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Abstract  

The scale and resolution of anatomical features extracted from medical CT images are crucial for advancing 

clinical decision-making tools. While traditional metrics, such as maximum aortic diameter, have long been 

the standard for classifying aortic diseases, these one-dimensional measures often fall short in capturing the 

rich geometrical nuances available in progressively advancing imaging modalities. Recent advancements 

in computational methods and imaging have introduced more sophisticated geometric signatures, in 

particular scale-invariant measures of aortic shape. Among these, the normalized fluctuation in total 

integrated Gaussian curvature (𝛿𝐾̃) over a surface mesh model of the aorta has emerged as a particularly 

promising metric. However, there exists a critical tradeoff between noise reduction and shape signal 

preservation within the scale space parameters – namely, smoothing intensity, meshing density, and 

partitioning size. Through a comprehensive analysis of over 1200 unique scale space constructions derived 

from a cohort of 185 aortic dissection patients, this work pinpoints optimal resolution scales at which shape 

variations are most strongly correlated with surgical outcomes. Importantly, these findings emphasize the 

pivotal role of a secondary discretization step, which consistently yield the most robust signal when scaled 

to approximately 1 cm. The results presented here not only enhance the interpretability and predictive power 

of data-driven models but also introduce a methodological framework that integrates statistical 

reinforcement with domain-specific knowledge to optimize feature extraction across scales. This approach 

enables the development of models that are not only clinically effective but also inherently resilient to 

biases introduced by patient population heterogeneity. By focusing on the appropriate intermediate scales 

for analysis, this study paves the way for more precise and reliable tools in medical imaging, ultimately 

contributing to improved patient outcomes in cardiovascular surgery. 

Introduction 

The clinical diagnosis and management of vascular diseases, particularly aortic disorders, heavily rely on 

the precise characterization of anatomical features. Current imaging-based diagnostic features 

predominantly focus on easily measured size metrics like maximum aortic diameter to provide a statistical 

measure to support surgical intervention. [1], [2], [3] Other metrics such as the tortuosity index aim to 

expand upon size information to include aortic shape, but these metrics have had little clinical impact due 
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to their limited interpretations. [4] Unsurprisingly, for decades the most popular tool for identifying the 

complex geometrical nuances essential for risk assessment and treatment planning has been the trained eye 

of the medical professional. The eye has the innate ability to capture the wealth of geometric information 

from an image, simultaneously traversing the various scales within and allowing intuition to identify regions 

of interest. Even with the abundance of advanced methods which can provide detailed imaging with sub-

millimeter resolutions [5], [6], modern computational tools are not fully utilized statistically, with most 

clinicians relying on their experience and intuition to make decisions. Likewise, despite technological 

strides in medical imaging and analysis, the heuristic nature of actionable signatures and parameter 

selections provided by these tools often limits their comprehension, widespread adoption, and more so the 

potential for robust and generalizable models driven by compounding statistical significance. Therefore, 

the most clinically useful anatomical features are those that most robustly quantify what the eye sees. This 

bridging from interactive and intuitive to analytical and statistical (qualitative to quantitative) is best 

hallmarked by the furthering development of automated image segmentation. [7], [8] Virtual anatomical 

models are becoming ubiquitous in clinical settings and complimentary computational methodologies are 

being developed to extract multiscale data from the model structures. These approaches are designed to not 

only replicate the multi-layered perception inherent to human observation but also provide the means to 

quantify the intrinsic geometric information within. Thus, by viewing aortic anatomy through this 

multiscale lens, we can gain detailed geometric insights that are otherwise hidden or obscured in single-

scale observations, setting the stage for the introduction of computational tools designed to further explore 

and quantify the complexities of anatomical structures. [9], [10]  

Recently, normalized fluctuation in integrated Gaussian curvature (𝛿𝐾̃) of 3D surface reconstructions of 

thoracic aortas using computed tomography angiography (CTA) imaging data was introduced as a size-

invariant intrinsic shape quantity. 𝛿𝐾̃ demonstrated enhanced classification in logistic regression machine 

learning (ML) models when fit to predict the success of thoracic endovascular aortic repair (TEVAR) for 

patients with aortic dissections (when coupled with aortic radius in a tandem size-shape feature space). [11] 

Briefly, the feature is calculated from CTA imaging by first approximating discrete point Gaussian 

curvatures (𝑘𝑔) for each vertex of a triangular 3D surface mesh using the discrete point curvature algorithm 

by Rusinkiewicz et al. [12] Then, the regions of constant Gaussian curvature are averaged together and used 

to calculate the total integrated Gaussian curvature (𝐾). The fluctuation in 𝐾 is 𝛿𝐾 = 〈𝐾2〉 − 〈𝐾〉2, thus 

describing the variation of integrated curvature values over the surface of the aorta, i.e., the “variation in 

bumpiness” or the magnitude of statistical deviation away from a perfect cylindrical aorta. While promising, 

the procedure we introduced to calculate 𝛿𝐾̃ from CTA data involves three steps which all influence the 

scale space in which the feature is produced: smoothing of the aortic surface model (the removal of noise, 
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but also structure) upon which a triangular dense mesh is applied (discretization of the surface) and 

subsequently partitioned (averaged) for local evaluations in integrated Gaussian curvature. In the original 

methodology, a heuristic approach was taken by implementing each of the three steps in a purely qualitative 

fashion, a position many clinician-scientists find themselves in: having access to an overwhelming number 

