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1. Supplementary Results Figures and Tables 

1.1 Data and Trends 

The first recorded cases of COVID-19 in the UK were in January 2020.  After cases rose rapidly in 
March, a complete social and economic lockdown was introduced in England on 23/03/2020 (UK 
Government, 2020a), which led to a swift reduction in cases (Covid-19 control measures differed in 
Scotland, Wales, and Northern Ireland and were decided by their own devolved parliaments). A 
second major outbreak in autumn 2020 led to the introduction of further interventions in England: a 
heterogenous “tier” system applied at local scales (UK Government, 2020c), and a short national 
lockdown in November 2020 (UK Government, 2020d). When these failed to reduce hospital 
admissions and deaths, a further national lockdown was introduced in January 2021 (UK 
Government, 2021). 

Table S1: Total resident population and proportion of the population within the 10th decile of the 
Index of Multiple Deprivation (when assessed at the scale of England as a whole), for each Teesside 

postcode district.  

Postcode district Population Proportion 10th Decile 

TS1 16994 0.997 

TS2 780 1 

TS3 29253 0.949 

TS4 16966 0.789 

TS5 39387 0.133 

TS6 30239 0.410 

TS7 22058 0.141 

TS8 21266 0.204 

TS9 12832 0 

TS10 36800 0.303 

TS11 11822 0 

TS12 22491 0.070 

TS13 9975 0.160 

TS14 17548 0.077 

TS15 12891 0 

TS16 10422 0 

TS17 44889 0.163 

TS18 24163 0.422 

TS19 37087 0.380 

TS20 20663 0.229 

TS21 12472 0.004 

TS22 8662 0 

TS23 30241 0.120 

TS24 22019 0.630 

TS25 38616 0.392 

TS26 25253 0.204 

TS27 12193 0.207 

TS28 5318 0.001 

TS29 6300 0.002 
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1.2 Disease Mapping 
 

 

Figure S1: Map of the exceedance probabilities for relative risk threshold of 1.5. Relative risk is very 
likely to exceed 1.5 when probabilities are close to 1, and very unlikely when values are close to 0 (values 
around 0.5 have the highest uncertainty). Maps for 3 of the lineages are not shown due to poor model fit 

(B.1.1.309, B.1.1.315, and B.1.1.37). 
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Figure S2: Map of the exceedance probabilities for relative risk threshold of 2. Relative risk is very 
likely to exceed 2 when probabilities are close to 1, and very unlikely when values are close to 0 (values 

around 0.5 have the highest uncertainty). Maps for 3 of the lineages are not shown due to poor model fit 
(B.1.1.309, B.1.1.315, and B.1.1.37). 

 

 
 
 

 

  



6 
 

Table S2: Mean, standard deviation (SD), and upper and lower limits of the 95% credible intervals 
(0.025 quant and 0.975 quant) of the posterior distributions of the fixed and random effects from the 

INLA disease mapping models. Output for 3 of the lineages are not shown due to poor model fit 
(B.1.1.309, B.1.1.315, and B.1.1.37).  

Lineage Effect Effect type Mean SD 0.025 quant 0.975 quant 

Total cases Intercept Fixed -0.073 0.044 -0.159 0.015 

Total cases Size for the nbinomial observations Random 1911.5 12911.2 32.051 12753.9 

Total cases Precision for postcode Random 14.178 5.445 6.056 27.187 

Total cases Phi for postcode Random 0.751 0.225 0.200 0.994 

B.1.1.1 Intercept Fixed -0.287 0.183 -0.673 0.049 

B.1.1.1 Size for the nbinomial observations Random 903.7 9172.4 5.229 5869.4 

B.1.1.1 Precision for postcode Random 2.984 1.694 0.962 7.381 

B.1.1.1 Phi for postcode Random 0.631 0.242 0.138 0.974 

B.1.1.119 Intercept Fixed -0.581 0.186 -0.967 -0.231 

B.1.1.119 Size for the nbinomial observations Random 881.5 8916.5 6.237 5736.4 

B.1.1.119 Precision for postcode Random 1.313 0.477 0.617 2.468 

B.1.1.119 Phi for postcode Random 0.620 0.232 0.155 0.965 

B.1.1.7 Intercept Fixed -0.201 0.137 -0.487 0.052 

B.1.1.7 Size for the nbinomial observations Random 1723.1 23154.0 9.132 10512.1 

B.1.1.7 Precision for postcode Random 4.512 2.505 1.406 10.944 

B.1.1.7 Phi for postcode Random 0.498 0.254 0.069 0.936 

B.1.177 Intercept Fixed -0.032 0.061 -0.154 0.087 

B.1.177 Size for the nbinomial observations Random 315.9 895.2 18.129 1890.2 

B.1.177 Precision for postcode Random 18.059 9.356 5.221 41.174 

B.1.177 Phi for postcode Random 0.304 0.230 0.016 0.821 

B.1.177.10 Intercept Fixed -0.432 0.197 -0.849 -0.076 

B.1.177.10 Size for the nbinomial observations Random 589.8 4605.9 3.602 3957.5 

B.1.177.10 Precision for postcode Random 2.660 1.382 0.916 6.194 

B.1.177.10 Phi for postcode Random 0.635 0.231 0.159 0.968 
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1.3 Mixed-effect Modelling 
 

 

Figure S3: Predicted and observed total number of positive cases of COVID-19 (across all lineages) in 
Teesside during 2020. The predicted estimates (blue) are fitted values from the GLMM for all cases with 

an AR1 (autoregressive order 1) term for week for each postcode.  
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Table S3: Summary of the all-cases GLMM with an AR1 term for week for each postcode; effects of 
spatial (10th Decile of IMD, postcode district total population) and temporal variables (mean weekly 

temperature and rainfall, and government interventions and subsidy) on the total number of positive PCR 
tests recorded each week of 2020 in each postcode district. All temporal variables include a two-week 

time lag to account for the delay in symptom onset (and testing) after infection. VIF values for all 
variables were < 3. Estimates are on the original model scale (log). 

Variable Estimate Std. Error z value p value 

Intercept -1.479 0.236 -6.276 <0.001 

Temperature -0.039 0.014 -2.907 0.004 

Rainfall 0.047 0.026 1.789 0.074 

Lockdown 1 -0.063 0.018 -3.486 <0.001 

Lockdown 2 0.314 0.049 6.411 <0.001 

Tier 2 0.551 0.061 9.079 <0.001 

Tier 3 0.683 0.064 10.589 <0.001 

Restaurant Subsidy 0.082 0.061 1.340 0.180 

IMD 10th Decile 0.502 0.211 2.380 0.017 

Total Population 0.061 0.006 10.426 <0.001 

 
 

 

Table S4: Summary of the all-cases GLMM with a random gradient for week of year for each 
postcode; effects of spatial (10th Decile of IMD, postcode district total population) and temporal 

variables (mean weekly temperature and rainfall, and government interventions and subsidy) on the total 
number of positive PCR tests recorded each week of 2020 in each postcode district. All temporal variables 
include a two-week time lag to account for the delay in symptom onset (and testing) after infection. VIF 

values for all variables were < 3. Estimates are on the original model scale (log). 

