show that it is unlikely, 488

albeit not impossible, that a human infection of H5N1 influenza could lead to onwards transmission of 489

a droplet transmissible strain. The probability results indicate that the presence of previous mutations 490

at infection onset are more worrying than the development of the strain through mutations, as this 491

would provide more time for a droplet transmissible strain to reach persistence levels in a host. Droplet 492

transmissible strains mutating earlier in the infection pose a more significant threat as early mutations 493

lead to higher proportions of mutant strains within the individual throughout the length of infection. 494

Furthermore, an early mutation is likely to correspond with a longer period in which an infected 495

individual is symptomatic with said mutant strain, and this leads to a higher probability of this 496

mutant strain being droplet transmitted to another human. 497

The model we have presented is necessarily a simplified representation of reality. It is important that 498

we consider the modelling assumptions made and their potential limitations. Here we elaborate on the 499

implications of: the quality of the dataset used, estimation of the infection fatality ratio, estimation 500

of the infection duration and initial viral load assumptions. 501

We note that there may be multiple issues with the data. Although our two-patch posterior predictions 502

are very similar to other fitted models [7, 14, 18, 36], all within-host models for H5N1 influenza spread 503

in human hosts that use this dataset suffer from a lack of parameter identifiability and biological 504

certainty. In particular, due to the small size of the dataset, and because all individuals died (even 505

when given neuraminidase inhibitors), the average viral load may be much lower and viral lifespan 506

much longer than is shown in our model. That being said, at the time of writing this dataset is the 507

most recent and complete human infection data available for H5N1 influenza, providing an initial basis 508

for the exploration of the effects of our novel two-tract within-host infection model. 509

With regards to the estimation of the infection fatality ratio, at the time of writing, recorded cases 510

are primarily hospitalisations and are therefore more likely to result in fatalities than unrecorded 511

infections. Indeed, individuals could have been infected with H5N1 influenza and exhibited seasonal 512

flu-like symptoms, or been asymptomatic. More recent studies also estimate a larger seroprevalence 513

of H5N1 influenza in humans than previously calculated, implying that the actual fatality rate of an 514

H5N1 influenza infection is lower than previously thought [38–40]. We assumed a default value for 515

the infection fatality ratio of 53%, based on the reported case fatality ratio, which is therefore likely 516

to be an overestimate. Nonetheless, our sensitivity analysis with a lower infection fatality ratio gave 517

similar qualitative conclusions. Further infection data for H5N1 influenza viral titres in humans would 518

be required for more accurate modelling estimates and conclusions. It is important that new cases are 519

thoroughly documented, such that future H5N1 influenza models have improved accuracy, especially 520

at the beginning and end of the infection dynamics. 521

The third form of limitation relates to how pharmaceutical measures could impact the infectious 522

duration of those infected with H5N1 influenza. Treatments, such as antivirals and neuraminidase 523

inhibitors can reduce the viral load in individuals infected with H5N1 influenza exist and have been 524

shown to be effective [18, 41, 42]. If infection with H5N1 influenza was caught early on then hospitalised 525
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individuals could be treated, with the resulting lower mortality rates and longer infection lengths 526

plausibly leading to higher than estimated probabilities of obtaining a droplet transmissible strain 527

(similar treatments for COVID-19 patients led to higher mutation chances [43]). We note however, 528

that in the dataset used, all individuals who presented with H5N1 influenza were subsequently given 529

neuraminidase inhibitors, and yet all died due to their infection. Thus, it may be that in the majority 530

of individuals, such treatments do not produce any meaningful increase in duration of infection of 531

H5N1 influenza in humans. 532

Lastly, we had to make an assumption about initial viral load (which we fixed as 1.3×103 TCID50/ml). 533

Given, the infection data used is primarily centred around the peak of infection, our inference is most 534

strongly determined by this peak behaviour. As a consequence, the early growth rate corresponds to 535

parameter estimates that give the ‘correct’ peak height and time for the data, given the assumed initial 536

viral load. A change in this viral load would change the growth rate with a negative correlation to the 537

initial viral load. Nonetheless, the viral lifespan distribution should be similar (as it is a function of the 538

peak time and area under the curve, which should not be affected much by the early rates of growth). 539

For the mutations model, a change in the initial viral load would result in the same proportions (as 540

they are primarily dependent on the mutation probability) as shown in our results. However, the 541

curves for mutant strain probabilities would be shifted up and towards the left such that there are 542

increased probabilities of observing strains with higher numbers of mutations earlier in the infection. 543

In addition to the aforementioned ideas for additional work, another direction for further investigations 544

is the application of the model framework to infectious episodes in immunocompromised individuals. 545

