Supplementary material

Spatial and temporal epidemiology of SARS-CoV-2 virus lineages in Teesside, UK, in 2020: effects of socio-economic deprivation, weather, and lockdown on lineage dynamics

Moss, E.D.¹, Rushton, S.P.², Baker, P.³, Bashton, M.⁴, Crown, M.R.⁴, dos Santos, R.N.⁵, Nelson, A.⁵, O'Brien, S.J.², Richards, Z.⁵, Sanderson, R.A.^{2*}, Yew, W.C.⁵, Young, G.R.⁴, McCann, C.M.⁴ and Smith, D.L.^{4**}

¹ Population Health Sciences Institute, Newcastle University – Newcastle upon Tyne, UK

² School of Natural and Environmental Sciences, Newcastle University – Newcastle upon Tyne, UK

³ South Tees Hospitals NHS Foundation Trust – Newcastle upon Tyne, UK

⁴ Hub for Biotechnology in the Built Environment, Northumbria University – Newcastle upon Tyne, UK

⁵ Department of Applied Sciences, Northumbria University – Newcastle upon Tyne, UK

*Corresponding author

Correspondence: roy.sanderson@newcastle.ac.uk

**On behalf of the COVID-19 Genomics UK (COG-UK) consortium

Contents

1.	Supplementary Results Figures and Tables	3
1	.1 Data and Trends	3
1	.2 Disease Mapping	4
1	.3 Mixed-effect Modelling	7
2.	Model Specifications	16
2	.1 Mixed Effects Models	16
	AR1 term for week (grouped by postcode):	16
	Random gradient for week for each postcode:	16
2	2.2 Disease Mapping Models	17
3.	Model Validation	20
3	.1 Disease Mapping Models	20
	All-cases	20
	Lineage B.1.1.1.	22
	Lineage B.1.1.119	24
	Lineage B.1.1.309	26
	Lineage B.1.1.315	28
		1

	Lineage B.1.1.37	30
	Lineage B.1.1.7	32
	Lineage B.1.177	34
	Lineage B.1.177.10	36
3	.2 Mixed Effects Models	38
	All-cases - AR1 term for week (grouped by postcode)	41
	All-cases - Restricted cubic spline for time (4 knots)	42
	All-cases - Smooth spline for time	43
	Lineage B.1.1.1 - AR1 term for week (grouped by postcode)	44
	Lineage B.1.1.119 - AR1 term for week (grouped by postcode)	45
	Lineage B.1.1.309 - AR1 term for week (grouped by postcode)	46
	Lineage B.1.1.315 - AR1 term for week (grouped by postcode)	47
	Lineage B.1.1.37 - AR1 term for week (grouped by postcode)	48
	Lineage B.1.1.7 - AR1 term for week (grouped by postcode)	49
	Lineage B.1.177 - AR1 term for week (grouped by postcode)	50
	Lineage B.1.177.10 - AR1 term for week (grouped by postcode)	51
	Second-wave lineage cases - AR1 term for week (grouped by postcode)	52
	All-cases - Random gradient for week for each postcode	53
4.	Full List of COG Consortium Members	54

1. Supplementary Results Figures and Tables

1.1 Data and Trends

The first recorded cases of COVID-19 in the UK were in January 2020. After cases rose rapidly in March, a complete social and economic lockdown was introduced in England on 23/03/2020 (UK Government, 2020a), which led to a swift reduction in cases (Covid-19 control measures differed in Scotland, Wales, and Northern Ireland and were decided by their own devolved parliaments). A second major outbreak in autumn 2020 led to the introduction of further interventions in England: a heterogenous "tier" system applied at local scales (UK Government, 2020c), and a short national lockdown in November 2020 (UK Government, 2020d). When these failed to reduce hospital admissions and deaths, a further national lockdown was introduced in January 2021 (UK Government, 2021).

Postcode district	Population	Proportion 10th Decile
TS1	16994	0.997
TS2	780	1
TS3	29253	0.949
TS4	16966	0.789
TS5	39387	0.133
TS6	30239	0.410
TS7	22058	0.141
TS8	21266	0.204
TS9	12832	0
TS10	36800	0.303
TS11	11822	0
TS12	22491	0.070
TS13	9975	0.160
TS14	17548	0.077
TS15	12891	0
TS16	10422	0
TS17	44889	0.163
TS18	24163	0.422
TS19	37087	0.380
TS20	20663	0.229
TS21	12472	0.004
TS22	8662	0
TS23	30241	0.120
TS24	22019	0.630
TS25	38616	0.392
TS26	25253	0.204
TS27	12193	0.207
TS28	5318	0.001
TS29	6300	0.002

Table S1: Total resident population and proportion of the population within the 10th decile of theIndex of Multiple Deprivation (when assessed at the scale of England as a whole), for each Teessidepostcode district.

1.2 Disease Mapping

Figure S1: Map of the exceedance probabilities for relative risk threshold of 1.5. Relative risk is very likely to exceed 1.5 when probabilities are close to 1, and very unlikely when values are close to 0 (values around 0.5 have the highest uncertainty). Maps for 3 of the lineages are not shown due to poor model fit (B.1.1.309, B.1.1.315, and B.1.1.37).

Figure S2: Map of the exceedance probabilities for relative risk threshold of 2. Relative risk is very likely to exceed 2 when probabilities are close to 1, and very unlikely when values are close to 0 (values around 0.5 have the highest uncertainty). Maps for 3 of the lineages are not shown due to poor model fit (B.1.1.309, B.1.1.315, and B.1.1.37).

Table S2: Mean, standard deviation (SD), and upper and lower limits of the 95% credible intervals(0.025 quant and 0.975 quant) of the posterior distributions of the fixed and random effects from theINLA disease mapping models. Output for 3 of the lineages are not shown due to poor model fit(B.1.1.309, B.1.1.315, and B.1.1.37).

Lineage	Effect	Effect type	Mean	SD	0.025 quant	0.975 quant
Total cases	Intercept	Fixed	-0.073	0.044	-0.159	0.015
Total cases	Size for the nbinomial observations	Random	1911.5	12911.2	32.051	12753.9
Total cases	Precision for postcode	Random	14.178	5.445	6.056	27.187
Total cases	Phi for postcode	Random	0.751	0.225	0.200	0.994
B.1.1.1	Intercept	Fixed	-0.287	0.183	-0.673	0.049
B.1.1.1	Size for the nbinomial observations	Random	903.7	9172.4	5.229	5869.4
B.1.1.1	Precision for postcode	Random	2.984	1.694	0.962	7.381
B.1.1.1	Phi for postcode	Random	0.631	0.242	0.138	0.974
B.1.1.119	Intercept	Fixed	-0.581	0.186	-0.967	-0.231
B.1.1.119	Size for the nbinomial observations	Random	881.5	8916.5	6.237	5736.4
B.1.1.119	Precision for postcode	Random	1.313	0.477	0.617	2.468
B.1.1.119	Phi for postcode	Random	0.620	0.232	0.155	0.965
B.1.1.7	Intercept	Fixed	-0.201	0.137	-0.487	0.052
B.1.1.7	Size for the nbinomial observations	Random	1723.1	23154.0	9.132	10512.1
B.1.1.7	Precision for postcode	Random	4.512	2.505	1.406	10.944
B.1.1.7	Phi for postcode	Random	0.498	0.254	0.069	0.936
B.1.177	Intercept	Fixed	-0.032	0.061	-0.154	0.087
B.1.177	Size for the nbinomial observations	Random	315.9	895.2	18.129	1890.2
B.1.177	Precision for postcode	Random	18.059	9.356	5.221	41.174
B.1.177	Phi for postcode	Random	0.304	0.230	0.016	0.821
B.1.177.10	Intercept	Fixed	-0.432	0.197	-0.849	-0.076
B.1.177.10	Size for the nbinomial observations	Random	589.8	4605.9	3.602	3957.5
B.1.177.10	Precision for postcode	Random	2.660	1.382	0.916	6.194
B.1.177.10	Phi for postcode	Random	0.635	0.231	0.159	0.968

1.3 Mixed-effect Modelling

Figure S3: Predicted and observed total number of positive cases of COVID-19 (across all lineages) in Teesside during 2020. The predicted estimates (blue) are fitted values from the GLMM for all cases with an AR1 (autoregressive order 1) term for week for each postcode.

Table S3: Summary of the all-cases GLMM with an AR1 term for week for each postcode; effects of spatial (10th Decile of IMD, postcode district total population) and temporal variables (mean weekly temperature and rainfall, and government interventions and subsidy) on the total number of positive PCR tests recorded each week of 2020 in each postcode district. All temporal variables include a two-week time lag to account for the delay in symptom onset (and testing) after infection. VIF values for all variables were < 3. Estimates are on the original model scale (log).

Variable	Estimate	Std. Error	z value	p value
Intercept	-1.479	0.236	-6.276	<0.001
Temperature	-0.039	0.014	-2.907	0.004
Rainfall	0.047	0.026	1.789	0.074
Lockdown 1	-0.063	0.018	-3.486	<0.001
Lockdown 2	0.314	0.049	6.411	<0.001
Tier 2	0.551	0.061	9.079	<0.001
Tier 3	0.683	0.064	10.589	<0.001
Restaurant Subsidy	0.082	0.061	1.340	0.180
IMD 10th Decile	0.502	0.211	2.380	0.017
Total Population	0.061	0.006	10.426	<0.001

Table S4: Summary of the all-cases GLMM with a random gradient for week of year for each
postcode; effects of spatial (10th Decile of IMD, postcode district total population) and temporal
variables (mean weekly temperature and rainfall, and government interventions and subsidy) on the total
number of positive PCR tests recorded each week of 2020 in each postcode district. All temporal variables
include a two-week time lag to account for the delay in symptom onset (and testing) after infection. VIF
values for all variables were < 3. Estimates are on the original model scale (log).</th>

Variable	Estimate	Std. Error	z value	p value
Intercept	-1.312	0.279	-4.701	<0.001
Temperature	-0.121	0.014	-8.421	<0.001
Rainfall	-0.089	0.028	-3.230	0.001
Lockdown 1	-0.016	0.016	-0.964	0.335
Lockdown 2	-0.243	0.061	-3.990	<0.001
Week	0.064	0.007	8.917	<0.001
Tier 2	0.040	0.066	0.605	0.545
Tier 3	-0.173	0.080	-2.172	0.030
Restaurant Subsidy	0.258	0.059	4.380	<0.001
IMD 10th Decile	0.348	0.226	1.536	0.124
Total Population	0.062	0.006	10.321	<0.001