Variable Estimate Std. Error z value p value 

Intercept -1.312 0.279 -4.701 <0.001 

Temperature -0.121 0.014 -8.421 <0.001 

Rainfall -0.089 0.028 -3.230 0.001 

Lockdown 1 -0.016 0.016 -0.964 0.335 

Lockdown 2 -0.243 0.061 -3.990 <0.001 

Week 0.064 0.007 8.917 <0.001 

Tier 2 0.040 0.066 0.605 0.545 

Tier 3 -0.173 0.080 -2.172 0.030 

Restaurant Subsidy 0.258 0.059 4.380 <0.001 

IMD 10th Decile 0.348 0.226 1.536 0.124 

Total Population 0.062 0.006 10.321 <0.001 
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Table S5: Random effect estimates for the all-cases GLMM with a random gradient for week of year 
for each postcode. Estimates are on the original model scale (log). 

Postcode District Estimate Std. Error 95% CI  

TS1 -0.037 0.012 [-0.06, -0.014] 

TS10 -0.018 0.011 [-0.04, 0.004] 

TS11 -0.023 0.014 [-0.05, 0.005] 

TS12 -0.008 0.013 [-0.034, 0.018] 

TS13 0.003 0.017 [-0.031, 0.037] 

TS14 -0.026 0.013 [-0.051, -0.001] 

TS15 -0.003 0.016 [-0.034, 0.027] 

TS16 0.010 0.017 [-0.024, 0.043] 

TS17 0.013 0.012 [-0.01, 0.037] 

TS18 0.017 0.014 [-0.009, 0.044] 

TS19 0.027 0.013 [0.002, 0.052] 

TS2 -0.010 0.019 [-0.046, 0.027] 

TS20 0.014 0.014 [-0.013, 0.042] 

TS21 0.006 0.016 [-0.025, 0.038] 

TS22 -0.014 0.015 [-0.043, 0.014] 

TS23 0.019 0.014 [-0.008, 0.046] 

TS24 0.035 0.016 [0.004, 0.065] 

TS25 0.026 0.013 [0.001, 0.052] 

TS26 0.023 0.014 [-0.004, 0.051] 

TS27 0.019 0.017 [-0.014, 0.052] 

TS28 0.026 0.020 [-0.014, 0.065] 

TS29 0.031 0.019 [-0.007, 0.069] 

TS3 -0.031 0.011 [-0.052, -0.009] 

TS4 -0.018 0.011 [-0.04, 0.005] 

TS5 -0.014 0.011 [-0.036, 0.008] 

TS6 -0.019 0.011 [-0.041, 0.003] 

TS7 -0.017 0.012 [-0.04, 0.007] 

TS8 -0.042 0.011 [-0.064, -0.019] 

TS9 -0.015 0.014 [-0.042, 0.013] 
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Figure S4: Rate of change in predicted positive tests of COVID-19 (across all lineages) in Teesside 
during 2020, from the GLMM with a random gradient for week for each postcode district. Predicted 
values represent the increase in cases over time relative to the mean, when all fixed effects are held 

constant, and only the random effects (week and postcode) are allowed to vary. Predicted values were 
calculated via the “ggeffects” R package. 
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Table S6: Summary of the final versions of the separate lineage GLMMs with an AR1 term for week 
for each postcode; effects of spatial (10th Decile of IMD, postcode district total population) and temporal 

variables (mean weekly temperature and rainfall, week of year, and government interventions and 
subsidy) on the total number of positive PCR tests recorded each week of 2020 in each postcode district, 
for each of the 8 most common lineages of SARS-CoV-2. All temporal variables include a two-week time 
lag to account for the delay in symptom onset (and testing) after infection. Variables with a VIF > 3 were 
removed from the models where present (B.1.1.309, B.1.1.315, B.1.1.37, B.1.1.7, B.1.177, B.1.177.10). 

Estimates are on the original model scale (log) (Continued on next page). 

Lineage Variable Estimate Std. Error z value p value 

B.1.1.1 Intercept -3.629 1.301 -2.789 0.005 

B.1.1.1 Temperature -0.234 0.066 -3.546 <0.001 

B.1.1.1 Rainfall -0.184 0.140 -1.319 0.187 

B.1.1.1 Lockdown 1 0.131 0.057 2.286 0.022 

B.1.1.1 Lockdown 2 -1.097 0.622 -1.763 0.078 

B.1.1.1 Tier 2 -0.260 0.365 -0.711 0.477 

B.1.1.1 Tier 3 -1.371 0.852 -1.609 0.108 

B.1.1.1 Restaurant Subsidy 0.550 0.321 1.713 0.087 

B.1.1.1 IMD 10th Decile 1.238 0.583 2.122 0.034 

B.1.1.1 Total Population 0.042 0.017 2.548 0.011 

B.1.1.119 Intercept -2.088 0.621 -3.360 <0.001 

B.1.1.119 Temperature -0.295 0.042 -7.046 <0.001 

B.1.1.119 Rainfall -0.134 0.082 -1.633 0.103 

B.1.1.119 Lockdown 1 0.131 0.037 3.509 <0.001 

B.1.1.119 Restaurant Subsidy -0.337 0.356 -0.947 0.343 

B.1.1.119 IMD 10th Decile 1.546 0.619 2.499 0.012 

B.1.1.119 Total Population 0.060 0.018 3.313 <0.001 

B.1.1.309 Intercept -5.477 1.083 -5.058 <0.001 

B.1.1.309 Temperature 0.103 0.062 1.671 0.095 

B.1.1.309 Rainfall 0.140 0.055 2.540 0.011 

B.1.1.309 Lockdown 2 -1.605 0.913 -1.757 0.079 

B.1.1.309 Tier 2 -0.170 0.252 -0.677 0.498 

B.1.1.309 IMD 10th Decile -0.852 0.565 -1.508 0.131 

B.1.1.309 Total Population 0.074 0.012 6.301 <0.001 

B.1.1.315 Intercept -3.155 0.324 -9.743 <0.001 

B.1.1.315 Rainfall 0.243 0.056 4.329 <0.001 

B.1.1.315 Lockdown 2 -0.165 0.104 -1.578 0.115 

B.1.1.315 Tier 2 0.357 0.096 3.725 <0.001 

B.1.1.315 Tier 3 -1.307 0.309 -4.227 <0.001 

B.1.1.315 Restaurant Subsidy -0.580 0.116 -5.020 <0.001 

B.1.1.315 IMD 10th Decile 0.605 0.305 1.984 0.047 

B.1.1.315 Total Population 0.055 0.008 6.753 <0.001 

B.1.1.37 Intercept -7.207 1.536 -4.693 <0.001 

B.1.1.37 Temperature 0.200 0.089 2.235 0.025 

B.1.1.37 Rainfall -0.228 0.109 -2.089 0.037 

B.1.1.37 Lockdown 2 -0.039 0.272 -0.144 0.885 

B.1.1.37 Tier 2 -0.162 0.319 -0.507 0.612 
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B.1.1.37 IMD 10th Decile 0.199 0.740 0.269 0.788 

