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ABSTRACT 

The COVID-19 pandemic in Toronto, Canada was unequal for its 2.7 million residents. As a 

dynamic pandemic, COVID-19 trends might have also varied over space and time. We 

conducted a spatiotemporal hotspot analysis of COVID-19 over the first four major waves of 

COVID-19 using three different applications of Moran’s I to highlight the variable experience of 

COVID-19 infections in Toronto, while describing the potential impact of socioeconomic and 

sociodemographic factors on increased risk of COVID-19 exposure and infection. Results 

highlight potential clustering of COVID-19 case rate hot spots in areas with higher 

concentrations of immigrant and low-income residents and cold spots in areas with more affluent 

and non-immigrant residents during the first three waves. By the fourth wave, case rate 

clustering patterns were more dynamic. In all, a better understanding of the unequal COVID-19 

pandemic experience in Toronto needs to also consider the dynamic nature of the pandemic. 
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HIGHLIGHTS 

- The COVID-19 pandemic was spatially and temporarily dynamic in the City of Toronto.  

- At first, hotspots were concentrated in areas with more marginalized residents.  

- Later, COVID-19 spatial trends diverged from initially identified patterns.  

- East Asian enclaves in the city disproportionally had lower COVID-19 case counts. 

- COVID-19 studies need to consider the dynamic nature of the pandemic.  
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INTRODUCTION 
 

The COVID-19 experience in Toronto, Canada’s most populous city, has been varied and 

dynamic for its 2.7 million residents.(Statistics Canada, 2023) Early in the pandemic, it was 

evident that COVID-19 cases and outcomes were disproportionally concentrated amongst the 

socially and economically marginalized residents of the city. (Allen, 2020; Cheung, 2020; City 

of Toronto, 2020; Ingen et al., 2022; McKenzie et al., 2021)   Such observations prompted an 

increased interest in the social, economic, and demographic disparities in COVID-19 cases in 

Ontario with the hopes of gaining a better understanding of the pandemic and focusing attention 

on communities with the highest risk. (Abdi et al., 2021; McKenzie, 2020)  Spatial methods 

provide detailed visualization of infectious diseases and their distribution within a certain 

geographic location with tools that allow us to explore relationships between infection and 

potential risk factors, which can help inform community-level interventions.(Caprarelli and 

Fletcher, 2014; Lin and Wen, 2022) Within the context of Toronto, various studies have 

confirmed the spatial disparities of COVID-19 cases and outcomes across the city with a higher 

concentration of cases in locales with more racialized, immigrant, lower income and less 

educated residents. (Forsyth et al., 2023; Ma et al., 2022; Mishra et al., 2022; Nazia et al., 2022; 

Vaz, 2021; Wang et al., 2023; Xia et al., 2022)  

However, the few spatiotemporal studies highlighting the disparities in the spatial 

distribution of COVID-19  have either focused on earlier months of the pandemic or taken a 

more cumulative approach over space and time. (Forsyth et al., 2023; Mishra et al., 2022; Nazia 

et al., 2022) The first two years of the SARS-CoV-2 pandemic were characterized by multiple 

distinct waves (Figure 1) due in part to new and often more infectious SARS-CoV-2 variants, the 

implementation of varying public health measures for each wave, and the varying availability 

and uptake of vaccines. (McCoy et al., 2020; Tsou et al., 2023; Vernon-Wilson et al., 2023)  

Our study hopes to contribute to the growing number of spatial studies that have explored the 

relationship between socioeconomic and sociodemographic factors and the spatial disparities of 

COVID-19 spatial Toronto. We performed a spatiotemporal descriptive hot spot analysis of 

COVID-19 case rates in Toronto with an emphasis on the dynamic experience of COVID-19 in 

the city. We intended to answer two pertinent questions: was the spatial distribution of COVID-

19 cases consistent or variable over time given the dynamic experience of the pandemic? Were 
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social demographic factors a potential indicator of what the spatial distribution of COVID-19 

cases looked like over time?  

MATERIALS AND METHODS 
Study Population  

 The City of Toronto is Canada’s largest city with a diverse and multicultural population.  