of advanced tools, but using mainly intuition to guide and/or optimize the generation of usable data. After 

all, the clinician traditionally uses their trained eye first to extract data from anatomical images. This is 

illustrated using the series of images in Figure 1. Whether the surgeon sees the highly pixelated and rough 

unsmoothed segmentation surface of the aorta in Fig. 1.A or the integrated Gaussian curvature surface map 

in Fig. 1.E (or any of the images in between), their conclusions about the shape of the patient’s pathology 

and the impending implications for treatment remain the same. However, if a quantitative analysis route is 

taken, a plethora of challenges is introduced. Specifically, discretizing or taking derivatives on pixelated 

surfaces can introduce significant noise to calculations. Using the original paper as a prime example of an 

image-generated feature susceptible to these challenges, we employ here a data-driven methodology to 

identify the region in the scale space formed by smoothing, meshing, and partitioning which match clinical 

intuition and maximize the quantitative role of the feature in predictive algorithms.  

This work is particularly influenced by the foundational theories of Witkin and Koederink on scale space, 

which describe the behavior of features as one varies the scale of observation. [13], [14], [15], [16] The 

primary goal of the scale space optimization is not only to enhance the signal-to-noise ratio but more 

importantly, to identify the scale, or rather the range of scales, in which the 𝛿𝐾̃ “event” occurs—the event 

being where the clinical utility is maximized, either for predictive algorithms or physical interpretation. For 

example, in the classic coastline measurement problem, it is well understood that the most effective 

measurements are not made by measuring grains of sand on the beach with a caliper or from taking low 

resolution pictures from the moon. Rather, the compromise between measurement length scale and 

resolution provides the best result. After all, the basic principles of cartography are strongly rooted in 

differential geometry and topology, which further link the instrumental works of Gauss to modern day scale 

space problems. By optimizing the scale space, smaller features like bays and inlets are smoothed away, 

coarsened over, or averaged out, while the general shape and length of the ‘coastline’ is maintained. 

Analogously, the operations of smoothing, coarsening, and averaging an aortic surface allow the removal 

of uninformative features from segmentations while capturing the variations in morphologic aortic shape.  

The most commonly discussed operator throughout the scale space literature is the Gaussian function or 

diffusion equation. [17], [18] Diffusion only has the ability to destroy structure – any feature at a coarse 

level of resolution must also present at a finer level of resolution, while the reverse is not true, making the 

operator ideal for high-to-low resolution exploration. Gaussian smoothing is also standard in data 
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visualization and noise removal procedures, making it a suitable parameter for exploring the extent of 

segmentation annealing required to produce the best shape signal. Surface meshing is also ubiquitous in 

computational frameworks for modeling physical phenomena and can significantly simplify geometric 

calculations by discretizing complex surfaces into a collection of operable coordinates. [19], [20], [21] The 

literature on optimizing meshing for physical quantity estimation is rich but is simplified in this approach 

to provide the most generalizable results. In the following analysis, both extrinsic and intrinsic meshing 

discretizations are examined. However, while a fine-level of discretization is required to calculate 𝑘𝑔 locally 

at a given mesh vertex, we showed previously that 𝑘𝑔 alone does not produce a useful geometric signal in 

these data. Therefore, 𝑘𝑔 is integrated over an additional length scale to produce a topologically invariant 

quantity which statistically describes the shape differences between TEVAR outcomes. The integration 

length scale, or the partitioning length scale, is an effective secondary coarsening and discretization of the 

initial mesh, now containing the average Gaussian curvature (𝑘𝑔
̅̅ ̅) from a finer level of discretization and 

the partition area (𝐴) at each partition centroid. Therefore, the per-partition integrated Gaussian curvature 

value is calculated as 𝐾 =  ∬ 𝑘𝑔𝑑𝐴
 

𝐴
= 𝑘𝑔

̅̅ ̅𝐴. This highly effective down-sampling method averages out the 

noise from the per-vertex 𝑘𝑔 calculation while capturing the shape over the surface area set by the partition 

length scale. This secondary coarsening strategy is often implemented when domain knowledge supports 

extracting features which exist from finer meshes at higher scales of measurement. [22] 

Each of the three operators described serves a unique and pivotal purpose in quantifying shape variability 

on complex anatomical manifolds. Given there is not an a priori solution as to how shape variation should 

scale with aortic size or aortic disease, the signal produced must be characterized by its usefulness. The two 

most important characteristics of the 2D feature space are the size-shape invariance and the outcome class 

clustering, demonstrating the potential for high predictive accuracy and utilization in algorithms. Using 

metrics which score these attributes, a vast combination of datasets constructed using different Gaussian 

smoothing operator length scales (noise removal), meshing density (fine-discretization), and partition size 

(coarse-discretization) are evaluated. More importantly, the ranges over which a high quality 𝛿𝐾̃ signal 

appears is designated a “stable zone” for feature extraction (with intentional reference back to Witkin’s idea 

of “stable features”). [14] Furthermore, the stable range of length scales in turn produce a stable range of 

viable solutions, with each aorta having a unique shape value for each stable parameter combination. This 

effective up-sampling of the data over all useful scales of observation may in practice mimic the multi-

layered perception of the human eye and in turn, may provide computational methodologies with data that 

best represent what the trained professional’s eyes really see. The originating work introducing 𝛿𝐾̃ as a 

descriptor succumbed to a heuristic methodology to convert the qualitative but rich signal into a useful 

quantitative measure, not being carefully tuned for proper data-driven usage. Indeed, while achieving 92% 
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classification accuracy on preoperative and postoperative data, the accuracy decreased to just 61% when 

just preoperative imaging of the patient anatomy was used. Aside from leveraging postoperative data when 

evaluating the 𝛿𝐾̃ signal throughout scale space, only preoperative data is used within the classification 

models to properly demonstrate the predictive utility of the feature in an environment with true clinical 

translatability.  