B.1.1.37 Total Population 0.070 0.019 3.748 <0.001 

B.1.1.7 Intercept -0.938 0.892 -1.051 0.293 

B.1.1.7 Temperature -0.315 0.102 -3.106 0.002 

B.1.1.7 Rainfall -0.485 0.157 -3.083 0.002 

B.1.1.7 Tier 2 -1.187 0.778 -1.525 0.127 

B.1.1.7 Tier 3 1.035 0.113 9.136 <0.001 

B.1.1.7 IMD 10th Decile 0.476 0.457 1.041 0.298 

B.1.1.7 Total Population 0.066 0.012 5.626 <0.001 

B.1.177 Intercept -2.306 0.201 -11.478 <0.001 

B.1.177 Rainfall 0.198 0.039 5.030 <0.001 

B.1.177 Lockdown 2 0.430 0.052 8.263 <0.001 

B.1.177 Tier 2 0.525 0.066 7.947 <0.001 

B.1.177 Tier 3 0.510 0.067 7.631 <0.001 

B.1.177 Restaurant Subsidy -0.399 0.077 -5.164 <0.001 

B.1.177 IMD 10th Decile 0.361 0.203 1.778 0.075 

B.1.177 Total Population 0.054 0.006 9.628 <0.001 

B.1.177.10 Intercept -1.842 0.975 -1.890 0.059 

B.1.177.10 Temperature -0.354 0.088 -4.021 <0.001 

B.1.177.10 Rainfall -0.056 0.133 -0.423 0.672 

B.1.177.10 Tier 2 0.231 0.189 1.223 0.221 

B.1.177.10 Tier 3 0.409 0.158 2.591 0.010 

B.1.177.10 IMD 10th Decile 1.089 0.638 1.707 0.088 

B.1.177.10 Total Population 0.071 0.017 4.068 <0.001 
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Table S7: Summary of the full versions of the separate lineage GLMMs with an AR1 term for week for 
each postcode; effects of spatial (10th Decile of IMD, postcode district total population) and temporal 

variables (mean weekly temperature and rainfall, week of year, and government interventions and 
subsidy) on the total number of positive PCR tests recorded each week of 2020 in each postcode district, 
for each of the 8 most common lineages of SARS-CoV-2. All temporal variables include a two-week time 
lag to account for the delay in symptom onset (and testing) after infection. The VIF of at least one varia-
ble in each model was > 3, which means all of the below standard errors, z values, and p values may be 

unreliable (though the estimates are accurate). Estimates are on the original model scale (log) (Continued 
on next page). 

Lineage Variable Estimate Std. Error z value p value 

B.1.1.309 Intercept -3.815 1.459 -2.614 0.009 

B.1.1.309 Temperature -0.006 0.092 -0.065 0.949 

B.1.1.309 Rainfall -0.002 0.103 -0.022 0.983 

B.1.1.309 Lockdown 2 -2.012 1.010 -1.991 0.047 

B.1.1.309 Tier 2 -0.347 0.273 -1.270 0.204 

B.1.1.309 Restaurant Subsidy 0.299 0.188 1.588 0.112 

B.1.1.309 IMD 10th Decile -0.880 0.568 -1.549 0.121 

B.1.1.309 Total Population 0.075 0.012 6.323 <0.001 

B.1.1.315 Intercept -1.735 0.873 -1.987 0.047 

B.1.1.315 Temperature -0.096 0.056 -1.701 0.089 

B.1.1.315 Rainfall 0.156 0.075 2.091 0.037 

B.1.1.315 Lockdown 2 -0.377 0.162 -2.323 0.020 

B.1.1.315 Tier 2 0.205 0.129 1.587 0.113 

B.1.1.315 Tier 3 -1.719 0.412 -4.176 <0.001 

B.1.1.315 Restaurant Subsidy -0.404 0.154 -2.619 0.009 

B.1.1.315 IMD 10th Decile 0.611 0.305 2.003 0.045 

B.1.1.315 Total Population 0.055 0.008 6.743 <0.001 

B.1.1.37 Intercept -6.705 2.145 -3.126 0.002 

B.1.1.37 Temperature 0.167 0.134 1.247 0.212 

B.1.1.37 Rainfall -0.287 0.213 -1.343 0.179 

B.1.1.37 Lockdown 2 -0.107 0.341 -0.314 0.754 

B.1.1.37 Tier 2 -0.200 0.338 -0.592 0.554 

B.1.1.37 Restaurant Subsidy 0.130 0.404 0.322 0.748 

B.1.1.37 IMD 10th Decile 0.197 0.739 0.267 0.790 

B.1.1.37 Total Population 0.070 0.019 3.759 <0.001 

B.1.1.7 Intercept -11.428 3.550 -3.219 0.001 

B.1.1.7 Temperature 0.123 0.163 0.751 0.453 

B.1.1.7 Rainfall 1.537 0.670 2.295 0.022 

B.1.1.7 Lockdown 2 1.995 0.666 2.997 0.003 

B.1.1.7 Tier 2 0.208 0.926 0.224 0.822 

B.1.1.7 Tier 3 2.474 0.522 4.737 <0.001 

B.1.1.7 IMD 10th Decile 0.412 0.475 0.868 0.386 

B.1.1.7 Total Population 0.065 0.012 5.365 <0.001 

B.1.177 Intercept 0.497 0.460 1.079 0.281 

B.1.177 Temperature -0.189 0.029 -6.433 <0.001 

B.1.177 Rainfall -0.027 0.052 -0.518 0.605 
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B.1.177 Lockdown 2 0.031 0.077 0.410 0.682 