More than half of the population identifies as an immigrant to Canada and/or as a visible 

minority. (City of Toronto, 2022a) Our analysis focused on residents of the City of Toronto who 

did not live in long-term care (LTC) facilities during our study period. Long-term care residents 

were excluded from analysis as the COVID-19 epidemic unfolded differently in these locations, 

with factors such as facility size, and over-representation of an at-risk population in one location, 

impacting infection transmission. (Konetzka et al., 2021) A general description of the population 

in Toronto can be found in Table 1. Our geographical unit of interest was census tracts primarily 

because they are geographical areas that consist of 2,500 – 8,000 people with similar 

socioeconomic characteristics. (Government of Canada, 2021) 

 

Study Design 

We conducted an ecological study to assess the spatial and temporal distribution of 

COVID-19 case rates (per 100,000) at the census tract level from January 20, 2020, to October 

20, 2021. Time was assessed in two ways. First, we divided our overall study period into four 

time periods to reflect the first four complete major waves of COVID-19 in Canada (See Figure 

1 and Table 2) (Public Health Ontario, 2021, p. 2) Given these temporal units of analysis, each 

census tract had four COVID-19 case rates, one for each wave.  We used these four waves to 

assess the presence of spatial autocorrelation as well as local hot spot analysis.  

For a cumulative understanding of the spatial and temporal distribution of COVID-19 

case rates in the city over our study period, we divided our overall study period into 4-week 

intervals. Four-week intervals were chosen because they allowed us to use Local Outlier 

Analysis to assess cluster and outlier patterns over our study period (this method requires at least 

10-time slices), providing a more granular look at the temporal changes in the distribution of 

COVID-19 case rates across the city, while reducing time step temporal bias (bias that occurs 

from including additional dates based on the interval specified). (ArcGIS Pro, n.d.)  
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Our study ends on October 20, 2021, at the onset of the Omicron wave (fifth wave). As 

cases surged during this wave, government-sponsored laboratory testing for COVID-19 was 

limited to a selection of the population; thus, limiting the availability of comprehensive data on 

laboratory-confirmed COVID-19 cases for the entirety of the Omicron wave. (Public Health 

Ontario, 2021) 

 

Data Sources 

Information on Toronto COVID-19 laboratory-confirmed case counts, location and 

timing of infection were identified through Ontario’s Public Health Case and Contact 

Management System (CCM) – a provincial surveillance database used to manage and report all 

laboratory-confirmed cases of COVID-19 cases and their contacts. (Ontario, 2022) Census tract-

level demographic information (population counts, median total income, education attainment of 

residents, visible minorities, immigration and multigenerational housing) was identified through 

the 2021 Canadian Census. (Government of Canada, 2001) With the pandemic starting before the 

2021 census, the CCM uses the 2016 census boundaries, which were the boundaries used to 

present our results. However, demographic information was adjusted to represent census 

information collected in the 2021 census to provide a more up-to-date representation of the city’s 

population.  

 

Statistical Analysis 

To build a cohesive understanding of the dynamics of COVID-19 over space and time. 

we used three different applications of Moran’s I (Global Moran’s I, Local Moran’s I, and Local 

Outlier Analysis) because it is a widely used measure to identify spatial autocorrelation for 

health data and provides a cohesive approach to hotspot analysis in Toronto. Specifically, Global 

Moran’s I was used to evaluate whether COVID-19 case rates were spatially autocorrelated. 

(Anselin, 2020a; Cliff, 1973; Moran, 1950) Then, Local Moran’s I was used to identify clusters 

of the disease and Local Outlier Analysis was used to create a composite map that highlights the 

dynamic nature of COVID-19 in Toronto. 

 

Global Moran’s I 
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Global Moran’s I was used to assess the presence of spatial autocorrelation in COVID-19 

case rates at the city level. As a statistic grounded in Tobler’s First Law of Geography 

“everything is related to everything else, but near things are more related than distant things,” 

(Tobler, 1970, p. 236) we first defined a neighbourhood structure that relates each census tract to 

its neighbours. For this study, neighbours of each census tract were selected based on “queen” 

contiguity (neighbours share edges and corner boundaries) with neighbourhood relationships. 

(Anselin, 2022) This neighbourhood structure is then quantified through a weight matrix with 

row-standardized weights. 