Methodology 

Imaging Data and Segmentation  

A data cohort of 185 unique patients and 380 corresponding CTA scans were collected for analysis from 

the Human Imaging Research Office (HIRO) at the University of Chicago. The international review board 

(IRB) of the University of Chicago (IRB20-0653, IRB21-0299) gave ethical approval for this work. Each 

patient and their corresponding scans are labeled using one of three discrete levels: nonpathological, 

successful TEVAR, or unsuccessful TEVAR (surgical reintervention or death one-month post operation), 

which is analogous to the labeling scheme in the original analysis. Data were received in the form of 

deidentified digital imaging and communications in medicine (DICOM) files from CT instrumentation 

spanning a variety of models and resolutions; the range of xy-spacing was 0.3-0.8 mm and z-spacing was 

0.3-1.0 mm. Only 3D scans were used in building the dataset and all chest CT scans were obtained from 

the axial cut of the original DICOM file. Surface models of each unique anatomy were created from the 

files using Simpleware (S-2021.06-SP1, Synopsys, Mountain View, CA) software. Segmentation, the 

reconstruction of the 3D thoracic aorta, was performed semi-automatically. A 3D mask that best captured 

the aortic anatomy was generated by thresholding and adjusting the upper and lower bounds of the greyscale 

DICOM series, capturing both the aorta and residual tissue for each slice. Then, slice by slice, the outer 

perimeter of the aorta was identified, removing noise, residual tissue, and branch vessels. The proximal and 

distal boundaries of the mask were defined by the aortic sinus and celiac trunk, respectively, and any aorta 

beyond those bounds was completely removed from the mask. The segmenter would then alternate between 

the visualized 3D model of the segmented aorta with the axial cut, sagittal cut, and coronal cut of the CT 

scan and continue to refine the raw segmentation to best capture the aortic anatomy. Lastly, removal masks 

would be generated at the proximal and distal bounds to precisely define the ends of the 3D model (Fig. 

1.A).  

Smoothing, Meshing, and Partitioning 

Smoothing of the raw segmentation mask is a necessary step to eliminate the pixelated surface structure 

generated from the image processing (Fig. 1.B). The smoothing process employed was comprised of two 

independent steps: mask dilation and recursive Gaussian filters. To study the implications of continuously 

broadening Gaussian smoothing, the length scale of the 3D isotropic Gaussian surface function applied was 
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varied from one to ten voxels in intervals of one (𝜎𝑥, 𝜎𝑦, 𝜎𝑧 ∈ {1, 2, 3, … 10}). Constant dilation was 

implemented equally across all aortas to ensure the smallest aortas (with the least voxels) maintained their 

original topology during the smoothing process. The dilation filter applied grew the segmentation masks 

by adding 2 outer layers of voxels to the surfaces, which provided sufficient additional mass to preserve the 

smallest aorta’s topologies during the most intense smoothing.  

As each of the 380 segmentation masks was smoothed by varying degrees, each was subsequently meshed 

using 5 triangular mesh densities (1, 5, 10, 50, 100 𝑚𝑚2) using Simpleware’s default meshing algorithm. 

Each mesh element density was kept approximately constant by constraining the Simpleware meshing 

algorithm to a narrow range of optimization parameters, however some minor modifications to a pure lab-

frame extrinsic mesh were enforced by the software along sharp edges or creases. Subsequently, each 

1 𝑚𝑚2 element mesh was decimated (using open-source Python libraries for meshing, TriMesh and 

Open3d) to an intrinsic mesh with a constant number of elements. [23], [24] The quadric error metric 

decimation algorithm was used to create a variety of constant element meshes which included 

50, 100, 500, 1K, 5K, 10K, 50K elements (Fig. 1.C). The algorithm is designed to prioritize keeping distinct 

shapes and features over subsequent simplifications of the mesh, to perform the optimized coarsening. [25] 

Visual differentiation of the extrinsic and intrinsic meshes are shown in Figure 2.  

Each of the uniquely smoothed and meshed datasets were then run through the discrete point curvature 

algorithm to calculate per-vertex Gaussian curvatures (𝑘𝑔) from the two per-vertex principal curvatures 

(𝑘1, 𝑘2). [12] Subsequently, the 𝛿𝐾̃-algorithm previously mentioned was used to calculate the shape metric 

and the mean root Casorati curvature 〈𝐶1/2〉 where C =
1

2
(𝑘1

2 + 𝑘2
2), which is an analog of mean inverse 

aortic radius (the size feature in the 2D size-shape feature space). The final parameter in the analysis, the 

partitioning length scale, was varied within the 𝛿𝐾̃-algorithm for each dataset. Each mesh, at this point with 

per-vertex Gaussian curvatures, was divided into either a fixed number of surface partitions 𝑝 =

10, 50, 100, 150, 250 or the number was calculated using the scaling relationship 𝑝 =  𝑚 ∗
𝑆𝐴

𝑅̃2, where 𝑆𝐴 

is mesh surface area and 𝑅̃2 is the median radius squared, to achieve floating partition totals that scale with 

aortic size (Fig. 1.D). In the original analysis the prefactor (𝑚) was set to 1, but here it is varied from 0.1, 

0.5, 1, 5, and 10. Finally, for each aorta, in each scale space dataset, a (〈𝐶
1

2〉 , 𝛿𝐾̃) feature pair was calculated.  