B.1.177 Tier 2 0.275 0.071 3.853 <0.001 

B.1.177 Tier 3 0.060 0.093 0.640 0.522 

B.1.177 Restaurant Subsidy 0.048 0.102 0.467 0.640 

B.1.177 IMD 10th Decile 0.356 0.212 1.677 0.094 

B.1.177 Total Population 0.054 0.006 9.299 <0.001 

B.1.177.10 Intercept -1.887 1.561 -1.209 0.227 

B.1.177.10 Temperature -0.352 0.103 -3.412 <0.001 

B.1.177.10 Rainfall -0.049 0.244 -0.200 0.842 

B.1.177.10 Lockdown 2 0.010 0.267 0.037 0.971 

B.1.177.10 Tier 2 0.237 0.247 0.959 0.337 

B.1.177.10 Tier 3 0.416 0.247 1.684 0.092 

B.1.177.10 IMD 10th Decile 1.089 0.638 1.707 0.088 

B.1.177.10 Total Population 0.071 0.017 4.067 <0.001 
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Table S8: Summary of the final version of the second-wave lineages GLMM with an AR1 term for 
week (grouped by postcode); effects of spatial (10th Decile of IMD, postcode district total population, and 
total cases of lineages B.1.1.1 and B.1.1.119 during the first wave (up to week 28)) and temporal variables 
(mean weekly temperature and rainfall, and government interventions and subsidy) on the total number 
of positive PCR tests of the six second wave lineages (B.1.1.309, B.1.1.315, B.1.1.37, B.1.1.7, B.1.177, and 
B.1.177.10) recorded each week of 2020 in each postcode district. All temporal variables include a two-
week time lag to account for the delay in symptom onset (and testing) after infection. Variables with a 
VIF > 3 were removed from this model (Temperature). Estimates are on the original model scale (log). 

Variable Estimate Std. Error z value p value 

Intercept -1.187 0.163 -7.299 <0.001 

First-wave cases 0.006 0.008 0.842 0.400 

Rainfall 0.122 0.025 4.831 <0.001 

Lockdown 2 0.188 0.037 5.051 <0.001 

Tier 2 0.310 0.048 6.511 <0.001 

Tier 3 0.386 0.049 7.953 <0.001 

Restaurant Subsidy -0.220 0.048 -4.606 <0.001 

IMD 10th Decile 0.245 0.232 1.053 0.292 

Total Population 0.059 0.006 10.200 <0.001 

 
 

 

Table S9: Summary of the full version of the second-wave lineages GLMM with an AR1 term for week 
(grouped by postcode); effects of spatial (10th Decile of IMD, postcode district total population, and total 

cases of lineages B.1.1.1 and B.1.1.119 during the first wave (up to week 28)) and temporal variables 
(mean weekly temperature and rainfall, week of year, and government interventions and subsidy) on the 
total number of positive PCR tests of the six second wave lineages (B.1.1.309, B.1.1.315, B.1.1.37, B.1.1.7, 
B.1.177, and B.1.177.10) recorded each week of 2020 in each postcode district. All temporal variables in-

clude a two-week time lag to account for the delay in symptom onset (and testing) after infection. The 
VIF of Temperature was > 3, which means all of the below standard errors, z values, and p values may be 

unreliable (though the estimates are accurate). Estimates are on the original model scale (log). 

Variable Estimate Std. Error z value p value 

Intercept -0.063 0.347 -0.183 0.855 

First-wave cases 0.006 0.008 0.839 0.402 

Temperature -0.075 0.021 -3.596 <0.001 

Rainfall 0.037 0.034 1.072 0.284 

Lockdown 2 0.023 0.058 0.403 0.687 

Tier 2 0.198 0.056 3.516 <0.001 

Tier 3 0.196 0.071 2.738 0.006 

Restaurant Subsidy -0.058 0.066 -0.888 0.375 

IMD 10th Decile 0.246 0.233 1.054 0.292 

Total Population 0.059 0.006 10.147 <0.001 
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2. Model Specifications 

2.1 Mixed Effects Models 

• Estimation method: maximum likelihood (the default). 

• Fixed effects: total population per postcode, proportion of the population in the 10th decile 
of the Index of Multiple Deprivation (IMD) per postcode, mean weekly temperature and 
rainfall, government restaurant subsidy, first national lockdown, second national lockdown, 
and tier 2 and tier 3 restrictions in Teesside. 

o Total population was rescaled by dividing by 1000, to measure population in 
thousands rather than single people.  

o The interventions and subsidy were coded numerically according to the procedure 
of Hunter et al., 2021 (https://www.eurosurveillance.org/content/10.2807/1560-
7917.ES.2021.26.28.2001401): 0 before they were imposed, 1 for the first week of 
imposition, increasing by 1 for each further week of duration, and reverting to 0 
after the end of the intervention. This was to allow the effect to incorporate 
duration as well as presence/absence.  

o Two-week time lags were applied to the temporal variables: temperature, rainfall, 
lockdown 1, lockdown 2, tier 2, tier 3, and the restaurant subsidy (the values of 
these variables were shifted forward in time by 2 weeks, e.g. the values at week 1 
were moved to week 3 etc.).  

AR1 term for week (grouped by postcode): 

• Family: Poisson (with log link function).  

• Random effects: autoregressive term of order 1, for week of year, grouped by postcode; and 
a separate random intercept for postcode. The AR1 term was fitted without an intercept, as 
recommended in glmmTMB package documentation (https://cran.r-
project.org/web/packages/glmmTMB/vignettes/covstruct.html#construction-of-structured-
covariance-matrices).  
e.g. + (1|Postcode) + ar1(Week + 0|Postcode) 

o The model for Lineage B.1.1.309 demonstrated poor fit in terms of residual 
autocorrelation, and so it was refit without the random intercept term for postcode 
(this term had a variance that was almost 0).  

• Additional fixed effects: the model examining cases of the second-wave lineages included 
the total number of cases of the two first-wave lineages (B.1.1.1, B.1.1.119), summed across 
weeks 11 to 27, per postcode as a fixed effect. 

Random gradient for week for each postcode: 

• Family: negative binomial (with log link function. 

• Additional fixed effects: this model included week of year as a fixed effect to attempt to 
control for the effect of time on cases. 

• Random effects: a random gradient for week of year, grouped by postcode; and a random 
intercept for postcode.  
e.g. + (Week + 1|Postcode)  

 

https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2021.26.28.2001401
https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2021.26.28.2001401
https://cran.r-project.org/web/packages/glmmTMB/vignettes/covstruct.html#construction-of-structured-covariance-matrices
https://cran.r-project.org/web/packages/glmmTMB/vignettes/covstruct.html#construction-of-structured-covariance-matrices
https://cran.r-project.org/web/packages/glmmTMB/vignettes/covstruct.html#construction-of-structured-covariance-matrices
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2.2 Disease Mapping Models 

• The adjacency matrix for the Teesside postcode districts was constructed using rook 
contiguity: shared borders between adjacent areas must be edges (multiple points) rather 
than single vertices (single points). This is appropriate in the context of disease transmission 
between UK postcodes districts, as a single point would represent a tiny area of linear 
contact that is not representative of a true geographical boundary. However, the 
arrangement and irregular shape of the postcode polygons in the shapefile means that it 
would make no difference whether or not we used queen or rook contiguity, as all polygons 
that connect do so by more than one point.  
e.g. poly2nb(shape_file, queen = FALSE) 

• Family: negative binomial. 