Postcode District	Estimate	Std. Error	95% CI
TS1	-0.037	0.012	[-0.06, -0.014]
TS10	-0.018	0.011	[-0.04, 0.004]
TS11	-0.023	0.014	[-0.05, 0.005]
TS12	-0.008	0.013	[-0.034, 0.018]
TS13	0.003	0.017	[-0.031, 0.037]
TS14	-0.026	0.013	[-0.051, -0.001]
TS15	-0.003	0.016	[-0.034, 0.027]
TS16	0.010	0.017	[-0.024, 0.043]
TS17	0.013	0.012	[-0.01, 0.037]
TS18	0.017	0.014	[-0.009, 0.044]
TS19	0.027	0.013	[0.002, 0.052]
TS2	-0.010	0.019	[-0.046, 0.027]
TS20	0.014	0.014	[-0.013, 0.042]
TS21	0.006	0.016	[-0.025, 0.038]
TS22	-0.014	0.015	[-0.043, 0.014]
TS23	0.019	0.014	[-0.008, 0.046]
TS24	0.035	0.016	[0.004, 0.065]
TS25	0.026	0.013	[0.001, 0.052]
TS26	0.023	0.014	[-0.004, 0.051]
TS27	0.019	0.017	[-0.014, 0.052]
TS28	0.026	0.020	[-0.014, 0.065]
TS29	0.031	0.019	[-0.007, 0.069]
TS3	-0.031	0.011	[-0.052, -0.009]
TS4	-0.018	0.011	[-0.04, 0.005]
TS5	-0.014	0.011	[-0.036, 0.008]
TS6	-0.019	0.011	[-0.041, 0.003]
TS7	-0.017	0.012	[-0.04, 0.007]
TS8	-0.042	0.011	[-0.064, -0.019]
TS9	-0.015	0.014	[-0.042, 0.013]

Table S5: Random effect estimates for the all-cases GLMM with a random gradient for week of yearfor each postcode. Estimates are on the original model scale (log).

Figure S4: Rate of change in predicted positive tests of COVID-19 (across all lineages) in Teesside during 2020, from the GLMM with a random gradient for week for each postcode district. Predicted values represent the increase in cases over time relative to the mean, when all fixed effects are held constant, and only the random effects (week and postcode) are allowed to vary. Predicted values were calculated via the "ggeffects" R package.

Table S6: Summary of the final versions of the separate lineage GLMMs with an AR1 term for week for each postcode; effects of spatial (10th Decile of IMD, postcode district total population) and temporal variables (mean weekly temperature and rainfall, week of year, and government interventions and subsidy) on the total number of positive PCR tests recorded each week of 2020 in each postcode district, for each of the 8 most common lineages of SARS-CoV-2. All temporal variables include a two-week time lag to account for the delay in symptom onset (and testing) after infection. Variables with a VIF > 3 were removed from the models where present (B.1.1.309, B.1.1.315, B.1.1.37, B.1.1.7, B.1.177, B.1.177.10). Estimates are on the original model scale (log) (Continued on next page).

Lineage	Variable	Estimate	Std. Error	z value	p value
B.1.1.1	Intercept	-3.629	1.301	-2.789	0.005
B.1.1.1	Temperature	-0.234	0.066	-3.546	<0.001
B.1.1.1	Rainfall	-0.184	0.140	-1.319	0.187
B.1.1.1	Lockdown 1	0.131	0.057	2.286	0.022
B.1.1.1	Lockdown 2	-1.097	0.622	-1.763	0.078
B.1.1.1	Tier 2	-0.260	0.365	-0.711	0.477
B.1.1.1	Tier 3	-1.371	0.852	-1.609	0.108
B.1.1.1	Restaurant Subsidy	0.550	0.321	1.713	0.087
B.1.1.1	IMD 10th Decile	1.238	0.583	2.122	0.034
B.1.1.1	Total Population	0.042	0.017	2.548	0.011
B.1.1.119	Intercept	-2.088	0.621	-3.360	<0.001
B.1.1.119	Temperature	-0.295	0.042	-7.046	<0.001
B.1.1.119	Rainfall	-0.134	0.082	-1.633	0.103
B.1.1.119	Lockdown 1	0.131	0.037	3.509	<0.001
B.1.1.119	Restaurant Subsidy	-0.337	0.356	-0.947	0.343
B.1.1.119	IMD 10th Decile	1.546	0.619	2.499	0.012
B.1.1.119	Total Population	0.060	0.018	3.313	<0.001
B.1.1.309	Intercept	-5.477	1.083	-5.058	<0.001
B.1.1.309	Temperature	0.103	0.062	1.671	0.095
B.1.1.309	Rainfall	0.140	0.055	2.540	0.011
B.1.1.309	Lockdown 2	-1.605	0.913	-1.757	0.079
B.1.1.309	Tier 2	-0.170	0.252	-0.677	0.498
B.1.1.309	IMD 10th Decile	-0.852	0.565	-1.508	0.131
B.1.1.309	Total Population	0.074	0.012	6.301	<0.001
B.1.1.315	Intercept	-3.155	0.324	-9.743	<0.001
B.1.1.315	Rainfall	0.243	0.056	4.329	<0.001
B.1.1.315	Lockdown 2	-0.165	0.104	-1.578	0.115
B.1.1.315	Tier 2	0.357	0.096	3.725	<0.001
B.1.1.315	Tier 3	-1.307	0.309	-4.227	<0.001
B.1.1.315	Restaurant Subsidy	-0.580	0.116	-5.020	<0.001
B.1.1.315	IMD 10th Decile	0.605	0.305	1.984	0.047
B.1.1.315	Total Population	0.055	0.008	6.753	<0.001
B.1.1.37	Intercept	-7.207	1.536	-4.693	<0.001
B.1.1.37	Temperature	0.200	0.089	2.235	0.025
B.1.1.37	Rainfall	-0.228	0.109	-2.089	0.037
B.1.1.37	Lockdown 2	-0.039	0.272	-0.144	0.885
B.1.1.37	Tier 2	-0.162	0.319	-0.507	0.612

B.1.1.37	IMD 10th Decile	0.199	0.740	0.269	0.788
B.1.1.37	Total Population	0.070	0.019	3.748	<0.001
B.1.1.7	Intercept	-0.938	0.892	-1.051	0.293
B.1.1.7	Temperature	-0.315	0.102	-3.106	0.002
B.1.1.7	Rainfall	-0.485	0.157	-3.083	0.002
B.1.1.7	Tier 2	-1.187	0.778	-1.525	0.127
B.1.1.7	Tier 3	1.035	0.113	9.136	<0.001
B.1.1.7	IMD 10th Decile	0.476	0.457	1.041	0.298
B.1.1.7	Total Population	0.066	0.012	5.626	<0.001
B.1.177	Intercept	-2.306	0.201	-11.478	<0.001
B.1.177	Rainfall	0.198	0.039	5.030	<0.001
B.1.177	Lockdown 2	0.430	0.052	8.263	<0.001
B.1.177	Tier 2	0.525	0.066	7.947	<0.001
B.1.177	Tier 3	0.510	0.067	7.631	<0.001
B.1.177	Restaurant Subsidy	-0.399	0.077	-5.164	<0.001
B.1.177	IMD 10th Decile	0.361	0.203	1.778	0.075
B.1.177	Total Population	0.054	0.006	9.628	<0.001
B.1.177.10	Intercept	-1.842	0.975	-1.890	0.059
B.1.177.10	Temperature	-0.354	0.088	-4.021	<0.001
B.1.177.10	Rainfall	-0.056	0.133	-0.423	0.672
B.1.177.10	Tier 2	0.231	0.189	1.223	0.221
B.1.177.10	Tier 3	0.409	0.158	2.591	0.010
B.1.177.10	IMD 10th Decile	1.089	0.638	1.707	0.088
B.1.177.10	Total Population	0.071	0.017	4.068	<0.001

Table S7: Summary of the full versions of the separate lineage GLMMs with an AR1 term for week for each postcode; effects of spatial (10th Decile of IMD, postcode district total population) and temporal variables (mean weekly temperature and rainfall, week of year, and government interventions and subsidy) on the total number of positive PCR tests recorded each week of 2020 in each postcode district, for each of the 8 most common lineages of SARS-CoV-2. All temporal variables include a two-week time lag to account for the delay in symptom onset (and testing) after infection. The VIF of at least one variable in each model was > 3, which means all of the below standard errors, z values, and p values may be unreliable (though the estimates are accurate). Estimates are on the original model scale (log) (Continued on next page).

Lineage	Variable	Estimate	Std. Error	z value	p value
B.1.1.309	Intercept	-3.815	1.459	-2.614	0.009
B.1.1.309	Temperature	-0.006	0.092	-0.065	0.949
B.1.1.309	Rainfall	-0.002	0.103	-0.022	0.983
B.1.1.309	Lockdown 2	-2.012	1.010	-1.991	0.047
B.1.1.309	Tier 2	-0.347	0.273	-1.270	0.204
B.1.1.309	Restaurant Subsidy	0.299	0.188	1.588	0.112
B.1.1.309	IMD 10th Decile	-0.880	0.568	-1.549	0.121
B.1.1.309	Total Population	0.075	0.012	6.323	<0.001
B.1.1.315	Intercept	-1.735	0.873	-1.987	0.047
B.1.1.315	Temperature	-0.096	0.056	-1.701	0.089
B.1.1.315	Rainfall	0.156	0.075	2.091	0.037
B.1.1.315	Lockdown 2	-0.377	0.162	-2.323	0.020
B.1.1.315	Tier 2	0.205	0.129	1.587	0.113
B.1.1.315	Tier 3	-1.719	0.412	-4.176	<0.001
B.1.1.315	Restaurant Subsidy	-0.404	0.154	-2.619	0.009
B.1.1.315	IMD 10th Decile	0.611	0.305	2.003	0.045
B.1.1.315	Total Population	0.055	0.008	6.743	<0.001
B.1.1.37	Intercept	-6.705	2.145	-3.126	0.002
B.1.1.37	Temperature	0.167	0.134	1.247	0.212
B.1.1.37	Rainfall	-0.287	0.213	-1.343	0.179
B.1.1.37	Lockdown 2	-0.107	0.341	-0.314	0.754
B.1.1.37	Tier 2	-0.200	0.338	-0.592	0.554
B.1.1.37	Restaurant Subsidy	0.130	0.404	0.322	0.748
B.1.1.37	IMD 10th Decile	0.197	0.739	0.267	0.790
B.1.1.37	Total Population	0.070	0.019	3.759	<0.001
B.1.1.7	Intercept	-11.428	3.550	-3.219	0.001
B.1.1.7	Temperature	0.123	0.163	0.751	0.453
B.1.1.7	Rainfall	1.537	0.670	2.295	0.022
B.1.1.7	Lockdown 2	1.995	0.666	2.997	0.003
B.1.1.7	Tier 2	0.208	0.926	0.224	0.822
B.1.1.7	Tier 3	2.474	0.522	4.737	<0.001
B.1.1.7	IMD 10th Decile	0.412	0.475	0.868	0.386
B.1.1.7	Total Population	0.065	0.012	5.365	<0.001
B.1.177	Intercept	0.497	0.460	1.079	0.281
B.1.177	Temperature	-0.189	0.029	-6.433	<0.001
B.1.177	Rainfall	-0.027	0.052	-0.518	0.605