During the COVID-19 epidemic, immunocompromised individuals were a large cause for concern for 546

the creation of new variants due to their longer duration of infection [43–45]. To our knowledge, there 547

have been no reported cases of an immunocompromised individual being infected by H5N1 influenza, 548

and thus it is unclear how they would respond to the infection. As previously stated, the main cause 549

of death in those who contracted H5N1 influenza is currently believed to be cytokine storm. This 550

was also the leading cause of death from the Spanish flu epidemic in 1918-1920, but the fatality rate 551

was lower for the immunocompromised as they did not exhibit a sufficient immune response to cause 552

a cytokine storm [46, 47]. As a result, it may be that immunocompromised individuals are able to 553

sustain longer periods of infection, thus giving a larger probability of a human-to-human transmissible 554

strain mutating during their infection period. It is also possible that the virus simply overwhelms the 555

body of the immunocompromised, leading to rapid death, and thus little chance of producing mutant 556

strains of H5N1 influenza. Our current datasets are unable to distinguish between these possible 557

outcomes. The literature also shows that infections from H5N1 influenza can spread to other organs 558

and parts of the body [17]; it is likely that more detailed mortality modelling would need to take this 559

into account with different mortality modelling methods for immunocompromised people. 560

In this paper we have provided a model framework that gives the basis for the calculation of the 561

probability that the increased prevalence of influenza A(H5N1) in both birds and mammals leads 562

to a human infection that develops the ability for droplet transmission. These advancements in 563

modelling tools can help us determine how pandemic preparedness resources may be best focused 564

between infection directly from avian hosts or from mammalian hosts. Indeed, our process is not just 565

relevant to H5N1 influenza, but also for any pathogen for which within-host mutations are a concern. 566
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S1 Additional tables

Table S1. List of least-squares fit parameters: and their descriptions. Parameters fitted to the
data in the log-space using the ‘scipy.optimize’ library in Python.

Parameter Value
βU Rate of infection, URT 4.066× 10−7

βL Rate of infection, LRT 3.673× 10−7

pU Virus production rate, URT 0.2981

pL Virus production rate, LRT 9.641× 10−2

γ Conversion between infectious virions and TCID50 / PFU 3.459× 10−3

D Rate of diffusion of free virions 0.2129

a Rate of advection 0.1473
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Fig. S1. Posterior predictions for v, r(t) assuming a lower case mortality rate (20%
instead of 53%). Both plots show the 1000 posterior trajectories, with the blue lines representing
H5N1 influenza patients who survive the infection (cleared the virus) and the red lines representing
patients who died due to the infection (where the distinction is made using the method in
Section 2.1.6). (a) Virion count distribution found using the parameter posterior in Fig. 4. The viral
count trajectories for deceased patients are lower and more sustained than surviving patients. These
were calculated from the one million BPM realisations each with an initial viral load of 106 and a
mutation chance of 10−5 per replication. (b) Distribution of r(t) calculated from the posterior
predictive distribution shown in Fig. 5(a). Surviving patients tended to have higher r(t) in the first 4
days of infection, which then declined below one (indicating a decreasing virion count) more rapidly
than for dying patients.

2

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 1, 2024. ; https://doi.org/10.1101/2024.09.01.24312235doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.01.24312235
http://creativecommons.org/licenses/by/4.0/


6 7 8 9 10 11 12 13
Viral lifespan (days post infection)

101

M
ax

im
um

 r(
t)

Host kills the virus
Virus kills the host

Fig. S2. Maximum r value vs viral lifespan assuming a lower case mortality rate (20%
instead of 53%). We observe a strong negative correlation between maximum r value and the viral
lifespan. Maximum r values taken from Fig. 6(b) and corresponding viral lifespans are shown in
Fig. 3. Blue circles represent H5N1 influenza patients who survive the infection (cleared the virus).
Red circles represent patients who died due to the infection (where the distinction is made using the
method in Section 2.1.6). Surviving individuals tended to have higher maximum r(t) values.
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Fig. S3. Mutated virion statistics with respect to time elapsed post infection, computed
from BPM realisations assuming a lower case mortality rate (20% instead of 53%). Line
shading corresponds to the number of mutations (one mutation the lightest shading through to five
mutations being the darkest shading). In all BPM simulations we fixed the probability of mutation
at 10−5 per replication. In panels (a&b), each realisation had an initial viral load of 106. We ran
1000 realisations of each of the 1000 posterior parameter sets (Fig. 4). In panels (c&d), each
realisation had an initial viral load of 106 × 106. We ran one realisation of each of the 1000 posterior
parameter sets (Fig. 4). (a,c) Proportion of total virions with the specified amount of mutations.
There were a very small proportion of virions that have the required number of mutations to achieve
droplet transmission (three or more mutations). (b,d) Probability of having a mutation strain. We
present the estimated probabilities as the dashed lines with circle markers. We present the actual
probabilities as solid lines. Probability estimate derivation follows that given in Section 2.2. The
estimated probabilities are a clear upper bound on the true probabilities. Depending on the number
of mutations in the initial infecting virions, there was a low probability of achieving the required
number of mutations near the beginning on the infection lifespan (which would allow more
replication of the mutant strains).
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