Scale Space Evaluation 

Each dataset was then evaluated using three different characteristics of the resulting (〈𝐶
1

2〉 , 𝛿𝐾̃) feature 

spaces. First, each dataset was fit with a generalized power function 𝛿𝐾̃ = 〈𝐶
1

2〉𝑛 (i.e., 𝑠ℎ𝑎𝑝𝑒 =
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𝑠𝑖𝑧𝑒𝑛) where 𝑛 ∈ ℝ and such that 𝑛 = arg min ∑ (𝑁
𝑖=1 𝛿𝐾̃𝑖 − 〈𝐶

1

2〉𝑖
𝑛)2. Each fit produced a coefficient of 

determination (𝑟2) value which was used as the scoring metric. Second, a classification algorithm was fit 

using multinomial logistic regression and was used to predict the outcome labels as a function of the 2D 

size-shape feature space. The learned decision boundaries determine per-point classification and the F1-

score for the data cohort was calculated. The F1-score is the harmonic mean of the precision and recall of 

the prediction accuracy and is used to quantify how linearly separable the clusterings of outcomes are while 

also considering class label imbalances. Lastly, a K-means algorithm was used to separate each dataset into 

𝑘 = 3 clusters which is the ground-truth number of discrete labels within the dataset. However, the model 

assigns each (〈𝐶
1

2〉 , 𝛿𝐾̃) pair of datapoints to an arbitrary group 1, 2, or 3 using only the spread of the 

collection amongst the size-shape space. The agreement between the clustering model and the ground truth 

labels is then evaluated using the Adjusted Rand Index (𝐴𝑅𝐼). [26] The Rand Index (𝑅𝐼) is calculated by 

taking the fraction of all pairs of samples that are either in the same cluster in both clinical and model labels 

or in different clusters in both clinical and model labels. The 𝐴𝑅𝐼 is adjusted for chance and is computed 

as 𝐴𝑅𝐼 =  
𝑅𝐼−𝔼(𝑅𝐼)

max(𝑅𝐼)−𝔼(𝑅𝐼)
.  

After each metric (𝑟2, 𝐹1, 𝐴𝑅𝐼) was calculated, they were each scaled from zero to one and the values were 

added together to form a standardized and lumped cumulative score for evaluation. The two clustering 

metrics were halved as to not bias the cumulative score towards clustering over power law fitting, while 

maintaining independent representation of linear-separability (logistic regression) versus nonlinear-

aggregation (K-means clustering). The cumulative score is thus 
1

2
𝐹1𝑠𝑐𝑎𝑙𝑒𝑑 +

1

2
𝐴𝑅𝐼𝑠𝑐𝑎𝑙𝑒𝑑 + 𝑟𝑠𝑐𝑎𝑙𝑒𝑑

2  and is 

bound between zero and two. Once a cumulative score has been calculated for each dataset, a virtual grid 

is constructed which spans broad ranges along the Gaussian smoothing operator length scales, meshing 

density (fine-discretization), and partition size (coarse-discretization). A total of 1200 differently scaled 

datasets were achieved by spanning 10 smoothing length scales, 12 meshing discretizations (5 extrinsic and 

7 intrinsic), and 10 partitioning discretizations (5 static and 5 floating). A schematic overview of this scale 

space grid methodology is detailed in Figure 3.  

In addition to evaluating the scale space using the cumulative scores, the improved utilization of the tuned 

feature space is further assessed through the application of regularized multinomial logistic regression and 

Gaussian process classification (GPC). [27] These two widely used predictive ML models offer 

complementary perspectives on the data, with logistic regression providing a linear approach and GPC 

offering a more flexible, nonlinear methodology. The logistic regression model was fit in a manner 

consistent with the procedures described in the original work, involving careful preprocessing, validation, 

and regularization steps to ensure robustness and prevent overfitting. This model serves as a baseline for 
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evaluating the linear separability of the classes within the optimized feature space. The GPC model, on the 

other hand, leverages the power of Gaussian processes to model complex, nonlinear decision boundaries. 

Specifically, the GPC model was fit using an anisotropic radial basis function (RBF) kernel, which allows 

the model to adapt to the specific geometry of the data. The RBF kernel is particularly effective in capturing 

local variations within the feature space, making it well-suited for datasets where class boundaries are not 

linearly separable. The anisotropic nature of the kernel means that it can adjust its shape according to the 

distribution of the data, providing a tailored fit that reflects the underlying structure of the feature space. To 

visualize the model's performance, per-class probability contours were generated and constrained to regions 

within one standard deviation of the available data points. This constraint ensures that the visualized 

decision boundaries are meaningful and closely aligned with the actual data, avoiding extrapolation into 

regions where the model has insufficient information. These probability contours offer a visual 

representation of the regions where the GPC model predicts each class with high confidence. One of the 

key advantages of GPC is its ability to quantify uncertainty in label assignment. This is particularly valuable 

in medical imaging analysis, where understanding the reliability of predictions is crucial. The GPC model 

inherently provides a measure of uncertainty by generating probabilistic outputs rather than hard 

classifications. This allows for the identification of regions in the feature space where the model's 

predictions are less certain, often corresponding to areas where the classes overlap or where data density is 

low. These regions of uncertainty are directly compared to the stability regions identified during 

optimization, providing a comprehensive view of the model's reliability and the robustness of the feature 

space. 