𝐺𝑙𝑜𝑏𝑎𝑙	𝑀𝑜𝑟𝑎𝑛!𝑠	𝐼 = 	
∑"∑#𝑤"#𝑧"𝑧#

∑"𝑧"$
 

 

For Global Moran’s I, 𝑤"# is the spatial weight that relates census tract i to its neighbours 

j, 𝑧"  (𝑧" =	𝑥" −	�̅�)	and 𝑧#  (𝑧# =	𝑥# −	�̅�)	are the deviations of COVID-19 case rates at census 

tract i (𝑥")	or neighbours j (𝑥#) from the overall mean (�̅�) COVID-19 case rate. (Anselin, 2020a)  

 

Global Moran’s I value ranges from -1 to 1, with negative values closest to -1 indicating 

dispersion of case rates while positive values closest to +1 indicating clustering. A pseudo-p-

value calculated through random permutations was used to assess whether the observed Global 

Moran’s I statistic is statistically significant. (Anselin, 2020a) 

 

Local Moran’s I  

Once spatial autocorrelation was established through Global Moran’s I statistic, Local 

Moran’s I was used to assess the clustering of COVID-19 case rates at a localized (census tract) 

scale for each of the four major waves of COVID-19. (Anselin, 1995) Local Moran’s I is a local 

version of Global Moran’s I that decomposes the impacts of overall geographical autocorrelation 

to localized spatial autocorrelation.  

𝐼" =	
∑#𝑤"#𝑧"𝑧#
∑"𝑧"$

 

 

To calculate Local Moran’s I for census tract i (Ii), 𝑤"# is the spatial weight that relates 

census tract i to its neighbours j, 𝑧" (𝑧" =	𝑥" −	�̅�)	and 𝑧# (𝑧# =	𝑥# −	�̅�)	are the deviations of 
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COVID-19 case rates at census tract i (𝑥")	or neighbours j (𝑥#) from the mean (�̅�) of COVID-19 

case rate.(Anselin, 2020b) 

 

Local Moran’s I also rely on a neighbourhood structure to generate the spatial weight 

matrix. Neighbourhoods were also defined by “queen” contiguity with row standardized weights. 

A Local Moran’s I statistic was calculated for each census tract followed by random 

permutations to identify statistically significant clusters and outliers. Maps were generated to 

indicate areas of high-high (hotspots) and low-low (cold spot) clusters as well as outliers where 

COVID-19 case rate patterns did not match that of their surrounding area. (Fisman et al., 2021; 

Ontario, 2022)   

 

Local Outlier Analysis 

Local Outlier Analysis extends Local Moran’s I to identify clusters and outliers over both 

space and time, generating one map that shows the trends and changes of COVID-19 case rate 

concentration over space during the first two years of the pandemic. First, a space-time 3-D cube 

was generated to specify spatial and temporal relationships. The 3-D cube consists of space-time 

bins (x, y, t) representing COVID-19 case rates summed over a specified time period (t) for each 

census tract (x,y). (ArcGIS Pro, n.d.) Bins with the same time-step interval comprise a time slice, 

while bins with the same location (census tract) represent a time series.(ArcGIS Pro, n.d.)  

For this method, we generated the 3-D space-time cube with each time slice representing 

a duration of 4 weeks (counted from the start date of January 20, 2020), resulting in a 3-D cube 

consisting of 572 bins (572 census tracts) x 23 -time steps (4-week intervals). 

The specified 3-D cube was then used for the Local Outlier Analysis. Like the steps 

above, the neighbourhood structure for each bin was defined based on queen contiguity with 

random permutations used to identify statistically significant clusters and outliers over time. 

Each bin in a time slice was compared to the time slice preceding it to assess whether clustering 

patterns have changed over time. Results from this method provided a Local Moran’s I statistic 

for each bin as well as the number of hotspots, cold spots, and outliers over time. In addition, a 

map presentation of case rate patterns was created with a visual representation of the varying 

clustering characteristics over time (high-high, high-low outlier, low-high outlier, low-low 
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cluster, and multiple types – indicating different statistically significant patterns over time) (See 

Table 4). 

 

Comparative Map Analysis 

In addition to maps generated from Moran’s I applications, individual maps were generated for 

social demographic characteristics of interest (Table 1) to compare with hot spot maps and 

explore potential relationships.  