B.1.177	Lockdown 2	0.031	0.077	0.410	0.682
B.1.177	Tier 2	0.275	0.071	3.853	<0.001
B.1.177	Tier 3	0.060	0.093	0.640	0.522
B.1.177	Restaurant Subsidy	0.048	0.102	0.467	0.640
B.1.177	IMD 10th Decile	0.356	0.212	1.677	0.094
B.1.177	Total Population	0.054	0.006	9.299	<0.001
B.1.177.10	Intercept	-1.887	1.561	-1.209	0.227
B.1.177.10	Temperature	-0.352	0.103	-3.412	<0.001
B.1.177.10	Rainfall	-0.049	0.244	-0.200	0.842
B.1.177.10	Lockdown 2	0.010	0.267	0.037	0.971
B.1.177.10	Tier 2	0.237	0.247	0.959	0.337
B.1.177.10	Tier 3	0.416	0.247	1.684	0.092
B.1.177.10	IMD 10th Decile	1.089	0.638	1.707	0.088
B.1.177.10	Total Population	0.071	0.017	4.067	<0.001

Table S8: Summary of the final version of the second-wave lineages GLMM with an AR1 term for week (grouped by postcode); effects of spatial (10th Decile of IMD, postcode district total population, and total cases of lineages B.1.1.1 and B.1.1.119 during the first wave (up to week 28)) and temporal variables (mean weekly temperature and rainfall, and government interventions and subsidy) on the total number of positive PCR tests of the six second wave lineages (B.1.1.309, B.1.1.315, B.1.1.37, B.1.1.7, B.1.177, and B.1.177.10) recorded each week of 2020 in each postcode district. All temporal variables include a two-week time lag to account for the delay in symptom onset (and testing) after infection. Variables with a VIF > 3 were removed from this model (Temperature). Estimates are on the original model scale (log).

Variable	Estimate	Std. Error	z value	p value
Intercept	-1.187	0.163	-7.299	<0.001
First-wave cases	0.006	0.008	0.842	0.400
Rainfall	0.122	0.025	4.831	<0.001
Lockdown 2	0.188	0.037	5.051	<0.001
Tier 2	0.310	0.048	6.511	<0.001
Tier 3	0.386	0.049	7.953	<0.001
Restaurant Subsidy	-0.220	0.048	-4.606	<0.001
IMD 10th Decile	0.245	0.232	1.053	0.292
Total Population	0.059	0.006	10.200	<0.001

Table S9: Summary of the full version of the second-wave lineages GLMM with an AR1 term for week (grouped by postcode); effects of spatial (10th Decile of IMD, postcode district total population, and total cases of lineages B.1.1.1 and B.1.1.119 during the first wave (up to week 28)) and temporal variables (mean weekly temperature and rainfall, week of year, and government interventions and subsidy) on the total number of positive PCR tests of the six second wave lineages (B.1.1.309, B.1.1.315, B.1.1.37, B.1.1.7, B.1.177, and B.1.177.10) recorded each week of 2020 in each postcode district. All temporal variables include a two-week time lag to account for the delay in symptom onset (and testing) after infection. The VIF of Temperature was > 3, which means all of the below standard errors, z values, and p values may be unreliable (though the estimates are accurate). Estimates are on the original model scale (log).

Variable	Estimate	Std. Error	z value	p value
Intercept	-0.063	0.347	-0.183	0.855
First-wave cases	0.006	0.008	0.839	0.402
Temperature	-0.075	0.021	-3.596	<0.001
Rainfall	0.037	0.034	1.072	0.284
Lockdown 2	0.023	0.058	0.403	0.687
Tier 2	0.198	0.056	3.516	<0.001
Tier 3	0.196	0.071	2.738	0.006
Restaurant Subsidy	-0.058	0.066	-0.888	0.375
IMD 10th Decile	0.246	0.233	1.054	0.292
Total Population	0.059	0.006	10.147	<0.001

2. Model Specifications

2.1 Mixed Effects Models

- Estimation method: maximum likelihood (the default).
- Fixed effects: total population per postcode, proportion of the population in the 10th decile of the Index of Multiple Deprivation (IMD) per postcode, mean weekly temperature and rainfall, government restaurant subsidy, first national lockdown, second national lockdown, and tier 2 and tier 3 restrictions in Teesside.
 - Total population was rescaled by dividing by 1000, to measure population in thousands rather than single people.
 - The interventions and subsidy were coded numerically according to the procedure of Hunter et al., 2021 (<u>https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2021.26.28.2001401</u>): 0 before they were imposed, 1 for the first week of imposition, increasing by 1 for each further week of duration, and reverting to 0 after the end of the intervention. This was to allow the effect to incorporate duration as well as presence/absence.
 - Two-week time lags were applied to the temporal variables: temperature, rainfall, lockdown 1, lockdown 2, tier 2, tier 3, and the restaurant subsidy (the values of these variables were shifted forward in time by 2 weeks, e.g. the values at week 1 were moved to week 3 etc.).

AR1 term for week (grouped by postcode):

- Family: Poisson (with log link function).
- Random effects: autoregressive term of order 1, for week of year, grouped by postcode; and a separate random intercept for postcode. The AR1 term was fitted without an intercept, as recommended in glmmTMB package documentation (<u>https://cran.r-</u> project.org/web/packages/glmmTMB/vignettes/covstruct.html#construction-of-structuredcovariance-matrices).

e.g. + (1|Postcode) + ar1(Week + 0|Postcode)

- The model for Lineage B.1.1.309 demonstrated poor fit in terms of residual autocorrelation, and so it was refit without the random intercept term for postcode (this term had a variance that was almost 0).
- Additional fixed effects: the model examining cases of the second-wave lineages included the total number of cases of the two first-wave lineages (B.1.1.1, B.1.1.119), summed across weeks 11 to 27, per postcode as a fixed effect.

Random gradient for week for each postcode:

- Family: negative binomial (with log link function.
- Additional fixed effects: this model included week of year as a fixed effect to attempt to control for the effect of time on cases.
- Random effects: a random gradient for week of year, grouped by postcode; and a random intercept for postcode.
 e.g. + (Week + 1|Postcode)

2.2 Disease Mapping Models

- The adjacency matrix for the Teesside postcode districts was constructed using rook contiguity: shared borders between adjacent areas must be edges (multiple points) rather than single vertices (single points). This is appropriate in the context of disease transmission between UK postcodes districts, as a single point would represent a tiny area of linear contact that is not representative of a true geographical boundary. However, the arrangement and irregular shape of the postcode polygons in the shapefile means that it would make no difference whether or not we used queen or rook contiguity, as all polygons that connect do so by more than one point.
 e.g. poly2nb(shape file, queen = FALSE)
- Family: negative binomial.
- Link function: log (the default).
- Approximation strategy: Laplace.
 e.g. control.inla = list(strategy = "laplace")
- Integration strategy: CCD (complete composite design). This was the default for our models as the number of hyperparameters was greater than 2 ("size for the nbinomial observations (1/overdispersion)", "Precision for PC_num", "Phi for PC_num").
 e.g. control.inla = list(int.strategy = "auto")
- Priors
 - Negative binomial: we used the default values for this family, and the default variant of it (variant = 0). Hyperid: 63001, name: "size", initial: 2.3, fixed: FALSE, prior: "pc.mgamma", param: 7.
 - BYM2 Hyperparameters: we used the default values. prec = list(prior = "pc.prec", param = c(1, 0.01)), phi = list(prior = "pc", param = c(0.5, 0.5)).
 - The sensitivity analysis for the BYM2 phi and precision hyperparameters used the following values.
 Default: prec = list(prior = "pc.prec", param = c(1, 0.01)), phi = list(prior = "pc", param = c(0.5, 0.5)).
 Larger_phi: prec = list(prior = "pc.prec", param = c(1, 0.01)), phi = list(prior = "pc", param = c(0.5, 2 / 3)).
 Larger_prec: prec = list(prior = "pc.prec", param = c(0.5 / 0.31, 0.01)), phi = list(prior = "pc", param = c(0.5, 0.5)).
 Larger_phiprec: prec = list(prior = "pc.prec", param = c(0.5 / 0.31, 0.01)), phi = list(prior = "pc", param = c(0.5, 0.5)).
 - Full details of all hyperparameters of the all-cases model are given as a print-out from the R console below.
 List of 4
 \$ predictor:List of 1
 \$ hyper:List of 1
 \$ theta:List of 9
 \$ hyperid : num 53001
 \$ name : chr "log precision"
 \$ short.name: chr "prec"
 \$ initial : num 13.8

```
$ fixed : logi TRUE
     $ prior : chr "loggamma"
     $ param : num [1:2] 1e+00 1e-05
$ family :List of 1
  $ :List of 4
   $ hyperid: chr "INLA.Data1"
   $ label : chr "nbinomial"
   $ hyper :List of 1
     $ theta:List of 9
       $ hyperid : num 63001
       $ name : chr "size"
       $ short.name: chr "size"
       $ initial : num 2.3
       $ fixed : logi FALSE
       $ prior : chr "pc.mgamma"
       $ param : num 7
   $ link :List of 1
     $ hyper: list()
$ fixed :List of 1
  $ :List of 3
   $ label : chr "(Intercept)"
   $ prior.mean: num 0
   $ prior.prec: num 0
$ random :List of 1
  $:List of 3
   $ hyperid : chr "PC num"
   $ hyper :List of 2
     $ theta1:List of 9
       $ hyperid : num 11001
       $ name : chr "log precision"
       $ short.name: chr "prec"
       $ prior : chr "pc.prec"
       $ param : num [1:2] 1 0.01
       $ initial : num 4
       $ fixed : logi FALSE
     $ theta2:List of 9
       $ hyperid : num 11002
       $ name : chr "logit phi"
       $ short.name: chr "phi"
       $ prior : chr "table: -12.6923076923077 -12.6898382145907 -
12.6873687368737 -12.6848992591567 -12.6824297814397 -12.6799603037"
truncated
       $ param : num(0)
       $ initial : num -3
       $ fixed : logi FALSE
   $ group.hyper:List of 1
     $ theta:List of 9
       $ hyperid : num 40001
       $ name : chr "logit correlation"
       $ short.name: chr "rho"
       $ initial : num 1
```