Results and Discussion  

 As described in the methodology, 1200 unique scale space constructions of the TEVAR dataset were 

evaluated during the optimization. Within those datasets, four unique parent methodologies can be 

categorized: extrinisc (E) or intrinsic (I) meshing, and fixed (F) or scaling (S) partitioning. For the remainder 

of the discussion these four groups will be referred to as E-F, I-F, E-S, I-S. Table 1 provides a 

comprehensive list of outcome metrics for each of the best performing parameter sets for the 4 parent 

methods.  

 

Table 1: Summary metrics for the optimal case from each of the 4 unique parent methods. For each 

method the optimal Smoothing, Meshing, and Partitioning value is reported alongside the corresponding 

r2, ARI, and F1 score values. Smoothing is reported as the recursive Gaussian operator length scale 

which is the width of the Gaussian kernel applied to the surface. In the z-direction of the scan the average 

z-spacing was 0.6 mm (e.g., a smoothing length scale of 7 converts to 4.2 mm on average). The average 

± standard deviation for the partition surface area and the mesh elements per partition are also reported. 

The cumulative scores of each method are scaled from 0 to 2.   
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Method Smoothing Meshing Partitioning r2 F1 ARI Cum. 

Score 

Partition 

Area 

[mm2] 

Elements 

per 

Partition 

E-F 7 vox. 1 mm2 250 0.57 0.86 0.74 1.65 137 ± 75 322 ± 182 

E-S 7 vox. 10 mm2 
1 · 

𝑆𝐴

𝑅̃2 0.76 0.92 0.79 1.91 252 ± 169 58 ± 39 

I-F 7 vox. 5000 e 250 0.60 0.88 0.82 1.80 137 ± 79 19 ± 1 

I-S 7 vox. 5000 e 1 · 
𝑆𝐴

𝑅̃2 0.80 0.91 0.83 1.89 248 ± 166 32 ± 5 

 

The results in Table 1 highlight several key findings from the methodology analysis. The optimal length 

scale for the recursive Gaussian smoothing filter was consistently identified as 7 voxels (average length of 

4.2 mm). Additionally, in all four scale space grids (Figure 4), the most stable regions of the grid are all 

centered about the 7-voxel smoothing length scale suggesting that at this level of surface diffusion lower 

level structures that have been decimated are not informative in predicting aortic disease state. Similarly, 

at smoothing length scales greater than 7 voxels, important shape information as it pertains to aortic disease 

state begins to be destroyed. Of particular note are the similarities between the physical thickness (intima, 

media, and adventitia) ~𝑂(1 𝑚𝑚) and the optimal smoothing length scale. [28] The similarity suggests 

that aortic surface structures sensitive to thickness likely do not play a role in characterizing global aortic 

shape. 

To identify the optimal method in each category, the parameter groups that achieved the highest cumulative 

scores were first selected and among these, the simplest mesh was chosen. For instance, within the E-S 

group, both the (7 𝑣𝑜𝑥. , 5 𝑚𝑚2, 1 ·
𝑆𝐴

𝑅̃2) and the (7 𝑣𝑜𝑥. , 10 𝑚𝑚2, 1 ·
𝑆𝐴

𝑅̃2) configurations achieved top 

scores of approximately 1.91. The latter was selected because it is a coarser mesh. The preference of the 

simpler mesh is a minor and more practical point because if a range of scales produce the desired signal, 

and only one is to be chosen from the range, it only makes sense to choose the most computationally 

efficient one.  

Figure 4 visualizes this methodological scale space grid for the four parameter sets (I-S, E-S, I-F, and E-F) 

used in the optimization process. The figure demonstrates that high-quality signals were obtained over the 

ranges (5 𝑣𝑜𝑥. : 7 𝑣𝑜𝑥. , 1𝐾: 10𝐾, 0.5: 5 ∙  
𝑆𝐴

𝑅2) for I-S (Fig. 4.A) and (5 𝑣𝑜𝑥. : 9 𝑣𝑜𝑥. , 1: 10 𝑚𝑚2, 1: 10 ∙

 
𝑆𝐴

𝑅2) for E-S (Fig. 4.B) while the I-F (Fig. 4.C) and E-F (Fig. 4.D) approaches had less than optimal results. 

A significant finding is the notable difference in power law fitting between methods employing a scaling 

number of surface partitions. Figure 5 presents the logistic regression outputs for the preoperative-only 
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datasets for each optimal method. A key observation from the high-quality signals in both Fig. 5.A and Fig. 