• Link function: log (the default). 

• Approximation strategy: Laplace. 
e.g. control.inla = list(strategy = "laplace") 

• Integration strategy: CCD (complete composite design). This was the default for our models 
as the number of hyperparameters was greater than 2 ("size for the nbinomial observations 
(1/overdispersion)", "Precision for PC_num", “Phi for PC_num").  
e.g. control.inla = list(int.strategy = "auto") 

• Priors 

o Negative binomial: we used the default values for this family, and the default variant 
of it (variant = 0). Hyperid: 63001, name: "size", initial: 2.3, fixed: FALSE, prior: 
"pc.mgamma", param: 7. 
 

o BYM2 Hyperparameters: we used the default values. prec = list(prior = "pc.prec", 
param = c(1, 0.01)), phi = list(prior = "pc", param = c(0.5, 0.5)). 

o The sensitivity analysis for the BYM2 phi and precision hyperparameters used the 
following values. 
Default: prec = list(prior = "pc.prec", param = c(1, 0.01)), phi = list(prior = "pc", 
param = c(0.5, 0.5)). 
Larger_phi: prec = list(prior = "pc.prec", param = c(1, 0.01)), phi = list(prior = "pc", 
param = c(0.5, 2 / 3)). 
Larger_prec: prec = list(prior = "pc.prec", param = c(0.5 / 0.31, 0.01)), phi = list(prior 
= "pc", param = c(0.5, 0.5)). 
Larger_phiprec: prec = list(prior = "pc.prec", param = c(0.5 / 0.31, 0.01)), phi = 
list(prior = "pc", param = c(0.5, 2 / 3)). 
 

o Full details of all hyperparameters of the all-cases model are given as a print-out 
from the R console below. 
List of 4 
 $ predictor:List of 1 
    $ hyper:List of 1 
       $ theta:List of 9 
          $ hyperid   : num 53001 
          $ name      : chr "log precision" 
          $ short.name: chr "prec" 
          $ initial   : num 13.8 
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          $ fixed     : logi TRUE 
          $ prior     : chr "loggamma" 
          $ param     : num [1:2] 1e+00 1e-05 
 $ family   :List of 1 
    $ :List of 4 
       $ hyperid: chr "INLA.Data1" 
       $ label  : chr "nbinomial" 
       $ hyper  :List of 1 
          $ theta:List of 9 
             $ hyperid   : num 63001 
             $ name      : chr "size" 
             $ short.name: chr "size" 
             $ initial   : num 2.3 
             $ fixed     : logi FALSE 
             $ prior     : chr "pc.mgamma" 
             $ param     : num 7 
       $ link   :List of 1 
          $ hyper: list() 
 $ fixed    :List of 1 
    $ :List of 3 
       $ label     : chr "(Intercept)" 
       $ prior.mean: num 0 
       $ prior.prec: num 0 
 $ random   :List of 1 
    $ :List of 3 
       $ hyperid    : chr "PC_num" 
       $ hyper      :List of 2 
          $ theta1:List of 9 
             $ hyperid   : num 11001 
             $ name      : chr "log precision" 
             $ short.name: chr "prec" 
             $ prior     : chr "pc.prec" 
             $ param     : num [1:2] 1 0.01 
             $ initial   : num 4 
             $ fixed     : logi FALSE 
          $ theta2:List of 9 
             $ hyperid   : num 11002 
             $ name      : chr "logit phi" 
             $ short.name: chr "phi" 
             $ prior     : chr "table: -12.6923076923077 -12.6898382145907 -
12.6873687368737 -12.6848992591567 -12.6824297814397 -12.6799603037"| 
__truncated__ 
             $ param     : num(0)  
             $ initial   : num -3 
             $ fixed     : logi FALSE 
       $ group.hyper:List of 1 
          $ theta:List of 9 
             $ hyperid   : num 40001 
             $ name      : chr "logit correlation" 
             $ short.name: chr "rho" 
             $ initial   : num 1 
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             $ fixed     : logi FALSE 
             $ prior     : chr "normal" 
             $ param     : num [1:2] 0 0.2 
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3. Model Validation 

3.1 Disease Mapping Models 

All-cases 

 

Figure S5: Figures used to assess model fit for the all-cases disease mapping model, fit with default 
priors and other settings. First row: density of the posterior marginals of the intercept (including prior), 

observed vs fitted values. Second row: posterior density (and priors) of the hyperparameters (size for the 
negative binomial observations, and precision and phi for the BYM2 random effect). Third row: 

probability integral transforms (PIT) values (modified/adjusted version appropriate for count data) per 
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postcode area, histogram of PIT values. Fourth row: conditional predictive ordinate (CPO) values per 
postcode area, histogram of CPO values.  

 

 

Figure S6: Figures used to assess model fit and sensitivity to hyperparameter values for the all-cases 
disease mapping model, fit with the “laplace” approximation method. These plots compare the values for 

4 models, each fit with different hyperparameter values (see section 2.2 above and model code in the 
analysis repository (https://doi.org/10.25405/data.ncl.23815077). First row: density of the posterior 

marginals of the intercept and phi and precision hyperparameters. Second row: Mean and 97.5% 
quantiles for the intercept, comparison of the observed values to a sample generated from the posterior 

distribution.  Third row: comparison of the observed values per postcode area to a sample generated 
from the posterior distribution (note that the numbers on the x axis do not correspond to the actual 

postcode numbers). 
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Lineage B.1.1.1 

 

Figure S7: Figures used to assess model fit for the Lin6_B.1.1.1 disease mapping model, fit with 
default priors and other settings. First row: density of the posterior marginals of the intercept (including 
prior), observed vs fitted values. Second row: posterior density (and priors) of the hyperparameters (size 
for the negative binomial observations, and precision and phi for the BYM2 random effect). Third row: 
probability integral transforms (PIT) values (modified/adjusted version appropriate for count data) per 
postcode area, histogram of PIT values. Fourth row: conditional predictive ordinate (CPO) values per 

postcode area, histogram of CPO values.  
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Figure S8: Figures used to assess model fit and sensitivity to hyperparameter values for the 
Lin6_B.1.1.1 disease mapping model, fit with the “laplace” approximation method. These plots compare 
the values for 4 models, each fit with different hyperparameter values (see section 2.2 above and model 
code in the analysis repository (https://doi.org/10.25405/data.ncl.23815077). First row: density of the 

posterior marginals of the intercept and phi and precision hyperparameters. Second row: Mean and 
97.5% quantiles for the intercept, comparison of the observed values to a sample generated from the 
posterior distribution.  Third row: comparison of the observed values per postcode area to a sample 

generated from the posterior distribution (note that the numbers on the x axis do not correspond to the 
actual postcode numbers). 
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Lineage B.1.1.119 