\$ fixed : logi FALSE \$ prior : chr "normal" \$ param : num [1:2] 0 0.2

3. Model Validation

3.1 Disease Mapping Models

All-cases

Figure S5: Figures used to assess model fit for the all-cases disease mapping model, fit with default priors and other settings. First row: density of the posterior marginals of the intercept (including prior), observed vs fitted values. Second row: posterior density (and priors) of the hyperparameters (size for the negative binomial observations, and precision and phi for the BYM2 random effect). Third row: probability integral transforms (PIT) values (modified/adjusted version appropriate for count data) per

postcode area, histogram of PIT values. Fourth row: conditional predictive ordinate (CPO) values per postcode area, histogram of CPO values.

Figure S6: Figures used to assess model fit and sensitivity to hyperparameter values for the all-cases disease mapping model, fit with the "laplace" approximation method. These plots compare the values for 4 models, each fit with different hyperparameter values (see section 2.2 above and model code in the analysis repository (https://doi.org/10.25405/data.ncl.23815077). First row: density of the posterior marginals of the intercept and phi and precision hyperparameters. Second row: Mean and 97.5% quantiles for the intercept, comparison of the observed values to a sample generated from the posterior distribution. Third row: comparison of the observed values per postcode area to a sample generated from the posterior distribution (note that the numbers on the x axis do not correspond to the actual postcode numbers).

or the nbinomial observations ostDens [Precision for PC_n PostDens [Phi for PC_num]

lodified PIT-values, nfail0, nbinomia

Modified PIT-values, nfail0, nbinomial[1]

Figure S7: Figures used to assess model fit for the Lin6_B.1.1.1 disease mapping model, fit with default priors and other settings. First row: density of the posterior marginals of the intercept (including prior), observed vs fitted values. Second row: posterior density (and priors) of the hyperparameters (size for the negative binomial observations, and precision and phi for the BYM2 random effect). Third row: probability integral transforms (PIT) values (modified/adjusted version appropriate for count data) per postcode area, histogram of PIT values. Fourth row: conditional predictive ordinate (CPO) values per postcode area, histogram of CPO values.

Figure S8: Figures used to assess model fit and sensitivity to hyperparameter values for the Lin6_B.1.1.1 disease mapping model, fit with the "laplace" approximation method. These plots compare the values for 4 models, each fit with different hyperparameter values (see section 2.2 above and model code in the analysis repository (https://doi.org/10.25405/data.ncl.23815077). First row: density of the posterior marginals of the intercept and phi and precision hyperparameters. Second row: Mean and 97.5% quantiles for the intercept, comparison of the observed values to a sample generated from the posterior distribution. Third row: comparison of the observed values per postcode area to a sample generated from the postcode numbers on the x axis do not correspond to the actual postcode numbers).

or the nbinomial observations ostDens [Precision for PC_n PostDens [Phi for PC_num

lodified PIT-values, nfail0, nbinomia

Modified PIT-values, nfail0, nbinomial[1]

CPO-values, nfail0, nbinomial[1]

CPO-values, nfail0, nbinomial[1]

Figure S9: Figures used to assess model fit for the Lin10_B.1.1.119 disease mapping model, fit with default priors and other settings. First row: density of the posterior marginals of the intercept (including prior), observed vs fitted values. Second row: posterior density (and priors) of the hyperparameters (size for the negative binomial observations, and precision and phi for the BYM2 random effect). Third row: probability integral transforms (PIT) values (modified/adjusted version appropriate for count data) per postcode area, histogram of PIT values. Fourth row: conditional predictive ordinate (CPO) values per postcode area, histogram of CPO values.

Figure S10: Figures used to assess model fit and sensitivity to hyperparameter values for the Lin10_B.1.1.119 disease mapping model, fit with the "laplace" approximation method. These plots compare the values for 4 models, each fit with different hyperparameter values (see section 2.2 above and model code in the analysis repository (https://doi.org/10.25405/data.ncl.23815077). First row: density of the posterior marginals of the intercept and phi and precision hyperparameters. Second row: Mean and 97.5% quantiles for the intercept, comparison of the observed values to a sample generated from the posterior distribution. Third row: comparison of the observed values per postcode area to a sample generated from the posterior distribution (note that the numbers on the x axis do not correspond to the actual postcode numbers).

or the nbinomial observations ostDens [Precision for PC_n PostDens [Phi for PC_num]

lodified PIT-values, nfail0, nbinomia

Modified PIT-values, nfail0, nbinomial[1]

CPO-values, nfail0, nbinomial[1]

CPO-values, nfail0, nbinomial[1]

Figure S11: Figures used to assess model fit for the Lin35 B.1.1.309 disease mapping model, fit with default priors and other settings. First row: density of the posterior marginals of the intercept (including prior), observed vs fitted values. Second row: posterior density (and priors) of the hyperparameters (size for the negative binomial observations, and precision and phi for the BYM2 random effect). Third row: probability integral transforms (PIT) values (modified/adjusted version appropriate for count data) per postcode area, histogram of PIT values. Fourth row: conditional predictive ordinate (CPO) values per postcode area, histogram of CPO values.

Figure S12: Figures used to assess model fit and sensitivity to hyperparameter values for the Lin35_B.1.1.309 disease mapping model, fit with the "laplace" approximation method. These plots compare the values for 4 models, each fit with different hyperparameter values (see section 2.2 above and model code in the analysis repository (https://doi.org/10.25405/data.ncl.23815077). First row: density of the posterior marginals of the intercept and phi and precision hyperparameters. Second row: Mean and 97.5% quantiles for the intercept, comparison of the observed values to a sample generated from the posterior distribution. Third row: comparison of the observed values per postcode area to a sample generated from the posterior distribution (note that the numbers on the x axis do not correspond to the actual postcode numbers).

or the nbinomial observations ostDens [Precision for PC_n PostDens [Phi for PC_num

lodified PIT-values, nfail0, nbinomia

Modified PIT-values, nfail0, nbinomial[1]

CPO-values, nfail0, nbinomial[1]

CPO-values, nfail0, nbinomial[1]

Probability

0.4

0.6

0.8

Figure S13: Figures used to assess model fit for the Lin37_B.1.1.315 disease mapping model, fit with default priors and other settings. First row: density of the posterior marginals of the intercept (including prior), observed vs fitted values. Second row: posterior density (and priors) of the hyperparameters (size for the negative binomial observations, and precision and phi for the BYM2 random effect). Third row: probability integral transforms (PIT) values (modified/adjusted version appropriate for count data) per postcode area, histogram of PIT values. Fourth row: conditional predictive ordinate (CPO) values per postcode area, histogram of CPO values.

0.0

0.2

Figure S14: Figures used to assess model fit and sensitivity to hyperparameter values for the Lin37_B.1.1.315 disease mapping model, fit with the "laplace" approximation method. These plots compare the values for 4 models, each fit with different hyperparameter values (see section 2.2 above and model code in the analysis repository (https://doi.org/10.25405/data.ncl.23815077). First row: density of the posterior marginals of the intercept and phi and precision hyperparameters. Second row: Mean and 97.5% quantiles for the intercept, comparison of the observed values to a sample generated from the posterior distribution. Third row: comparison of the observed values per postcode area to a sample generated from the posterior distribution (note that the numbers on the x axis do not correspond to the actual postcode numbers).

or the nbinomial observations ostDens [Precision for PC_n PostDens [Phi for PC_num

lodified PIT-values, nfail0, nbinomia

Modified PIT-values, nfail0, nbinomial[1]

CPO-values, nfail0, nbinomial[1]

CPO-values, nfail0, nbinomial[1]

0.8

1.0

Figure S15: Figures used to assess model fit for the Lin39_B.1.1.37 disease mapping model, fit with default priors and other settings. First row: density of the posterior marginals of the intercept (including prior), observed vs fitted values. Second row: posterior density (and priors) of the hyperparameters (size for the negative binomial observations, and precision and phi for the BYM2 random effect). Third row: probability integral transforms (PIT) values (modified/adjusted version appropriate for count data) per postcode area, histogram of PIT values. Fourth row: conditional predictive ordinate (CPO) values per postcode area, histogram of CPO values.

Figure S16: Figures used to assess model fit and sensitivity to hyperparameter values for the Lin39_B.1.1.37 disease mapping model, fit with the "laplace" approximation method. These plots compare the values for 4 models, each fit with different hyperparameter values (see section 2.2 above and model code in the analysis repository (https://doi.org/10.25405/data.ncl.23815077). First row: density of the posterior marginals of the intercept and phi and precision hyperparameters. Second row: Mean and 97.5% quantiles for the intercept, comparison of the observed values to a sample generated from the posterior distribution. Third row: comparison of the observed values per postcode area to a sample generated from the posterior distribution (note that the numbers on the x axis do not correspond to the actual postcode numbers).

or the nbinomial observations ostDens [Precision for PC_n PostDens [Phi for PC_num]

lodified PIT-values, nfail0, nbinomia

Modified PIT-values, nfail0, nbinomial[1]

CPO-values, nfail0, nbinomial[1]

CPO-values, nfail0, nbinomial[1]

1.0

Figure S17: Figures used to assess model fit for the Lin45_B.1.1.7 disease mapping model, fit with default priors and other settings. First row: density of the posterior marginals of the intercept (including prior), observed vs fitted values. Second row: posterior density (and priors) of the hyperparameters (size for the negative binomial observations, and precision and phi for the BYM2 random effect). Third row: probability integral transforms (PIT) values (modified/adjusted version appropriate for count data) per postcode area, histogram of PIT values. Fourth row: conditional predictive ordinate (CPO) values per postcode area, histogram of CPO values.