5.B is the anisotropic distribution of nonpathological aortas, which aligns with the expectation of shape-

preserving growth during healthy tissue development. The shape of the 2D signal resembles an "elbow," 

where the introduction of disease results in an upward trajectory on the shape axis. This characteristic is 

crucial, as capturing the absence of shape variability is just as important as detecting its presence. The E-S 

(Fig. 4.B and Fig. 5.B) method stands out amongst the rest for three reasons: 1) the means of the three 

groups are the furthest apart – nonpathological 𝛿𝐾̃~1, successful TEVAR 𝛿𝐾̃~2, unsuccessful TEVAR 

𝛿𝐾̃~4 – along the shape axis; 2) nonpathological aortas exhibit minimal shape variation; and 3) the 

classification score is the highest among the methods, achieving on average 71% and 88% accuracies for 

the successful and unsuccessful TEVAR cases, respectively. In direct comparison to the original work and 

model using 𝛿𝐾̃, this improved scaling imposed during the calculation results in an 83% accuracy when 

tasked with predicting TEVAR outcome, compared to 61% previously. Given the optimal primary and 

secondary discretizations from the E-S method, the inner scale imposed by the mesh was found to be 

√10 𝑚𝑚2  ≅ 3 𝑚𝑚 while the outer scale imposed by the partitions was √252 ± 169 𝑚𝑚2 ≅ 16 ±

13 𝑚𝑚. These scales correspond well to the physical characteristics of the aorta, which has a thickness 

~𝑂(1 𝑚𝑚) and a radius ~𝑂(10 𝑚𝑚). [28], [29] This alignment only further emphasizes the importance 

of anatomical length scales when extracting geometric information from segmentation surfaces. 

To further evaluate the robustness of the E-S methodology using only preoperative data, the feature pair 

average from each unique scale combination which obtained a cumulative score > 1.85 set was computed. 

Figure 6.A shows the averaged points with error bars representing the standard deviations in both 

dimensions. These error bars quantify the variability inherent in the “stable” zone of the data, indicating the 

extent to which variations in smoothing, meshing, and/or partitioning parameters influence the size and 

shape metrics while still providing a high-quality signal. Overlaid on this scatter plot are class contours 

obtained from a GPC model. These contours delineate the nonlinear decision boundaries between different 

classes (e.g., nonpathological, successful TEVAR, and unsuccessful TEVAR). It is noteworthy that the 

GPC contours closely align with the variance error bars, demonstrating the model’s capacity to capture not 

only the central tendencies of the data points but also their potential variability due to slight parameter 

adjustments. This alignment suggests that the GPC model is well-suited for accommodating the inherent 

uncertainties in the data, offering a probabilistic framework that effectively accounts for small-scale 

variations. An additional observation from Figure 6.A is the distinctive pattern of error bars across the 

different aortic categories. For nonpathological aortas, the error bars are large in the size dimension but 

small in the shape dimension, reflecting stable shape characteristics despite variations in size. Conversely, 

for preoperative CTA scans that would later become unsuccessful TEVAR cases, the error bars are large in 
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the shape dimension and small in the size dimension, indicating significant shape variability. This pattern 

suggests that as disease progresses, the variability in shape becomes more pronounced and presents at a 

wider range of length scales, which aligns with the understanding of disease progression as increasingly 

non-uniform and potentially chaotic. [30], [31] The isotropic error bars observed in eventually successful 

TEVAR cases further emphasize the balance between size and shape variability, perhaps indicative of a 

more controlled clinical outcome where aortic morphologies reach anatomic stable points even in the setting 

of disease. [32], [33] The pattern is also duplicated, if not further developed, when the horizontal axis is 

converted back to aortic radius from inverse size in Figure 6.C. The original choice to use inverse size was 

done to emphasize the invariance and asymptotic nature of the 2D inverse size-shape signal, and it certainly 

served a role in this analysis. However, it may be more interpretable to visualize the results of future scans 

in the noninverted space. Furthermore, it may enhance performance of predictive algorithms as it provides 

more space for the pathologic groups to occupy along the size axis, demonstrated by the 6% and 10% 

successful TEVAR class accuracy increases between Fig. 6.A&C and Fig. 6.B&D, respectively.  

In Figure 6.B, the analysis is expanded to encompass all data points within the >1.85 cumulative score 

stable zone contributing to the biaxial variance discussed above. Instead of relying solely on mean points, 

the GPC model is fit on all stable zone points, reflecting variations in smoothing, meshing, and partitioning 

parameters over the range of corresponding length scales. This represents a novel scale space-based up-

sampling method not explored in the cardiovascular imaging literature. The resulting GPC contours, while 

similar in location and shape to those in 6.A, are more expansive, indicating that the incorporation of 

additional data points leads to broader, more robust decision boundaries most notably demonstrated by the 

occurrence of 80% confidence regions (the inner of the two ovular contours depicted for each class label). 

The broader contours indicate that the GPC model, when trained on a more comprehensive dataset, capture 

the full range of signal length scales, while only fluctuating marginally in prediction accuracy. Each data 

point in this expanded and up-sampled dataset represents a slightly different scale of extraction of the 

original data, thus reflecting the multiscale nature of the observed phenomena. Given the principles of scale 

space theory, the figure underscores the potential of such a methodology for up-sampling (or perhaps better 

coined ‘scale’-sampling). By considering multiple length scales of the same data, the GPC model becomes 

more robust, capturing subtle variations that may be overlooked when working within a single scale. Figure 

6.D shows the scale-sampled dataset in radius-𝛿𝐾̃ space and demonstrates perhaps the most useful and 

translatable output from this analysis, obtaining the best accuracy scores and most robust decision 

boundaries, while also being clinically actionable.  

Figure 7 presents the same data as Figure 6 but uses logistic regression instead of GPC. Despite the 

regression model being a simpler linear classifier, it produces classification contours that are consistent 
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with those generated by GPC, specifically and most importantly at the class interfaces. This result is 

important for two reasons. First, it demonstrates that the linear model can adequately (within a few 

percentage points in accuracy) capture the essential structure of the data, even in the presence of scale-

induced variability. Second, it suggests that while the GPC offers a more nuanced, probabilistic approach, 

the overall classification outcome is sufficiently robust that simpler models can achieve comparable results. 