 

Figure S9: Figures used to assess model fit for the Lin10_B.1.1.119 disease mapping model, fit with 
default priors and other settings. First row: density of the posterior marginals of the intercept (including 
prior), observed vs fitted values. Second row: posterior density (and priors) of the hyperparameters (size 
for the negative binomial observations, and precision and phi for the BYM2 random effect). Third row: 
probability integral transforms (PIT) values (modified/adjusted version appropriate for count data) per 
postcode area, histogram of PIT values. Fourth row: conditional predictive ordinate (CPO) values per 

postcode area, histogram of CPO values.  
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Figure S10: Figures used to assess model fit and sensitivity to hyperparameter values for the 
Lin10_B.1.1.119 disease mapping model, fit with the “laplace” approximation method. These plots 

compare the values for 4 models, each fit with different hyperparameter values (see section 2.2 above 
and model code in the analysis repository (https://doi.org/10.25405/data.ncl.23815077). First row: 

density of the posterior marginals of the intercept and phi and precision hyperparameters. Second row: 
Mean and 97.5% quantiles for the intercept, comparison of the observed values to a sample generated 
from the posterior distribution.  Third row: comparison of the observed values per postcode area to a 

sample generated from the posterior distribution (note that the numbers on the x axis do not correspond 
to the actual postcode numbers). 
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Lineage B.1.1.309 

 

Figure S11: Figures used to assess model fit for the Lin35_B.1.1.309 disease mapping model, fit with 
default priors and other settings. First row: density of the posterior marginals of the intercept (including 
prior), observed vs fitted values. Second row: posterior density (and priors) of the hyperparameters (size 
for the negative binomial observations, and precision and phi for the BYM2 random effect). Third row: 
probability integral transforms (PIT) values (modified/adjusted version appropriate for count data) per 
postcode area, histogram of PIT values. Fourth row: conditional predictive ordinate (CPO) values per 

postcode area, histogram of CPO values.  
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Figure S12: Figures used to assess model fit and sensitivity to hyperparameter values for the 
Lin35_B.1.1.309 disease mapping model, fit with the “laplace” approximation method. These plots 

compare the values for 4 models, each fit with different hyperparameter values (see section 2.2 above 
and model code in the analysis repository (https://doi.org/10.25405/data.ncl.23815077). First row: 

density of the posterior marginals of the intercept and phi and precision hyperparameters. Second row: 
Mean and 97.5% quantiles for the intercept, comparison of the observed values to a sample generated 
from the posterior distribution.  Third row: comparison of the observed values per postcode area to a 

sample generated from the posterior distribution (note that the numbers on the x axis do not correspond 
to the actual postcode numbers). 
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Lineage B.1.1.315 

 

Figure S13: Figures used to assess model fit for the Lin37_B.1.1.315 disease mapping model, fit with 
default priors and other settings. First row: density of the posterior marginals of the intercept (including 
prior), observed vs fitted values. Second row: posterior density (and priors) of the hyperparameters (size 
for the negative binomial observations, and precision and phi for the BYM2 random effect). Third row: 
probability integral transforms (PIT) values (modified/adjusted version appropriate for count data) per 
postcode area, histogram of PIT values. Fourth row: conditional predictive ordinate (CPO) values per 

postcode area, histogram of CPO values.  
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Figure S14: Figures used to assess model fit and sensitivity to hyperparameter values for the 
Lin37_B.1.1.315 disease mapping model, fit with the “laplace” approximation method. These plots 

compare the values for 4 models, each fit with different hyperparameter values (see section 2.2 above 
and model code in the analysis repository (https://doi.org/10.25405/data.ncl.23815077). First row: 

density of the posterior marginals of the intercept and phi and precision hyperparameters. Second row: 
Mean and 97.5% quantiles for the intercept, comparison of the observed values to a sample generated 
from the posterior distribution.  Third row: comparison of the observed values per postcode area to a 

sample generated from the posterior distribution (note that the numbers on the x axis do not correspond 
to the actual postcode numbers). 
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Lineage B.1.1.37 

 

Figure S15: Figures used to assess model fit for the Lin39_B.1.1.37 disease mapping model, fit with 
default priors and other settings. First row: density of the posterior marginals of the intercept (including 
prior), observed vs fitted values. Second row: posterior density (and priors) of the hyperparameters (size 
for the negative binomial observations, and precision and phi for the BYM2 random effect). Third row: 
probability integral transforms (PIT) values (modified/adjusted version appropriate for count data) per 
postcode area, histogram of PIT values. Fourth row: conditional predictive ordinate (CPO) values per 

postcode area, histogram of CPO values.  
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Figure S16: Figures used to assess model fit and sensitivity to hyperparameter values for the 
Lin39_B.1.1.37 disease mapping model, fit with the “laplace” approximation method. These plots 

compare the values for 4 models, each fit with different hyperparameter values (see section 2.2 above 
and model code in the analysis repository (https://doi.org/10.25405/data.ncl.23815077). First row: 

density of the posterior marginals of the intercept and phi and precision hyperparameters. Second row: 
Mean and 97.5% quantiles for the intercept, comparison of the observed values to a sample generated 
from the posterior distribution.  Third row: comparison of the observed values per postcode area to a 

sample generated from the posterior distribution (note that the numbers on the x axis do not correspond 
to the actual postcode numbers). 
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Lineage B.1.1.7 

 

Figure S17: Figures used to assess model fit for the Lin45_B.1.1.7 disease mapping model, fit with 
default priors and other settings. First row: density of the posterior marginals of the intercept (including 
prior), observed vs fitted values. Second row: posterior density (and priors) of the hyperparameters (size 
for the negative binomial observations, and precision and phi for the BYM2 random effect). Third row: 
probability integral transforms (PIT) values (modified/adjusted version appropriate for count data) per 
postcode area, histogram of PIT values. Fourth row: conditional predictive ordinate (CPO) values per 

postcode area, histogram of CPO values.  
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Figure S18: Figures used to assess model fit and sensitivity to hyperparameter values for the 
Lin45_B.1.1.7 disease mapping model, fit with the “laplace” approximation method. These plots compare 
the values for 4 models, each fit with different hyperparameter values (see section 2.2 above and model 
code in the analysis repository (https://doi.org/10.25405/data.ncl.23815077). First row: density of the 

posterior marginals of the intercept and phi and precision hyperparameters. Second row: Mean and 
97.5% quantiles for the intercept, comparison of the observed values to a sample generated from the 
posterior distribution.  Third row: comparison of the observed values per postcode area to a sample 

generated from the posterior distribution (note that the numbers on the x axis do not correspond to the 
actual postcode numbers). 
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Lineage B.1.177 