Figure S18: Figures used to assess model fit and sensitivity to hyperparameter values for the Lin45_B.1.1.7 disease mapping model, fit with the "laplace" approximation method. These plots compare the values for 4 models, each fit with different hyperparameter values (see section 2.2 above and model code in the analysis repository (https://doi.org/10.25405/data.ncl.23815077). First row: density of the posterior marginals of the intercept and phi and precision hyperparameters. Second row: Mean and 97.5% quantiles for the intercept, comparison of the observed values to a sample generated from the posterior distribution. Third row: comparison of the observed values per postcode area to a sample generated from the posterior distribution (note that the numbers on the x axis do not correspond to the actual postcode numbers).

or the nbinomial observations ostDens [Precision for PC_n PostDens [Phi for PC_num]

lodified PIT-values, nfail0, nbinomia

Modified PIT-values, nfail0, nbinomial[1]

5

CPO-values, nfail0, nbinomial[1]

CPO-values, nfail0, nbinomial[1]

Probability

0.6

0.8

1.0

0.4

Figure S19: Figures used to assess model fit for the Lin51_B.1.177 disease mapping model, fit with default priors and other settings. First row: density of the posterior marginals of the intercept (including prior), observed vs fitted values. Second row: posterior density (and priors) of the hyperparameters (size for the negative binomial observations, and precision and phi for the BYM2 random effect). Third row: probability integral transforms (PIT) values (modified/adjusted version appropriate for count data) per postcode area, histogram of PIT values. Fourth row: conditional predictive ordinate (CPO) values per postcode area, histogram of CPO values.

Figure S20: Figures used to assess model fit and sensitivity to hyperparameter values for the Lin51_B.1.177 disease mapping model, fit with the "laplace" approximation method. These plots compare the values for 4 models, each fit with different hyperparameter values (see section 2.2 above and model code in the analysis repository (https://doi.org/10.25405/data.ncl.23815077). First row: density of the posterior marginals of the intercept and phi and precision hyperparameters. Second row: Mean and 97.5% quantiles for the intercept, comparison of the observed values to a sample generated from the posterior distribution. Third row: comparison of the observed values per postcode area to a sample generated from the posterior distribution (note that the numbers on the x axis do not correspond to the actual postcode numbers).

or the nbinomial observations ostDens [Precision for PC_n PostDens [Phi for PC_num

lodified PIT-values, nfail0, nbinomia

Modified PIT-values, nfail0, nbinomial[1]

CPO-values, nfail0, nbinomial[1]

CPO-values, nfail0, nbinomial[1]

Figure S21: Figures used to assess model fit for the Lin52_B.1.177.10 disease mapping model, fit with default priors and other settings. First row: density of the posterior marginals of the intercept (including prior), observed vs fitted values. Second row: posterior density (and priors) of the hyperparameters (size for the negative binomial observations, and precision and phi for the BYM2 random effect). Third row: probability integral transforms (PIT) values (modified/adjusted version appropriate for count data) per postcode area, histogram of PIT values. Fourth row: conditional predictive ordinate (CPO) values per postcode area, histogram of CPO values.

Figure S22: Figures used to assess model fit and sensitivity to hyperparameter values for the Lin52_B.1.177.10 disease mapping model, fit with the "laplace" approximation method. These plots compare the values for 4 models, each fit with different hyperparameter values (see section 2.2 above and model code in the analysis repository (https://doi.org/10.25405/data.ncl.23815077). First row: density of the posterior marginals of the intercept and phi and precision hyperparameters. Second row: Mean and 97.5% quantiles for the intercept, comparison of the observed values to a sample generated from the posterior distribution. Third row: comparison of the observed values per postcode area to a sample generated from the posterior distribution (note that the numbers on the x axis do not correspond to the actual postcode numbers).

3.2 Mixed Effects Models

The GLMM models were validated using tests in the DHARMa R package and by comparing the observed values to those fitted by the models. The figures below contain plots created from the DHARMa test functions run on a simulated residuals object (<u>https://cran.r-</u>

project.org/web/packages/DHARMa/vignettes/DHARMa.html): QQ plot, including Kolmogorov-Smirnov p-value; residuals against predicted values, including assessment for deviation from the expected mean or quantiles; histogram of the residuals, including assessment for outliers; dispersion test comparing the observed data (red line) with a histogram of residuals; residuals vs time; and the ACF (autocorrelation function), including a Durbin-Watson p-value. The validation figures also contain a VIF (variance inflation factor) plot for each variable in the model, created using the "performance" R package

(https://easystats.github.io/performance/reference/check_collinearity.html).

All data sets were modelled using a range of different specifications: a basic model with only a random intercept for postcode; a restricted cubic spline for time (using both 3 and 4 knots) (implemented via the "splines" R package); a smooth spline for time (implemented via the "mgcv" R package); an AR1 term for time (without any grouping); and an AR1 term for time grouped by Postcode. Each of these was compared using the validation plots. For each dataset, the AR1 model that was grouped by postcode proved to be the best fit. The most appropriate distribution family was also assessed for the AR1 models in the same way, with Poisson being the best fit in all cases.

Because collinearity was present in most of our datasets, we used variance inflation factors (VIF) to identify variables to be dropped from the full models (where VIF > 3). In addition to VIF, we also examined variable clustering and redundancy via the "varclus" and "redun" functions of the Hmisc R package (<u>https://www.rdocumentation.org/packages/Hmisc/versions/5.1-2</u>). The output of the redundancy analyses for each of the datasets is in table S10. The redundant variables identified in these analyses matched those with the highest VIF values. Hierarchical cluster analysis plots for each dataset are included below, using both squared Pearson (S23) and Spearman (S24) correlations.

The validation figures for the final (best) models for each dataset are included below (S25, S28: S37). In addition, the all-cases models that include splines for time (a restricted cubic spline (using 4 knots) and a smooth spline) have also been included as an example of the poorer fit that these approaches provide (S26, S27). All of the model validation figures for all of the different models and datasets can be found in the analysis repository (https://doi.org/10.25405/data.ncl.23815077).

Table S10: Redundancy analysis of the variables included in the full versions of the all-cases, separate lineage, and second-wave lineage cases GLMMs. All temporal variables include a two-week time lag. Values are the R² with which each variable can be predicted from all other variables. Variables with an asterisk were identified as being redundant.

Variable	All- cases	B.1.1.1	B.1.1.119	B.1.1.309	B.1.1.315	B.1.1.37	B.1.1.7	B.1.177	B.1.177.10	Second-wave lineage cases
Temperature	0.319	0.408	0.103	0.748	0.794*	0.682	0.738	0.794*	0.585	0.794*
Rainfall	0.338	0.355	0.358	0.677	0.686	0.761	0.903	0.686	0.515	0.686
Lockdown 1	0.123	0.133	0.054	NA	NA	NA	NA	NA	NA	NA
Lockdown 2	0.168	0.252	NA	0.592	0.672	0.666	0.941*	0.672	0.706	0.672
Tier 2	0.06	0.102	NA	0.455	0.363	0.311	0.778	0.363	0.382	0.363
Tier 3	0.136	0.219	NA	NA	0.566	NA	0.807	0.566	0.587	0.566
Eat-out Subsidy	0.369	0.38	0.408	0.698	0.689	0.765*	NA	0.689	NA	0.689
IMD 10th Decile	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.212
Total Population	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.174
First-wave cases	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.335

Figure S23: Hierarchical cluster analysis plots of the variables included in the full versions of the GLMMs for each dataset, using squared Pearson correlation. Created with the "varclus" function of the Hmisc R package. Absent variables are where they did not overlap temporally with cases of the given lineage.

Figure S24: Hierarchical cluster analysis plots of the variables included in the full versions of the GLMMs for each dataset, using squared Spearman correlation. Created with the "varclus" function of the Hmisc R package. Absent variables are where they did not overlap temporally with cases of the given lineage.

All-cases - AR1 term for week (grouped by postcode)

Figure S25: Figures used to assess model fit for the all-cases GLMM with an AR1 term for week grouped by postcode. First row: QQ plot, residuals vs predicted. Second row: outlier check, dispersion check. Third row: residuals vs time, ACF. Bottom row: VIF, observed values vs fitted values from the model.

All-cases - Restricted cubic spline for time (4 knots)

Figure S26: Figures used to assess model fit for the all-cases GLMM with a restricted cubic spline for week with 4 knots. First row: QQ plot, residuals vs predicted. Second row: outlier check, dispersion check. Third row: residuals vs time, ACF. Bottom row: VIF, observed values vs fitted values from the model.

All-cases - Smooth spline for time

Figure S27: Figures used to assess model fit for the all-cases GLMM with a smooth spline for week. First row: QQ plot, residuals vs predicted. Second row: outlier check, dispersion check. Third row: residuals vs time, ACF. Bottom row: VIF, observed values vs fitted values from the model.

Lineage B.1.1.1 - AR1 term for week (grouped by postcode)

Figure S28: Figures used to assess model fit for the lineage B.1.1.1 GLMM with an AR1 term for week grouped by postcode. First row: QQ plot, residuals vs predicted. Second row: outlier check, dispersion check. Third row: residuals vs time, ACF. Bottom row: VIF, observed values vs fitted values from the model.

Lineage B.1.1.119 - AR1 term for week (grouped by postcode)

Figure S29: Figures used to assess model fit for the lineage B.1.1.119 GLMM with an AR1 term for week grouped by postcode. First row: QQ plot, residuals vs predicted. Second row: outlier check, dispersion check. Third row: residuals vs time, ACF. Bottom row: VIF, observed values vs fitted values from the model.

Lineage B.1.1.309 - AR1 term for week (grouped by postcode)

Figure S30: Figures used to assess model fit for the lineage B.1.1.309 GLMM with an AR1 term for week grouped by postcode. Eat-out subsidy was dropped from this final model due to collinearity. The random intercept for postcode was dropped due to poorer model fit. First row: QQ plot, residuals vs predicted. Second row: outlier check, dispersion check. Third row: residuals vs time, ACF. Bottom row: VIF, observed values vs fitted values from the model.