Lastly, the potential for scale-sampling through multiscale data points presents a promising avenue for 

enhancing model performance, particularly in datasets where capturing subtle differences is crucial. As 

shown by comparing Fig. 7.A&B to Fig. 7.C&D where Gaussian up-sampling is performed, the multiscale 

approach provides a significantly more representative result of a larger population of data than a purely 

statistical approach to up-sampling.  

Conclusion 

The scale space analysis conducted on the normalized fluctuation in integrated Gaussian curvature (𝛿𝐾̃) 

feature significantly enhanced signal strength and predictive accuracy in classifying aortic dissection 

intervention outcomes. Notably, the predictive performance using only preoperative data far surpasses that 

of our previous work (83% versus 61% in TEVAR outcome prediction). The ability to derive such a strong 

signal using only preoperative imaging transforms this model into a translatable decision-making algorithm. 

By shifting away from heuristic methodologies that have traditionally dominated the field, this work 

demonstrates the strengths of employing scale space analysis on imaging-sourced data. Specifically, the 

findings suggest that engineers and scientists developing medical imaging analysis tools possess 

considerable flexibility in data preprocessing. Whether it be through structural simplification via 

smoothing, discretization through meshing, or scale imposition through partitioning, the value of 

investigating the roles of resolution and scale in imaging data is invaluable. These findings also suggest, 

rather intuitively, that the easily measurable characteristic length scales of the system are a good place to 

start. In investigating the length scale of disease signature in patients with thoracic aortic dissections, we 

found that smoothing and discretization on the order of anatomical thickness along with signal measurement 

on the order of anatomical radius provided the most robust preoperatively accessible signal. The partitioning 

step sets the inner scale of the signal and provides access to a feature of normalized shape density. The 

simplicity of the optimal approach, coupled with its effectiveness, highlights the potential for these methods 

to be broadly adopted in clinical settings without sacrificing accuracy or interpretability. 

In the broader context of medical imaging, practitioners often have limited control over the outer and inner 

scales of the image—the window set by the clinician and the resolution determined by the imaging tool, 

respectively. In contrast, the human eye collects data by operating on a variety of scales while 

simultaneously filtering out uninteresting structures. Therefore, the challenge in modern medical imaging 
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analysis lies in identifying the right scale(s) for performing quantitative methods. This study contributes to 

that goal by demonstrating the importance of scale space evaluation and by providing a framework for its 

optimization through data-driven methods. 

Finally, it is important to recognize that without prior knowledge of specific features of interest, it is 

challenging to carry out the methodology detailed above. However, by integrating domain knowledge from 

biology, anatomy, and perhaps most importantly clinical intuition, we can carefully guide computer-driven 

methods into quantifying the difference between two objects that “look” different. The combination of this 

knowledge with statistical reinforcement of shape information that successfully distinguishes different 

anatomies offers a powerful guide for optimizing the scale at which data analysis should occur. 
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Figure 1: The evolution of a single aortic geometry through the subsequent steps in the methodology. (A) The raw segmentation mask produced 

directly from the DICOM image files with surface roughness from the image pixel resolution. (B) The smoothed segmentation mask after a 

recursive Gaussian smoothing operator was applied to the surface (the Gaussian length scale depicted in the image is 7 voxels). (C) The 

triangular surface mesh formed from the smoothed segmentation mask (5000 triangular elements are depicted). (D) The partitioned aortic 

surface after a K-means algorithm divides the mesh into a predetermined number of partitions distinguished by the dark borders (115 patches 

shown). (E) The total integrated Gaussian curvature (K) shown per-patch. The color of the patches now corresponds to the value of K, with 

lighter colors depicting regions of high K and darker colors depicting regions of lower K. Steps A-C are performed in Simpleware ScanIP and 

the steps D-E are performed in the 𝛿𝐾̃-algorithm using Python libraries.  
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Figure 2: Images extracted for both (A) extrinsic and (B) intrinsic meshes. The extrinsic meshes are created within the Synopsis 

Simpleware software and are set to a variety of mesh densities (1, 5, 10, 50, 100 𝑚𝑚2 elements). In an approximate lab-frame approach to 

meshing, the number of elements on the surface of the manifold scales directly with the surface area of the anatomy itself, therefore 

providing a curvature evaluation (𝑘𝑔) over a fixed physical length scale, set by the density of the mesh. The intrinsic meshes are created 

by decimating the highest density extrinsic mesh using the Trimesh package in Python. Each is targeted to have a constant number of 

elements regardless of the size of the anatomy and span (50, 100, 500, 1K, 5K, 10K, 50K elements). Within these meshes, 𝑘𝑔 is calculated 

over a relative distance which increases as the number of elements decreases.   
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Figure 3: Schematic overview of the methodology for evaluating the scale space for aortic anatomy. During creation each of the 380 

segmentation surfaces is subsequently smoothed, meshed, and partitioned using a variety of length scales along each of the 3 axes. Each 

discrete blue datapoint in the left-hand figure is itself a dataset containing the (〈𝐶
1

2〉 , 𝛿𝐾̃) feature pair for each of the 380 aortas from just 

one of the four primary/secondary discretization combinations. The image represents 133,000 aortic scans in total (10 smoothing variations, 

7 meshing variations, and 5 partitioning variations). Overall, 456,000 aortic scans were evaluated amongst the four scale space cubes created 

(133,00 from each of the two I methods, and 95,000 from each of the two E methods). Depicted in the image is just one of these four cubes. 