 

Figure S19: Figures used to assess model fit for the Lin51_B.1.177 disease mapping model, fit with 
default priors and other settings. First row: density of the posterior marginals of the intercept (including 
prior), observed vs fitted values. Second row: posterior density (and priors) of the hyperparameters (size 
for the negative binomial observations, and precision and phi for the BYM2 random effect). Third row: 
probability integral transforms (PIT) values (modified/adjusted version appropriate for count data) per 
postcode area, histogram of PIT values. Fourth row: conditional predictive ordinate (CPO) values per 

postcode area, histogram of CPO values.  
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Figure S20: Figures used to assess model fit and sensitivity to hyperparameter values for the 
Lin51_B.1.177 disease mapping model, fit with the “laplace” approximation method. These plots 

compare the values for 4 models, each fit with different hyperparameter values (see section 2.2 above 
and model code in the analysis repository (https://doi.org/10.25405/data.ncl.23815077). First row: 

density of the posterior marginals of the intercept and phi and precision hyperparameters. Second row: 
Mean and 97.5% quantiles for the intercept, comparison of the observed values to a sample generated 
from the posterior distribution.  Third row: comparison of the observed values per postcode area to a 

sample generated from the posterior distribution (note that the numbers on the x axis do not correspond 
to the actual postcode numbers). 
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Lineage B.1.177.10 

 

Figure S21: Figures used to assess model fit for the Lin52_B.1.177.10 disease mapping model, fit with 
default priors and other settings. First row: density of the posterior marginals of the intercept (including 
prior), observed vs fitted values. Second row: posterior density (and priors) of the hyperparameters (size 
for the negative binomial observations, and precision and phi for the BYM2 random effect). Third row: 
probability integral transforms (PIT) values (modified/adjusted version appropriate for count data) per 
postcode area, histogram of PIT values. Fourth row: conditional predictive ordinate (CPO) values per 

postcode area, histogram of CPO values.  
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Figure S22: Figures used to assess model fit and sensitivity to hyperparameter values for the 
Lin52_B.1.177.10 disease mapping model, fit with the “laplace” approximation method. These plots 

compare the values for 4 models, each fit with different hyperparameter values (see section 2.2 above 
and model code in the analysis repository (https://doi.org/10.25405/data.ncl.23815077). First row: 

density of the posterior marginals of the intercept and phi and precision hyperparameters. Second row: 
Mean and 97.5% quantiles for the intercept, comparison of the observed values to a sample generated 
from the posterior distribution.  Third row: comparison of the observed values per postcode area to a 

sample generated from the posterior distribution (note that the numbers on the x axis do not correspond 
to the actual postcode numbers). 
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3.2 Mixed Effects Models 

The GLMM models were validated using tests in the DHARMa R package and by comparing the 
observed values to those fitted by the models. The figures below contain plots created from the 
DHARMa test functions run on a simulated residuals object (https://cran.r-
project.org/web/packages/DHARMa/vignettes/DHARMa.html): QQ plot, including Kolmogorov-
Smirnov p-value; residuals against predicted values, including assessment for deviation from the 
expected mean or quantiles; histogram of the residuals, including assessment for outliers; dispersion 
test comparing the observed data (red line) with a histogram of residuals; residuals vs time; and the 
ACF (autocorrelation function), including a Durbin-Watson p-value. The validation figures also 
contain a VIF (variance inflation factor) plot for each variable in the model, created using the 
“performance” R package 
(https://easystats.github.io/performance/reference/check_collinearity.html).  

All data sets were modelled using a range of different specifications: a basic model with only a 
random intercept for postcode; a restricted cubic spline for time (using both 3 and 4 knots) 
(implemented via the “splines” R package); a smooth spline for time (implemented via the “mgcv” R 
package); an AR1 term for time (without any grouping); and an AR1 term for time grouped by 
Postcode. Each of these was compared using the validation plots. For each dataset, the AR1 model 
that was grouped by postcode proved to be the best fit. The most appropriate distribution family 
was also assessed for the AR1 models in the same way, with Poisson being the best fit in all cases.  

Because collinearity was present in most of our datasets, we used variance inflation factors (VIF) to 
identify variables to be dropped from the full models (where VIF > 3). In addition to VIF, we also 
examined variable clustering and redundancy via the ”varclus” and “redun” functions of the Hmisc R 
package (https://www.rdocumentation.org/packages/Hmisc/versions/5.1-2). The output of the 
redundancy analyses for each of the datasets is in table S10. The redundant variables identified in 
these analyses matched those with the highest VIF values. Hierarchical cluster analysis plots for each 
dataset are included below, using both squared Pearson (S23) and Spearman (S24) correlations. 

The validation figures for the final (best) models for each dataset are included below (S25, S28: S37). 
In addition, the all-cases models that include splines for time (a restricted cubic spline (using 4 knots) 
and a smooth spline) have also been included as an example of the poorer fit that these approaches 
provide (S26, S27). All of the model validation figures for all of the different models and datasets can 
be found in the analysis repository (https://doi.org/10.25405/data.ncl.23815077). 

Table S10: Redundancy analysis of the variables included in the full versions of the all-cases, separate 
lineage, and second-wave lineage cases GLMMs. All temporal variables include a two-week time lag. Val-
ues are the R2 with which each variable can be predicted from all other variables. Variables with an aster-

isk were identified as being redundant.  