Lineage B.1.1.315 - AR1 term for week (grouped by postcode)

Figure S31: Figures used to assess model fit for the lineage B.1.1.315 GLMM with an AR1 term for week grouped by postcode. Temperature was dropped from this final model due to collinearity. First row: QQ plot, residuals vs predicted. Second row: outlier check, dispersion check. Third row: residuals vs time, ACF. Bottom row: VIF, observed values vs fitted values from the model.

Lineage B.1.1.37 - AR1 term for week (grouped by postcode)

Figure S32: Figures used to assess model fit for the lineage B.1.1.37 GLMM with an AR1 term for week grouped by postcode. The eat-out subsidy was dropped from this final model due to collinearity. First row: QQ plot, residuals vs predicted. Second row: outlier check, dispersion check. Third row: residuals vs time, ACF. Bottom row: VIF, observed values vs fitted values from the model.

Lineage B.1.1.7 - AR1 term for week (grouped by postcode)

Figure S33: Figures used to assess model fit for the lineage B.1.1.7 GLMM with an AR1 term for week grouped by postcode. Lockdown 2 was dropped from this final model due to collinearity. First row: QQ plot, residuals vs predicted. Second row: outlier check, dispersion check. Third row: residuals vs time, ACF. Bottom row: VIF, observed values vs fitted values from the model.

Lineage B.1.177 - AR1 term for week (grouped by postcode)

Figure S34: Figures used to assess model fit for the lineage B.1.177 GLMM with an AR1 term for week grouped by postcode. Temperature was dropped from this final model due to collinearity. First row: QQ plot, residuals vs predicted. Second row: outlier check, dispersion check. Third row: residuals vs time, ACF. Bottom row: VIF, observed values vs fitted values from the model.

Observed values

Lineage B.1.177.10 - AR1 term for week (grouped by postcode)

Figure S35: Figures used to assess model fit for the lineage B.1.177.10 GLMM with an AR1 term for week grouped by postcode. Lockdown 2 was dropped from this final model due to collinearity. First row: QQ plot, residuals vs predicted. Second row: outlier check, dispersion check. Third row: residuals vs time, ACF. Bottom row: VIF, observed values vs fitted values from the model.

Second-wave lineage cases - AR1 term for week (grouped by postcode)

Figure S36: Figures used to assess model fit second-wave lineage cases GLMM with an AR1 term for week grouped by postcode. Temperature was dropped from this final model due to collinearity. First row: QQ plot, residuals vs predicted. Second row: outlier check, dispersion check. Third row: residuals vs time, ACF. Bottom row: VIF, observed values vs fitted values from the model.

Observed values

All-cases - Random gradient for week for each postcode

4. Full List of COG Consortium Members

Funding acquisition, Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, Software and analysis tools, and Visualisation: Dr Samuel C Robson PhD ^{13, 84}

Funding acquisition, Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, and Software and analysis tools: Dr Thomas R Connor PhD ^{11, 74} and Prof Nicholas J Loman PhD ⁴³

Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, Software and analysis tools, and Visualisation: Dr Tanya Golubchik PhD ⁵

Funding acquisition, Leadership and supervision, Metadata curation, Samples and logistics, Sequencing and analysis, and Visualisation: Dr Rocio T Martinez Nunez PhD ⁴⁶

Funding acquisition, Leadership and supervision, Project administration, Samples and logistics, Sequencing and analysis, and Software and analysis tools: Dr David Bonsall PhD ⁵

Funding acquisition, Leadership and supervision, Project administration, Sequencing and analysis, Software and analysis tools, and Visualisation: Prof Andrew Rambaut DPhil¹⁰⁴

Funding acquisition, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, and Software and analysis tools: Dr Luke B Snell MSc, MBBS ¹²

Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Software and analysis tools, and Visualisation: Rich Livett MSc ¹¹⁶

Funding acquisition, Leadership and supervision, Metadata curation, Project administration, and Samples and logistics: Dr Catherine Ludden PhD ^{20, 70}

Funding acquisition, Leadership and supervision, Metadata curation, Samples and logistics, and Sequencing and analysis: Dr Sally Corden PhD ⁷⁴ and Dr Eleni Nastouli FRCPath ^{96, 95, 30}

Funding acquisition, Leadership and supervision, Metadata curation, Sequencing and analysis, and Software and analysis tools: Dr Gaia Nebbia PhD, FRCPath ¹²

Funding acquisition, Leadership and supervision, Project administration, Samples and logistics, and Sequencing and analysis: Ian Johnston BSc ¹¹⁶

Leadership and supervision, Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis: Prof Katrina Lythgoe PhD ⁵, Dr M. Estee Torok FRCP ^{19, 20} and Prof Ian G Goodfellow PhD ²⁴ Leadership and supervision, Metadata curation, Project administration, Samples and logistics, and Visualisation:

Dr Jacqui A Prieto PhD ^{97, 82} and Dr Kordo Saeed MD, FRCPath ^{97, 83}

Leadership and supervision, Metadata curation, Project administration, Sequencing and analysis, and Software and analysis tools: Dr David K Jackson PhD ¹¹⁶

Leadership and supervision, Metadata curation, Samples and logistics, Sequencing and analysis, and Visualisation:

Dr Catherine Houlihan PhD 96, 94

Leadership and supervision, Metadata curation, Sequencing and analysis, Software and analysis tools, and Visualisation: Dr Dan Frampton PhD ^{94, 95}

Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, and Software and analysis tools:

Dr William L Hamilton PhD¹⁹ and Dr Adam A Witney PhD⁴¹

Funding acquisition, Samples and logistics, Sequencing and analysis, and Visualisation: Dr Giselda Bucca PhD ¹⁰¹

Funding acquisition, Leadership and supervision, Metadata curation, and Project administration: Dr Cassie F Pope PhD^{40, 41}

Funding acquisition, Leadership and supervision, Metadata curation, and Samples and logistics: Dr Catherine Moore PhD ⁷⁴

Funding acquisition, Leadership and supervision, Metadata curation, and Sequencing and analysis: Prof Emma C Thomson PhD, FRCP ⁵³

Funding acquisition, Leadership and supervision, Project administration, and Samples and logistics: Dr Ewan M Harrison PhD ^{116, 102}

Funding acquisition, Leadership and supervision, Sequencing and analysis, and Visualisation: Prof Colin P Smith PhD ¹⁰¹

Leadership and supervision, Metadata curation, Project administration, and Sequencing and analysis: Fiona Rogan BSc ⁷⁷

Leadership and supervision, Metadata curation, Project administration, and Samples and logistics: Shaun M Beckwith MSc ⁶, Abigail Murray Degree ⁶, Dawn Singleton HNC ⁶, Dr Kirstine Eastick PhD, FRCPath ³⁷, Dr Liz A Sheridan PhD ⁹⁸, Paul Randell MSc, PgD ⁹⁹, Dr Leigh M Jackson PhD ¹⁰⁵, Dr Cristina V Ariani PhD ¹¹⁶ and Dr Sónia Gonçalves PhD ¹¹⁶

Leadership and supervision, Metadata curation, Samples and logistics, and Sequencing and analysis: Dr Derek J Fairley PhD ^{3, 77}, Prof Matthew W Loose PhD ¹⁸ and Joanne Watkins MSc ⁷⁴

Leadership and supervision, Metadata curation, Samples and logistics, and Visualisation: Dr Samuel Moses MD $^{\rm 25,\,106}$

Leadership and supervision, Metadata curation, Sequencing and analysis, and Software and analysis tools:

Dr Sam Nicholls PhD ⁴³, Dr Matthew Bull PhD ⁷⁴ and Dr Roberto Amato PhD ¹¹⁶

Leadership and supervision, Project administration, Samples and logistics, and Sequencing and analysis: Prof Darren L Smith PhD ^{36, 65, 66}

Leadership and supervision, Sequencing and analysis, Software and analysis tools, and Visualisation: Prof David M Aanensen PhD^{14, 116} and Dr Jeffrey C Barrett PhD¹¹⁶

Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis: Dr Dinesh Aggarwal MRCP^{20, 116, 70}, Dr James G Shepherd MBCHB, MRCP ⁵³, Dr Martin D Curran PhD ⁷¹ and Dr Surendra Parmar PhD ⁷¹

Metadata curation, Project administration, Sequencing and analysis, and Software and analysis tools: Dr Matthew D Parker PhD ¹⁰⁹

Metadata curation, Samples and logistics, Sequencing and analysis, and Software and analysis tools: Dr Catryn Williams PhD ⁷⁴

Metadata curation, Samples and logistics, Sequencing and analysis, and Visualisation: Dr Sharon Glaysher PhD⁶⁸

Metadata curation, Sequencing and analysis, Software and analysis tools, and Visualisation: Dr Anthony P Underwood PhD ^{14, 116}, Dr Matthew Bashton PhD ^{36, 65}, Dr Nicole Pacchiarini PhD ⁷⁴, Dr Katie F Loveson PhD ⁸⁴ and Matthew Byott MSc ^{95, 96}

Project administration, Sequencing and analysis, Software and analysis tools, and Visualisation: Dr Alessandro M Carabelli PhD ²⁰

Funding acquisition, Leadership and supervision, and Metadata curation: Dr Kate E Templeton PhD ^{56, 104}

Funding acquisition, Leadership and supervision, and Project administration: Dr Thushan I de Silva PhD ¹⁰⁹, Dr Dennis Wang PhD ¹⁰⁹, Dr Cordelia F Langford PhD ¹¹⁶ and John Sillitoe BEng ¹¹⁶

Funding acquisition, Leadership and supervision, and Samples and logistics: Prof Rory N Gunson PhD, FRCPath ⁵⁵

Funding acquisition, Leadership and supervision, and Sequencing and analysis: Dr Simon Cottrell PhD ⁷⁴, Dr Justin O'Grady PhD ^{75, 103} and Prof Dominic Kwiatkowski PhD ^{116, 108}

Leadership and supervision, Metadata curation, and Project administration:

Dr Patrick J Lillie PhD, FRCP ³⁷

Leadership and supervision, Metadata curation, and Samples and logistics:

Dr Nicholas Cortes MBCHB ³³, Dr Nathan Moore MBCHB ³³, Dr Claire Thomas DPhil ³³, Phillipa J Burns MSc, DipRCPath ³⁷, Dr Tabitha W Mahungu FRCPath ⁸⁰ and Steven Liggett BSc ⁸⁶