 

Sensitivity Analysis 

To ensure the robustness of our results given different spatial structures we revisited our 

main analysis with a few modifications. Our first modification was to the neighbourhood 

structure, which plays a crucial role in the results produced in spatial analysis. Instead of queen 

contiguity, we repeated our analysis with two fixed distances, identified using the ArcGIS 

Incremental Spatial Autocorrelation tool to find the appropriate distance thresholds for hot spot 

analyses. (ArcGIS Pro, n.d.) Two distances were identified: a distance to ensure each census tract 

had at least one neighbour as well as the distance that ensures the most pronounced spatial 

autocorrelation. (ArcGIS Pro, n.d.) To address the potential issue of modifiable areal unit 

problem (MAUP), where results vary based on the areal unit scale, our second modification was 

to use Toronto neighbourhoods instead of census tracts. Toronto Neighbourhood boundaries 

combine 2-5 census tracts of similar socioeconomic status to help Toronto Municipality plan and 

implement resources at a meaningful governmental scale, making it an appropriate areal unit to 

scale our analysis beyond census tracts. (City of Toronto, 2022b)  

Beyond the neighbourhood structure, we also stratified our analysis by biological risk 

factors for COVID-19 like age (older than 65 and less than 65) and sex assigned at birth (male 

and female) to identify any differences that might have been missed. (Booth et al., 2021)   

All analyses were completed in ArcGIS Pro (version 2.9.3) and R statistical software 

(version 4.1.3) 

 

Ethics Approval  

This study has been approved by the University of Toronto Health Sciences Research Ethics 

Board (protocol number 44167). 
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RESULTS 

Primary Analysis  

Global Moran’s I was used to assess the presence of spatial autocorrelation across the five 

major waves in the first two years of the pandemic. We identified statistically significant positive 

spatial autocorrelation across all four major waves, indicating spatial clustering of cases. The 

resulting Global Moran’s I value for each wave can be found in Table 5.  

Local Moran’s I was used to identify clusters of COVID-19 case rates at the census tract 

level (See Figure 2). The first three major waves showed similar patterns. Hotspots were 

concentrated in the northwestern part of Toronto, and later on in the northeastern corner of the 

city in the second and third wave. Meanwhile, COVID-19 cold spots were identified lining 

midtown from north to south with a few cold spots situated in the southwestern part of the city. 

The pattern of low-high outliers remained relatively consistent across the first three waves while 

high-low outliers varied slightly in pattern over the first three waves.   

By the fourth wave (Figure 2D), hotspots had shifted south and were found along the 

western border of the city. More cold spots were now found in the northern part of the city. There 

were also more outliers in this wave.   

Local Outlier Analysis allowed us to create a composite map that highlighted the 

dynamic nature of COVID-19 over space and time (Figure 3A). Over the course of the 

pandemic, on average, cold spots (coloured blue) remained midtown with an extension to the 

southeastern part of the city. Upon further inspection, most of the census tracts in these cold spot 

zones that were identified as having multiple clustering patterns over time were largely cold 

spots for most of the study period (Figure 3B). Despite the northern corners of the city showing 

the most variable clustering pattern over space and time, most of the time slices indicated hot 

spots (Figure 3C-3D).  

Comparing hotspot maps to social demographic maps (Figure 4A-E), general trends were 

apparent. Hotspots were found in areas with a larger proportion of residents who identified as 

visible minorities and immigrants, were less educated and lived in multigenerational homes.  

 

Sensitivity analysis 

We repeated our analysis with a few modifications to assess whether the trends identified 

were consistent irrespective of how the neighbourhood was defined or according to various key 
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demographic information. Regardless of how we defined our neighbourhood structure (fixed 

distance or neighbourhood level) or how we stratified our population based on biological risk 

factors, our results were consistent. When we changed the neighbourhood structure to be defined 

based on two fixed distances (2,277m and 8,854m) instead of queen contiguity, patterns for 

Local Moran’s I (Appendix Figure 1-4) and Local Outlier Analysis (Appendix Figure 5), were 

also similar to our primary analysis; however, the shorter distance, and more so the longer 

distance, were not as specific, with most census tracts indicating either cold or hot spots.  For the 

Toronto neighbourhood-level analysis, patterns were also consistent across the four waves, with 

slight variation. The major difference was that Toronto neighbourhood-level analysis did not 

capture any statistically significant hotspots in the northeast corner of the city during the first 

three waves. The slight variation in results was not unexpected given the neighbourhood level 

averages trends over a larger distance compared to the census tract level.  