Variable 
All-
cases 

B.1.1.1 B.1.1.119 B.1.1.309 B.1.1.315 B.1.1.37 B.1.1.7 B.1.177 B.1.177.10 
Second-wave 
lineage cases 

Temperature 0.319 0.408 0.103 0.748 0.794* 0.682 0.738 0.794* 0.585 0.794* 

Rainfall 0.338 0.355 0.358 0.677 0.686 0.761 0.903 0.686 0.515 0.686 

Lockdown 1 0.123 0.133 0.054 NA NA NA NA NA NA NA 

Lockdown 2 0.168 0.252 NA 0.592 0.672 0.666 0.941* 0.672 0.706 0.672 

Tier 2 0.06 0.102 NA 0.455 0.363 0.311 0.778 0.363 0.382 0.363 

Tier 3 0.136 0.219 NA NA 0.566 NA 0.807 0.566 0.587 0.566 

Eat-out Subsidy 0.369 0.38 0.408 0.698 0.689 0.765* NA 0.689 NA 0.689 

IMD 10th Decile 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.212 

Total Population 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.174 

First-wave cases NA NA NA NA NA NA NA NA NA 0.335 

https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html
https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html
https://easystats.github.io/performance/reference/check_collinearity.html
https://www.rdocumentation.org/packages/Hmisc/versions/5.1-2
https://doi.org/10.25405/data.ncl.23815077
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Figure S23: Hierarchical cluster analysis plots of the variables included in the full versions of the 
GLMMs for each dataset, using squared Pearson correlation. Created with the “varclus” function of the 
Hmisc R package. Absent variables are where they did not overlap temporally with cases of the given 

lineage. 
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Figure S24: Hierarchical cluster analysis plots of the variables included in the full versions of the 
GLMMs for each dataset, using squared Spearman correlation. Created with the “varclus” function of the 

Hmisc R package. Absent variables are where they did not overlap temporally with cases of the given 
lineage. 
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All-cases - AR1 term for week (grouped by postcode) 

 

Figure S25: Figures used to assess model fit for the all-cases GLMM with an AR1 term for week 
grouped by postcode. First row: QQ plot, residuals vs predicted. Second row: outlier check, dispersion 

check. Third row: residuals vs time, ACF. Bottom row: VIF, observed values vs fitted values from the 
model. 
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All-cases - Restricted cubic spline for time (4 knots) 

 

Figure S26: Figures used to assess model fit for the all-cases GLMM with a restricted cubic spline for 
week with 4 knots. First row: QQ plot, residuals vs predicted. Second row: outlier check, dispersion check. 

Third row: residuals vs time, ACF. Bottom row: VIF, observed values vs fitted values from the model. 
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All-cases - Smooth spline for time 

 

Figure S27: Figures used to assess model fit for the all-cases GLMM with a smooth spline for week. 
First row: QQ plot, residuals vs predicted. Second row: outlier check, dispersion check. Third row: 

residuals vs time, ACF. Bottom row: VIF, observed values vs fitted values from the model. 
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Lineage B.1.1.1 - AR1 term for week (grouped by postcode) 

 

Figure S28: Figures used to assess model fit for the lineage B.1.1.1 GLMM with an AR1 term for week 
grouped by postcode. First row: QQ plot, residuals vs predicted. Second row: outlier check, dispersion 

check. Third row: residuals vs time, ACF. Bottom row: VIF, observed values vs fitted values from the 
model. 



45 
 

Lineage B.1.1.119 - AR1 term for week (grouped by postcode) 

 

Figure S29: Figures used to assess model fit for the lineage B.1.1.119 GLMM with an AR1 term for 
week grouped by postcode. First row: QQ plot, residuals vs predicted. Second row: outlier check, 

dispersion check. Third row: residuals vs time, ACF. Bottom row: VIF, observed values vs fitted values 
from the model. 
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Lineage B.1.1.309 - AR1 term for week (grouped by postcode) 

 

Figure S30: Figures used to assess model fit for the lineage B.1.1.309 GLMM with an AR1 term for 
week grouped by postcode. Eat-out subsidy was dropped from this final model due to collinearity. The 
random intercept for postcode was dropped due to poorer model fit. First row: QQ plot, residuals vs 

predicted. Second row: outlier check, dispersion check. Third row: residuals vs time, ACF. Bottom row: 
VIF, observed values vs fitted values from the model. 



47 
 

Lineage B.1.1.315 - AR1 term for week (grouped by postcode) 

 

Figure S31: Figures used to assess model fit for the lineage B.1.1.315 GLMM with an AR1 term for 
week grouped by postcode. Temperature was dropped from this final model due to collinearity. First row: 
QQ plot, residuals vs predicted. Second row: outlier check, dispersion check. Third row: residuals vs time, 

ACF. Bottom row: VIF, observed values vs fitted values from the model. 
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Lineage B.1.1.37 - AR1 term for week (grouped by postcode) 

 

Figure S32: Figures used to assess model fit for the lineage B.1.1.37 GLMM with an AR1 term for week 
grouped by postcode. The eat-out subsidy was dropped from this final model due to collinearity. First 

row: QQ plot, residuals vs predicted. Second row: outlier check, dispersion check. Third row: residuals vs 
time, ACF. Bottom row: VIF, observed values vs fitted values from the model. 
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Lineage B.1.1.7 - AR1 term for week (grouped by postcode) 

 

Figure S33: Figures used to assess model fit for the lineage B.1.1.7 GLMM with an AR1 term for week 
grouped by postcode. Lockdown 2 was dropped from this final model due to collinearity. First row: QQ 
plot, residuals vs predicted. Second row: outlier check, dispersion check. Third row: residuals vs time, 

ACF. Bottom row: VIF, observed values vs fitted values from the model. 
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Lineage B.1.177 - AR1 term for week (grouped by postcode) 

 

Figure S34: Figures used to assess model fit for the lineage B.1.177 GLMM with an AR1 term for week 
grouped by postcode. Temperature was dropped from this final model due to collinearity. First row: QQ 

plot, residuals vs predicted. Second row: outlier check, dispersion check. Third row: residuals vs time, 
ACF. Bottom row: VIF, observed values vs fitted values from the model. 
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Lineage B.1.177.10 - AR1 term for week (grouped by postcode) 

 

Figure S35: Figures used to assess model fit for the lineage B.1.177.10 GLMM with an AR1 term for 
week grouped by postcode. Lockdown 2 was dropped from this final model due to collinearity. First row: 
QQ plot, residuals vs predicted. Second row: outlier check, dispersion check. Third row: residuals vs time, 

ACF. Bottom row: VIF, observed values vs fitted values from the model. 
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Second-wave lineage cases - AR1 term for week (grouped by postcode) 

 

Figure S36: Figures used to assess model fit second-wave lineage cases GLMM with an AR1 term for 
week grouped by postcode. Temperature was dropped from this final model due to collinearity. First row: 
QQ plot, residuals vs predicted. Second row: outlier check, dispersion check. Third row: residuals vs time, 

ACF. Bottom row: VIF, observed values vs fitted values from the model. 
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All-cases - Random gradient for week for each postcode 

 

Figure S37: Figures used to assess model fit all-cases GLMM with a random gradient for week for each 
postcode. First row: QQ plot, residuals vs predicted. Second row: outlier check, dispersion check. Third 

row: residuals vs time, ACF. Bottom row: VIF, observed values vs fitted values from the model. 
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