Leadership and supervision, Metadata curation, and Sequencing and analysis: Angela H Beckett MSc $^{\rm 13,\,81}$ and Prof Matthew TG Holden PhD $^{\rm 73}$

Leadership and supervision, Project administration, and Samples and logistics:

Dr Lisa J Levett PhD ³⁴, Dr Husam Osman PhD ^{70, 35} and Dr Mohammed Hassan-Ibrahim PhD, FRCPath ⁹⁹

Leadership and supervision, Project administration, and Sequencing and analysis:

Dr David A Simpson PhD 77

Leadership and supervision, Samples and logistics, and Sequencing and analysis:

Dr Meera Chand PhD ⁷², Prof Ravi K Gupta PhD ¹⁰², Prof Alistair C Darby PhD ¹⁰⁷ and Prof Steve Paterson PhD 107

Leadership and supervision, Sequencing and analysis, and Software and analysis tools:

Prof Oliver G Pybus DPhil²³, Dr Erik M Volz PhD³⁹, Prof Daniela de Angelis PhD⁵², Prof David L Robertson PhD ⁵³, Dr Andrew J Page PhD ⁷⁵ and Dr Inigo Martincorena PhD ¹¹⁶

Leadership and supervision, Sequencing and analysis, and Visualisation:

Dr Louise Aigrain PhD ¹¹⁶ and Dr Andrew R Bassett PhD ¹¹⁶

Metadata curation, Project administration, and Samples and logistics:

Dr Nick Wong DPhil, MRCP, FRCPath ⁵⁰, Dr Yusri Taha MD, PhD ⁸⁹, Michelle J Erkiert BA ⁹⁹ and Dr Michael H Spencer Chapman MBBS ^{116, 102}

Metadata curation, Project administration, and Sequencing and analysis:

Dr Rebecca Dewar PhD ⁵⁶ and Martin P McHugh MSc ^{56, 111}

Metadata curation, Project administration, and Software and analysis tools:

Siddharth Mookerjee MPH ^{38, 57}

Metadata curation, Project administration, and Visualisation:

Stephen Aplin ⁹⁷, Matthew Harvey ⁹⁷, Thea Sass ⁹⁷, Dr Helen Umpleby FRCP ⁹⁷ and Helen Wheeler ⁹⁷

Metadata curation, Samples and logistics, and Sequencing and analysis:

Dr James P McKenna PhD³, Dr Ben Warne MRCP⁹, Joshua F Taylor MSc²², Yasmin Chaudhry BSc²⁴, Rhys Izuagbe ²⁴, Dr Aminu S Jahun PhD ²⁴, Dr Gregory R Young PhD ^{36, 65}, Dr Claire McMurray PhD ⁴³, Dr Clare M McCann PhD 65, 66, Dr Andrew Nelson PhD 65, 66 and Scott Elliott 68

Metadata curation, Samples and logistics, and Visualisation:

Hannah Lowe MSc ²⁵

Metadata curation, Sequencing and analysis, and Software and analysis tools:

Dr Anna Price PhD¹¹, Matthew R Crown BSc⁶⁵, Dr Sara Rey PhD⁷⁴, Dr Sunando Roy PhD⁹⁶ and Dr Ben Temperton PhD ¹⁰⁵

Metadata curation, Sequencing and analysis, and Visualisation:

Dr Sharif Shaaban PhD ⁷³ and Dr Andrew R Hesketh PhD ¹⁰¹

Project administration, Samples and logistics, and Sequencing and analysis:

Dr Kenneth G Laing PhD⁴¹, Dr Irene M Monahan PhD⁴¹ and Dr Judith Heaney PhD^{95, 96, 34}

Project administration, Samples and logistics, and Visualisation:

Dr Emanuela Pelosi FRCPath 97, Siona Silviera MSc 97 and Dr Eleri Wilson-Davies MD, FRCPath 97

Samples and logistics, Software and analysis tools, and Visualisation:

Dr Helen Fryer PhD ⁵

Sequencing and analysis, Software and analysis tools, and Visualization:

Dr Helen Adams PhD⁴, Dr Louis du Plessis PhD²³, Dr Rob Johnson PhD³⁹, Dr William T Harvey PhD^{53, 42}, Dr Joseph Hughes PhD⁵³, Dr Richard J Orton PhD⁵³, Dr Lewis G Spurgin PhD⁵⁹, Dr Yann Bourgeois PhD⁸¹, Dr Chris Ruis PhD¹⁰², Áine O'Toole MSc¹⁰⁴, Marina Gourtovaia MSc¹¹⁶ and Dr Theo Sanderson PhD¹¹⁶

Funding acquisition, and Leadership and supervision:

Dr Christophe Fraser PhD ⁵, Dr Jonathan Edgeworth PhD, FRCPath ¹², Prof Judith Breuer MD ^{96, 29}, Dr Stephen L Michell PhD ¹⁰⁵ and Prof John A Todd PhD ¹¹⁵

Funding acquisition, and Project administration:

Michaela John BSc $^{\rm 10}$ and Dr David Buck PhD $^{\rm 115}$

Leadership and supervision, and Metadata curation:

Dr Kavitha Gajee MBBS, FRCPath ³⁷ and Dr Gemma L Kay PhD ⁷⁵

Leadership and supervision, and Project administration:

Prof Sharon J Peacock PhD ^{20, 70} and David Heyburn ⁷⁴

Leadership and supervision, and Samples and logistics:

Katie Kitchman BSc ³⁷, Prof Alan McNally PhD ^{43, 93}, David T Pritchard MSc, CSci ⁵⁰, Dr Samir Dervisevic FRCPath ⁵⁸, Dr Peter Muir PhD ⁷⁰, Dr Esther Robinson PhD ^{70, 35}, Dr Barry B Vipond PhD ⁷⁰, Newara A Ramadan MSc, CSci, FIBMS ⁷⁸, Dr Christopher Jeanes MBBS ⁹⁰, Danni Weldon BSc ¹¹⁶, Jana Catalan MSc ¹¹⁸ and Neil Jones MSc ¹¹⁸

Leadership and supervision, and Sequencing and analysis:

Dr Ana da Silva Filipe PhD ⁵³, Dr Chris Williams MBBS ⁷⁴, Marc Fuchs BSc ⁷⁷, Dr Julia Miskelly PhD ⁷⁷, Dr Aaron R Jeffries PhD ¹⁰⁵, Karen Oliver BSc ¹¹⁶ and Dr Naomi R Park PhD ¹¹⁶

Metadata curation, and Samples and logistics:

Amy Ash BSc ¹, Cherian Koshy MSc, CSci, FIBMS ¹, Magdalena Barrow ⁷, Dr Sarah L Buchan PhD ⁷, Dr Anna Mantzouratou PhD ⁷, Dr Gemma Clark PhD ¹⁵, Dr Christopher W Holmes PhD ¹⁶, Sharon Campbell MSc ¹⁷, Thomas Davis MSc ²¹, Ngee Keong Tan MSc ²², Dr Julianne R Brown PhD ²⁹, Dr Kathryn A Harris PhD ^{29, 2}, Stephen P Kidd MSc ³³, Dr Paul R Grant PhD ³⁴, Dr Li Xu-McCrae PhD ³⁵, Dr Alison Cox PhD ^{38, 63}, Pinglawathee Madona ^{38, 63}, Dr Marcus Pond PhD ^{38, 63}, Dr Paul A Randell MBBCh ^{38, 63}, Karen T Withell FIBMS ⁴⁸, Cheryl Williams MSc ⁵¹, Dr Clive Graham MD ⁶⁰, Rebecca Denton-Smith BSc ⁶², Emma Swindells BSc ⁶², Robyn Turnbull BSc ⁶², Dr Tim J Sloan PhD ⁶⁷, Dr Andrew Bosworth PhD ^{70, 35}, Stephanie Hutchings ⁷⁰, Hannah M Pymont MSc ⁷⁰, Dr Anna Casey PhD ⁷⁶, Dr Liz Ratcliffe PhD ⁷⁶, Dr Christopher R Jones PhD ^{79, 105}, Dr Bridget A Knight PhD ^{79, 105}, Dr Tanzina Haque PhD, FRCPath ⁸⁰, Dr Jennifer Hart MRCP ⁸⁰, Dr Dianne Irish-Tavares FRCPath ⁸⁰, Eric Witele MSc ⁸⁰, Craig Mower BA ⁸⁶, Louisa K Watson DipHE ⁸⁶, Jennifer Collins BSc ⁸⁹, Gary Eltringham BSc ⁸⁹, Dorian Crudgington ⁹⁸, Ben Macklin ⁹⁸, Prof Miren Iturriza-Gomara PhD ¹⁰⁷, Dr Anita O Lucaci PhD ¹⁰⁷ and Dr Patrick C McClure PhD ¹¹³

Metadata curation, and Sequencing and analysis:

Matthew Carlile BSc ¹⁸, Dr Nadine Holmes PhD ¹⁸, Dr Christopher Moore PhD ¹⁸, Dr Nathaniel Storey PhD ²⁹, Dr Stefan Rooke PhD ⁷³, Dr Gonzalo Yebra PhD ⁷³, Dr Noel Craine DPhil ⁷⁴, Malorie Perry MSc ⁷⁴, Dr Nabil-Fareed Alikhan PhD ⁷⁵, Dr Stephen Bridgett PhD ⁷⁷, Kate F Cook MScR ⁸⁴, Christopher Fearn MSc ⁸⁴, Dr Salman Goudarzi PhD ⁸⁴, Prof Ronan A Lyons MD ⁸⁸, Dr Thomas Williams MD ¹⁰⁴, Dr Sam T Haldenby PhD ¹⁰⁷, Jillian Durham BSc ¹¹⁶ and Dr Steven Leonard PhD ¹¹⁶

Metadata curation, and Software and analysis tools:

Robert M Davies MA (Cantab) ¹¹⁶

Project administration, and Samples and logistics:

Dr Rahul Batra MD¹², Beth Blane BSc²⁰, Dr Moira J Spyer PhD^{30, 95, 96}, Perminder Smith MSc^{32, 112}, Mehmet Yavus^{85, 109}, Dr Rachel J Williams PhD⁹⁶, Dr Adhyana IK Mahanama MD⁹⁷, Dr Buddhini Samaraweera MD