We also stratified our analysis by COVID-19 two individual characteristics, sex assigned 

at birth (male and female) and by age category (less than 65 and over 65) where we identified 

consistent positive spatial autocorrelation consistent to our primary analysis, irrespective of age 

and sex. For Local Moran’s I and Local Outlier Analysis, all maps generated were also consistent 

to our primary analysis with patterns of hot spots, cold spots and outliers consistent irrespective 

of age and sex. Maps generated with only adults older than 65 years had fewer statistically 

significant clustering patterns because of the fewer individuals in this age group, possibly 

because LTC residents, who tend to be in this age group, were not included in the analysis. 

DISCUSSION 

Our hot spot analysis described the dynamic nature of COVID-19 case rates across the city of 

Toronto from January 2020 to October  2021. In the first three waves of the pandemic, COVID-

19 case rates were concentrated in the northern corners of the city. By the end of the fourth wave, 

the COVID-19 landscape had changed, with hotspots shifting southward. Comparing spatial 

patterns to social demographic factors, the demographic makeup of a census tract might have had 

some relationship to the intensity of COVID-19 rates identified. 

Comparing our results to current literature, temporal changes in spatial distributions of 

COVID-19 have been previously addressed in studies in the US, demonstrating both persistent 

and evolving patterns of COVID-19 cases and outcomes over space and time connected to 

neighbourhood-level social and demographic characteristics. (Neelon et al., 2021; Park et al., 
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2021; Tsou et al., 2023)  Spatial studies in Toronto also identified similar spatial patterns with 

persistent hotspots in the northwestern corner of the city and cold spots lining the centre of the 

city for most of 2020 and the first half of 2021. (Forsyth et al., 2023; Mishra et al., 2022; Nazia 

et al., 2022; Vaz, 2021) Higher COVID-19 case rates were also identified to be localized in areas 

of Toronto with more multigenerational households and a higher concentration of lower-income, 

immigrant, visible minority and less educated residents. (Abdi et al., 2021; McKenzie, 2020; 

Nazia et al., 2022; Mishra et al., 2022; Forsyth et al., 2023; Wang et al., 2023) Our study adds to 

the current literature in a few ways. By focusing on each wave,  we were able to identify 

additional hotspots in the northeastern part of the city and provide individual snapshots of how 

different each wave was spatially. With a composite hot spot map using Local Outlier Analysis, 

a tool that has not been used in current literature, we were also able to provide a succinct 

depiction of how COVID-19 case concentrations changed over space and time, while comparing 

spatial patterns to that of sociodemographic and socioeconomic characteristics of the city.  

Comparing spatial patterns to social demographic factors, the demographic makeup of a 

census tract might have had some relationship to the concentration of COVID-19 identified. 

Higher COVID-19 case rate concentration in areas of lower income, higher immigrant, higher 

visible minorities and less educated populations with more multigenerational households are 

corroborated in other studies of the pandemic experience in Toronto(Abdi et al., 2021; 

McKenzie, 2020; Nazia et al., 2022; Mishra et al., 2022; Forsyth et al., 2023; Wang et al., 2023) 

Sociodemographic and socioeconomic differences dictate the different physical/built 

environments residents of Toronto find themselves in, which may interact to impact the risks of 

acquiring COVID-19 and experiencing adverse outcomes if infected. For instance, low-income 

communities, which also often have higher concentrations of immigrants, tend to have larger 

household sizes and a higher proportion of multigenerational housing, which may limit personal 

space for social distancing, increase the risk of spreading respiratory infectious diseases within 

households, as well as facilitate spread of infection between age groups (e.g., from school 

children to their grandparents). (Elliot and Leon, 2020; Forsyth et al., 2023; Hassen, 2021; Nazia 

et al., 2022; O’Neill et al., 2022) Furthermore, these communities also tend to have a higher 

concentration of residents that provide essential services – working as personal support workers, 

in food supply, at warehouses, and in retail—often with limited access to personal protective 

equipment, lack of paid sick leave and fewer options to work from home or “shelter-in-place”. 
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(Forsyth et al., 2023; Hassen, 2021; Mishra et al., 2022; Nazia et al., 2022; O’Neill et al., 2022; 

Rao et al., 2021) These essential workers often rely on public transit to and from work and thus 

are potentially exposed to SARS-CoV-2, not only at home but at work and in transit. (Forsyth et 

al., 2023; Hassen, 2021) Public health initiatives introduced in the first year of the pandemic to 

potentially reduce the risk of COVID-19 might not have adequately reduced the burden of 