For each of the datasets within the cube, the signal evaluation process in which clinical domain knowledge is used to estimate the usefulness 

of the signal produced. A power-law r2 value, a classification F1-score, and a clustering ARI score are all calculated from the 2D scatter data. 

In the final step, the scale space is evaluated by taking the cumulative lump score of the three metrics and reassigns the grid position with 

the score. The gradient in scores across the grid can therefore be visualized and provide an illustration to how the stability of the signal 

changes in all 3 dimensions formed by the scale imposed during dataset creation.  
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Figure 4: Scale space grids for the (A) I-S, (B) E-S, (C) I-F, and (D) E-F approaches. Along each panel’s vertical axis is the smoothing degree 

which is the length scale of the Gaussian operator. For ease of visualization, only the odd levels of the smoothing axis are shown but all levels 

between 1-10 were evaluated. Panels A&C have a Mesh Elements (constant number of elements; intrinsic) axis which shows the fixed number 

of triangular elements each aorta was meshed with for a given dataset. Panels B&D have a Mesh Element Size (constant density of elements; 

extrinsic) axis which shows the approximate area in mm2 of each triangular element in each aortic mesh per dataset. Panels A&B contain a 

Surface Partition Equation Prefactor axis which designates each method as a scaling (S) partitioning method. The prefactor is multiplied by 

each aorta’s surface area divided by the mean squared radius to determine the variable number of surface partitions each aortic manifold is 

divided into. Panels C&D contain a Fixed Number of Patches axis which designates each method as a fixed (F) partitioning method. The color 

axis depicts the range of cumulative score values identified for every dataset along all four grids. High scoring regions are identified as regions 

with a combined score > 1.85 which can be seen from (5 𝑣𝑜𝑥. : 7 𝑣𝑜𝑥. , 1𝐾: 10𝐾, 0.5: 5 ∙  
𝑆𝐴

𝑅̃2) in (A), from (5 𝑣𝑜𝑥. : 9 𝑣𝑜𝑥. , 1: 10 𝑚𝑚2, 1: 10 ∙

 
𝑆𝐴

𝑅̃2) in (B), from (7 𝑣𝑜𝑥. , 5𝐾: 10𝐾, 100: 250) in (C), and no over no range in (D).  
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Figure 5: The optimal size-shape feature space and corresponding multinomial logistic regression decision boundaries for the (A) I-

S, (B) E-S, (C) I-F, and (D) E-F approaches. Both axes in all panels are normalized to the mean value of all nonpathological points in 

each dataset respectively (i.e., the point [1, 1] depicts the average normal thoracic aorta in both size and shape). The legend in each 

panel describes the method used to produce the optimized result, the mesh and partitioning scales used, the value of each of the three 

in-part scoring metrics, and the per-class percent accuracies from the linear decision boundaries averaged over 50 unique train-test 

splits of the dataset before model fitting and regularization.  
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Figure 6: Gaussian process classification (GPC) classification boundary plots for the dataset formed from the means of all E-S method outputs 

with cumulative scores greater than 1.85 ~ (5 𝑣𝑜𝑥. : 9 𝑣𝑜𝑥. , 1: 10 𝑚𝑚2, 1: 10 ∙  
𝑆𝐴

𝑅̃2). Each panel depicts at least a 50% (outer) and for some 

others an 80% (inner) confidence contour. (A) Each data point error bar depicts the standard deviation in both the inverse size (〈𝐶
1

2〉) and shape 

(𝛿𝐾) axis respectively for the collection of “stable” instances of that scan that formed the mean. (B) The same analysis as in (A) however, 

with each instance from the stable collection being represented as its own discrete point. (C) The panel contains the exact same data as in (A) 

but with the x-axis transformed into mean aortic radius in units of millimeters. Similarly, in panel (D) the data replicates what was done in (B) 

but in the radius-space. In plots (A) and (B), both axes are normalized to the mean value of all nonpathological points in each dataset 

respectively while in plots (C) and (D) normalization is not performed on the x-axis to keep the magnitude of the size values directly 

interpretable. The legend in each panel contains the per-class percent accuracies from either the nonlinear (GPC) decision boundaries.  
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Figure 7: Logistic regression boundary plots for scale-sampled (A and B) and Gaussian up-sampled (C and D) datasets. The data 

points in (A) and (B) are identical to those shown in Figure 6.B and 6.D, respectively. However, the decision boundaries are now 

modeled linearly using regularized logistic regression. Each set of decision boundaries shown is the optimal output from 50 random 

initializations of training and testing data when fitting the regression. For comparison, the data points in (C) and (D) are up-sampled 

using a Gaussian distribution probability density function. For each class label, the bivariate means and covariances were calculated 

from the data in Figure 6.A and 6.C respectively and used to fit a Gaussian. Each PDF was subsequently up-sampled proportionately 

to match the number of per-class data points in (A) and (C) for direct statistical and spatial comparison between the two sampling 

methods. Analogously to Figure 6, 𝛿𝐾 and 〈𝐶
1

2〉 are normalized to the mean nonpathological scan values, while radius is left 

unnormalized for direct interpretation.  
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