COVID-19 in more marginalized Torontonians throughout the waves.(Ma et al., 2022)  

Focusing on the fourth wave, popularly described as the Delta wave, the changing spatial 

distribution of COVID-19 case rates towards the end of 2021 was mainly driven by a more 

transmissible and infectious variant – B.1.617, during the summer of 2021, along with relaxed 

public health restrictions and pandemic fatigue that saw fewer behavioural changes even as cases 

were rising again.(Anthes, 2021; Lao, 2021; Pelley, 2021) Spatially, COVID-19 case rates were 

still concentrated in more marginalized populations but also included hotspots in census tracts 

that had fewer minorities, higher median income, fewer multigenerational homes and more 

educated residents. Studies have postulated that strict public health guidelines implemented 

earlier in the pandemic might disproportionally kept the more affluent, better-educated and white 

individuals at home, potentially reducing their risk of COVID-19. (Huang et al., 2022, 2021; Iio 

et al., 2021) Once public health guidelines were relaxed at the onset of the Delta wave, overall 

population mobility increased (Alam, 2021; Dai et al., 2023; Pelley, 2021) , which might have 

also explained the addition of hotspots in census tracts with a more privileged population. 

Aside from the general trends identified, one unique pattern was identified in our maps 

that did not particularly conform to the overall trends highlighted in the literature. There were 

several census tracts located in the northwestern part of the city that had on average, lower 

COVID-19 case rates, especially waves 1 and 4. As noted above, these census tracts have a 

higher proportion of immigrants and low-income residents, but after further investigation, these 

areas of the city also have a higher proportion of residents identifying as East 

Asian.(Government of Canada, 2022)  Toronto Public Health identified a similar trend of lower 

SAR-CoV-2 infection rates while assessing case count differences among major visible minority 

groups in the City of Toronto. (City of Toronto, 2020) Given the increase of anti-Asian racism 

affecting the East Asian community during the pandemic, it was notable that COVID-19 case 

rates appeared disproportionately lower amongst this demographic. Studies focusing on the 

Chinese Canadian community in the Greater Toronto Area have highlighted cultural factors such 
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as collectivism (placing the community above the individual), increased information-seeking 

behaviour through culturally specific social media platforms, the cultural symbolism of mask-

wearing (a useful multifunctional tool rather than a sign of contagion), social ties in China that 

provided early alert of the severity of COVID-19, and prior experience with SARS in 2003, as 

some of the unique cultural factors that might have promoted early vigilance against COVID-19 

and overall lower COVID-19 cases. (Lee et al., 2021; Mamuji et al., 2021) However, more 

culturally sensitive research looking at various East Asian groups in Toronto is needed to further 

elucidate this trend. 

Our study has many strengths in providing snapshots over time of the COVID-19 

pandemic in Toronto during the first two years; however, it has some limitations. First, our study 

is descriptive and focused on exploring potential indicators that might have dictated the spatial 

and temporal distribution of COVID-19 cases in Toronto. Patterns do not mean concrete 

evidence for correlation, and we did not formally assess associations or correlations. Rather, our 

results will inform future more complex spatial and temporal Bayesian analysis of COVID-19 

case rate distribution in Toronto.  

Second, COVID-19 testing might have impacted our ability to truly assess the extent of 

the pandemic experience for all Torontonians. As the Delta variant spread quickly in the summer 

of 2021 to dominate the fourth wave, and more aggressively, Omicron by December 2021, 

provincial testing was beyond capacity, resulting in severe restrictions in laboratory SARS-CoV-

2 testing and increasing case backlogs, which resulted in us restricting our analysis to the end of 

October 2021. (White, 2021) Unfortunately, our current case rate data was not adjusted for 

testing but the next step for this project will be to consider testing variability across the city to 

better adjust for varying COVID-19 case counts.  

Third, like many spatial studies, our study is subject to MAUP. Although we tried to 

address this problem with additional analysis at the neighbourhood level, we were limited to two 

areal units (census tract and neighbourhood level), given the collection of COVID-19 case data. 

Since the COVID-19 pandemic was underway a full year before the 2021 census, the CCM used 

the 2016 census tract demarcation to connect cases to census tracts, which was easily adjustable 

to account for population changes identified in the 2021 census. This was a similar situation for 

the Toronto neighbourhood demarcation, even as the city transitioned to a newer neighbourhood 

structure in 2022. However, making similar adjustments was challenging for area units such as 
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Forward Sortation Area (FSA), another important geographical unit of analysis, that is updated 

more frequently between census cycles and harder to adjust population counts without full 

residential addresses. Nevertheless, assessing COVID-19 case rate trends across two areal units 

allowed us to assess the robustness of our results and how they could change over different areal 

units.  

CONCLUSION 

Our study provides a necessary in-depth look at the COVID-19 epidemic in Toronto over 

space and time, with an emphasis on the dynamic nature of the pandemic.  Although many now 

believe that the pandemic is largely over,  the COVID-19 pandemic has shone a spotlight on the 

glaring structural health inequities in Toronto.  There is still more to learn about the nuanced 

experience of Torontonians as the conversation of its irreversible impacts on society and 

population health is gaining more interest, especially as long-COVID is of public health concern. 

Investigating the early years of the pandemic with a more detailed and nuanced look helps us add 

more detail to the growing literature focused on understanding the connection between social 

inequities and increased COVID-19 risk for the marginalized members of the city.  
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TABLES  
 
Table 1: Descriptive Statistics of the City of Toronto (City of Toronto, 2022a, 2022c; 
Statistics Canada, 2023) 
Total population in Toronto (2021) 2,794,356 
Median Population per census tract (2021) 4,666 
Age (2021)  

Median Age in Toronto (years) 39.6 
Proportion of Population over 65 years 0.17 

Sociodemographic/Socioeconomic Characteristics (2021)  
Median Income per Individual (Canadian Dollars) 39,200 
Proportion of population that identify as visible 
minority  0.557 
Proportion of population that identify as immigrants 0.466 
Proportion of the population aged 25-64 with post-
secondary education 0.276 
Proportion of households in Toronto that are 
multigenerational 0.035 

Average COVID case rate per 100,000 people (excluding 
LTC)  

First Wave (January 20, 2020 –  July 31, 2020) 394.51 
Second Wave (August 1, 2020 –  February 19, 2021) 2666.3 
Third Wave (February 20, 2021 – June 30, 2021)  2510.3 
Fourth Wave (August 2021 – October 20, 2021)  358.38 

Table 1: Descriptive Statistics of the City of Toronto in 2021 detailing general sociodemographic 
and socioeconomic characteristics of city residents along with average COVID-19 case rates per 
COVID-19 wave. 

 
 
 
 
 
 
 
 
 
 

 
Table 2:  Duration of each of the first four major COVID-19 waves in Toronto.

Table 2: COVID-19 waves from January 2020 – October 2021  

Study Period/Waves Duration 

Wave 1 – Period 1 January 20, 2020 –  July 31, 2020 

Wave 2 – Period 2 August 1, 2020 –  February 19, 2021 

Wave 3 – Period 3 February 20, 2021 – June 30, 2021 

Wave 4 – Period 4 August 2021 – October 20, 2021 
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Table 3: Local Moran’s I Cluster Pattern 1–3 

Clustering Pattern Definition 

 Hot Spot (high-high) Census tracts that had similarly high COVID-19 case rates like 

their neighbours  

 Cold Spot (low-low) Census tracts that had similarly low concentrations of COVID-19 

case rates like their neighbours  

 High - Low Outlier Census tracts with a higher concentration of COVID-19 case 

rates but surrounded by census tracts with lower COVID-19 case 

rates concentration 

 Low – High Outlier Census tract with a lower concentration of COVID-19 case rates 

but surrounded by census tracts with higher COVID-19 case rate 

concentration 

Table 3: Local Moran’s I indicate four different clustering patterns based on COVID-19 case 
concentration rates per census tract. Hotspots are identified as pink, cold spots are identified as 
light blue, while outliers are bright red for high-low outliers and bright blue for low-high 
outliers. Census tracts with no statistically significant clustering patterns are white.  
 

 
Table 4: Local Outlier Analysis provides a succinct depiction of changing clustering patterns in a 
location over a specific duration of time.  Census tracts that have continuously been COVID-19 
hotspots  or cold spots from January 2020 – October 2021 are identified as light pink or light 
blue, respectively.  Census tracts that have continuously been outliers compared to surrounding 
census tracts are identified as bright red for high-low outliers and bright blue for low high 
outliers. Census tracts  that have had changing clustering patterns over the study period  are  

Table 4: Local Outlier Analysis Clustering Pattern (ArcGIS Pro, n.d.) 

Clustering pattern Definition  

 Never Significant A location where there has bever been a statistically significant 
clustering pattern  

 Only High-High 
Cluster 

A location where the only statistically significant clustering pattern 
throughout time has been high-high clusters.  

 Only High-Low 
Outlier 

A location where the only statistically significant clustering pattern 
throughout time has been high-low outliers. 

 Only Low-High 
Outlier 

A location where the only statistically significant clustering pattern 
throughout time has been low-high outliers  

 Only Low-Low 
Cluster 

A location where the only statistically significant clustering pattern 
throughout time has been low-low clusters. 

 Multiple Types  A location where the statistically significant clustering pattern 
throughout time changes  
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identified as purple (ex. one time slice the census tract was a hot spot and became a cold spot in  
 another time slice). Census tracts without any statistically significant clustering patterns 
throughout the study period were identified as white.  
 

 
Table 5: Global Moran's I Index values for each COVID-19 wave, indicating the presence of 
spatial autocorrelation. Positive index values indicate spatial clustering of COVID-19 cases with 
values closer to 1 indicating higher levels of clustering

Table 5: Global Moran’s I Index for four COVID-19 waves in Toronto from January 2020 – 

October 2021 

Study Period/Waves Global Moran’s I Index Z Score  p-value  

Wave 1 – Period 1 0.430 18.40 <0.001 

Wave 2 – Period 2 0.544 23.11 <0.001 

Wave 3 – Period 3 0.496 21.04 <0.001 

Wave 4 – Period 4 0.193 8.369 <0.001 
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FIGURES 
 

 
Figure 1: Daily Laboratory Confirmed COVID-19 cases in Toronto from January 2020 - December 2021. Waves of COVID-19 are indicated based on the 
patterns of peaks and valleys in case counts.
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Figure 2: COVID-19 case rate (per 100,000) clustering patterns across Toronto for each major waves using Local Moran's I. 
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Figure 3: A. COVID-19 case rate (per 100,000) clustering patterns from January 2020 – October 2021 analyzed using Local 
Outlier Analysis. B-D. Time slices in sections of the city with multiple types of clustering and outlier patterns. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 31, 2024. ; https://doi.org/10.1101/2024.08.30.24312852doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.30.24312852


 21 

 
Figure 4: Spatial distribution of sociodemographic and socioeconomic characteristics in Toronto based on the 2021 Canadian 
Census. A. Distribution of Median Total Income per individual. B. Distribution of Immigrants C. Distribution of Visible 
Minorities. D. Distribution of residents with a Post Secondary education. E. Distribution of multigenerational households in 
Toronto.  
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    APPENDIX

Appendix Figure 1: COVID-19 case rate (per 100, 000) clustering pattern across Toronto for Wave 1 with 
varying population characteristics (age -- E&F and sex – G&H) and neighbourhood structure (fixed distance – 
C &D and neighbourhood level B) adjustments compared to map generated during primary analysis (A). 
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Appendix Figure 2: COVID-19 case rate (per 100, 000) clustering pattern across Toronto for Wave 2 with 
varying population characteristics (age – E&F and sex – G&H) and neighbourhood structure (fixed distance – 
C &D and neighbourhood level – B) adjustments compared to map generated during primary analysis (A). 
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Appendix Figure 3: COVID-19 case rate (per 100, 000) clustering pattern across Toronto for Wave 3 with 
varying population characteristics (age – E&F and sex – G&H) and neighbourhood structure (fixed distance – C 
&D and neighbourhood level – B) adjustments compared to maps generated during primary analysis (A). 
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Appendix Figure 4: COVID-19 case rate (per 100, 000) clustering pattern across Toronto for Wave 4 with varying population 
characteristics (age – E&F and sex – G&H) and neighbourhood structure (fixed distance – C &D and neighbourhood level B) 
adjustments compared to maps generated during primary analysis (A). 
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Appendix Figure 5: COVID-19 case rate (per 100,000) clustering patterns from January 2020 - October 2021 analyzed using 
Local Outlier Analysis with varying adjustments focusing on population (age – E&F and sex – G&H), neighbourhood structure 
(fixed distance – C &D and neighbourhood level – B) as compared to primary analysis (A).  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 31, 2024. ; https://doi.org/10.1101/2024.08.30.24312852doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.30.24312852