⁹⁷, Sophia T Girgis MSc ¹⁰², Samantha E Hansford CSci ¹⁰⁹, Dr Angie Green PhD ¹¹⁵, Dr Charlotte Beaver PhD ¹¹⁶, Katherine L Bellis ^{116, 102}, Matthew J Dorman ¹¹⁶, Sally Kay ¹¹⁶, Liam Prestwood ¹¹⁶ and Dr Shavanthi Rajatileka PhD ¹¹⁶

Project administration, and Sequencing and analysis:

Dr Joshua Quick PhD 43

Project administration, and Software and analysis tools:

Radoslaw Poplawski BSc 43

Samples and logistics, and Sequencing and analysis:

Dr Nicola Reynolds PhD ⁸, Andrew Mack MPhil ¹¹, Dr Arthur Morriss PhD ¹¹, Thomas Whalley BSc ¹¹, Bindi Patel BSc ¹², Dr Iliana Georgana PhD ²⁴, Dr Myra Hosmillo PhD ²⁴, Malte L Pinckert MPhil ²⁴, Dr Joanne Stockton PhD ⁴³, Dr John H Henderson PhD ⁶⁵, Amy Hollis HND ⁶⁵, Dr William Stanley PhD ⁶⁵, Dr Wen C Yew PhD ⁶⁵, Dr Richard Myers PhD ⁷², Dr Alicia Thornton PhD ⁷², Alexander Adams BSc ⁷⁴, Tara Annett BSc ⁷⁴, Dr Hibo Asad PhD ⁷⁴, Alec Birchley MSc ⁷⁴, Jason Coombes BSc ⁷⁴, Johnathan M Evans MSc ⁷⁴, Laia Fina ⁷⁴, Bree Gatica-Wilcox MPhil ⁷⁴, Lauren Gilbert ⁷⁴, Lee Graham BSc ⁷⁴, Jessica Hey BSc ⁷⁴, Ember Hilvers MPH ⁷⁴, Sophie Jones MSc ⁷⁴, Hannah Jones ⁷⁴, Sara Kumziene-Summerhayes MSc ⁷⁴, Dr Caoimhe McKerr PhD ⁷⁴, Jessica Powell BSc ⁷⁴, Georgia Pugh ⁷⁴, Sarah Taylor ⁷⁴, Alexander J Trotter MRes ⁷⁵, Charlotte A Williams BSc ⁹⁶, Leanne M Kermack MSc ¹⁰², Benjamin H Foulkes MSc ¹⁰⁹, Marta Gallis MSc ¹⁰⁹, Hailey R Hornsby MSc ¹⁰⁹, Stavroula F Louka MSc ¹⁰⁹, Dr Manoj Pohare PhD ¹⁰⁹, Paige Wolverson MSc ¹⁰⁹, Peijun Zhang MSc ¹⁰⁹, George MacIntyre-Cockett BSc ¹¹⁵, Amy Trebes MSc ¹¹⁵, Dr Robin J Moll PhD ¹¹⁶, Lynne Ferguson MSc ¹¹⁷, Dr Emily J Goldstein PhD ¹¹⁷, Dr Alasdair Maclean PhD ¹¹⁷ and Dr Rachael Tomb PhD ¹¹⁷

Samples and logistics, and Software and analysis tools:

Dr Igor Starinskij MSc, MRCP 53

Sequencing and analysis, and Software and analysis tools:

Laura Thomson BSc ⁵, Joel Southgate MSc ^{11, 74}, Dr Moritz UG Kraemer DPhil ²³, Dr Jayna Raghwani PhD ²³, Dr Alex E Zarebski PhD ²³, Olivia Boyd MSc ³⁹, Lily Geidelberg MSc ³⁹, Dr Chris J Illingworth PhD ⁵², Dr Chris Jackson PhD ⁵², Dr David Pascall PhD ⁵², Dr Sreenu Vattipally PhD ⁵³, Timothy M Freeman MPhil ¹⁰⁹, Dr Sharon N Hsu PhD ¹⁰⁹, Dr Benjamin B Lindsey MRCP ¹⁰⁹, Dr Keith James PhD ¹¹⁶, Kevin Lewis ¹¹⁶, Gerry Ton-kin-Hill ¹¹⁶ and Dr Jaime M Tovar-Corona PhD ¹¹⁶

Sequencing and analysis, and Visualisation:

MacGregor Cox MSci 20

Software and analysis tools, and Visualisation:

Dr Khalil Abudahab PhD ^{14, 116}, Mirko Menegazzo ¹⁴, Ben EW Taylor MEng ^{14, 116}, Dr Corin A Yeats PhD ¹⁴, Afrida Mukaddas BTech ⁵³, Derek W Wright MSc ⁵³, Dr Leonardo de Oliveira Martins PhD ⁷⁵, Dr Rachel Colquhoun DPhil ¹⁰⁴, Verity Hill ¹⁰⁴, Dr Ben Jackson PhD ¹⁰⁴, Dr JT McCrone PhD ¹⁰⁴, Dr Nathan Medd PhD ¹⁰⁴, Dr Emily Scher PhD ¹⁰⁴ and Jon-Paul Keatley ¹¹⁶

Leadership and supervision:

Dr Tanya Curran PhD³, Dr Sian Morgan FRCPath¹⁰, Prof Patrick Maxwell PhD²⁰, Prof Ken Smith PhD²⁰, Dr Sahar Eldirdiri MBBS, MSc, FRCPath²¹, Anita Kenyon MSc²¹, Prof Alison H Holmes MD^{38, 57}, Dr James R Price PhD^{38, 57}, Dr Tim Wyatt PhD⁶⁹, Dr Alison E Mather PhD⁷⁵, Dr Timofey Skvortsov PhD⁷⁷ and Prof John A Hartley PhD⁹⁶

Metadata curation:

Prof Martyn Guest PhD¹¹, Dr Christine Kitchen PhD¹¹, Dr Ian Merrick PhD¹¹, Robert Munn BSc¹¹, Dr Beatrice Bertolusso Degree³³, Dr Jessica Lynch MBCHB³³, Dr Gabrielle Vernet MBBS³³, Stuart Kirk MSc³⁴, Dr Elizabeth Wastnedge MD⁵⁶, Dr Rachael Stanley PhD⁵⁸, Giles Idle⁶⁴, Dr Declan T Bradley PhD^{69, 77}, Dr Jennifer Poyner MD⁷⁹ and Matilde Mori BSc¹¹⁰

Project administration:

Owen Jones BSc ¹¹, Victoria Wright BSc ¹⁸, Ellena Brooks MA ²⁰, Carol M Churcher BSc ²⁰, Mireille Fragakis HND ²⁰, Dr Katerina Galai PhD ^{20, 70}, Dr Andrew Jermy PhD ²⁰, Sarah Judges BA ²⁰, Georgina M McManus BSc ²⁰, Kim S Smith ²⁰, Dr Elaine Westwick PhD ²⁰, Dr Stephen W Attwood PhD ²³, Dr Frances Bolt PhD ^{38, 57}, Dr Alisha Davies PhD ⁷⁴, Elen De Lacy MPH ⁷⁴, Fatima Downing ⁷⁴, Sue Edwards ⁷⁴, Lizzie Meadows MA ⁷⁵, Sarah Jeremiah MSc ⁹⁷, Dr Nikki Smith PhD ¹⁰⁹ and Luke Foulser ¹¹⁶

Samples and logistics:

Dr Themoula Charalampous PhD^{12, 46}, Amita Patel BSc¹², Dr Louise Berry PhD¹⁵, Dr Tim Boswell PhD¹⁵, Dr Vicki M Fleming PhD¹⁵, Dr Hannah C Howson-Wells PhD¹⁵, Dr Amelia Joseph PhD¹⁵, Manjinder Khakh¹⁵, Dr Michelle M Lister PhD ¹⁵, Paul W Bird MSc, MRes ¹⁶, Karlie Fallon ¹⁶, Thomas Helmer ¹⁶, Dr Claire L McMurray PhD¹⁶, Mina Odedra BSc¹⁶, Jessica Shaw BSc¹⁶, Dr Julian W Tang PhD¹⁶, Nicholas J Willford MSc ¹⁶, Victoria Blakey BSc ¹⁷, Dr Veena Raviprakash MD ¹⁷, Nicola Sheriff BSc ¹⁷, Lesley-Anne Williams BSc ¹⁷, Theresa Feltwell MSc ²⁰, Dr Luke Bedford PhD ²⁶, Dr James S Cargill PhD ²⁷, Warwick Hughes MSc ²⁷, Dr Jonathan Moore MD ²⁸, Susanne Stonehouse BSc ²⁸, Laura Atkinson MSc ²⁹, Jack CD Lee MSc ²⁹, Dr Divya Shah PhD²⁹, Adela Alcolea-Medina Clinical scientist ^{32, 112}, Natasha Ohemeng-Kumi MSc^{32, 112}, John Ramble MSc ^{32, 112}, Jasveen Sehmi MSc ^{32, 112}, Dr Rebecca Williams BMBS ³³, Wendy Chatterton MSc ³⁴, Monika Pusok MSc ³⁴, William Everson MSc ³⁷, Anibolina Castigador IBMS HCPC ⁴⁴, Emily Macnaughton FRCPath ⁴⁴, Dr Kate El Bouzidi MRCP⁴⁵, Dr Temi Lampejo FRCPath⁴⁵, Dr Malur Sudhanva FRCPath⁴⁵, Cassie Breen BSc ⁴⁷, Dr Graciela Sluga MD, MSc ⁴⁸, Dr Shazaad SY Ahmad MSc ^{49, 70}, Dr Ryan P George PhD ⁴⁹, Dr Nicholas W Machin MSc ^{49, 70}, Debbie Binns BSc ⁵⁰, Victoria James BSc ⁵⁰, Dr Rachel Blacow MBCHB ⁵⁵, Dr Lindsay Coupland PhD ⁵⁸, Dr Louise Smith PhD ⁵⁹, Dr Edward Barton MD ⁶⁰, Debra Padgett BSc ⁶⁰, Garren Scott BSc ⁶⁰, Dr Aidan Cross MBCHB⁶¹, Dr Mariyam Mirfenderesky FRCPath⁶¹, Jane Greenaway MSc⁶², Kevin Cole⁶⁴, Phillip Clarke ⁶⁷, Nichola Duckworth ⁶⁷, Sarah Walsh ⁶⁷, Kelly Bicknell ⁶⁸, Robert Impey MSc ⁶⁸, Dr Sarah Wyllie PhD 68, Richard Hopes 70, Dr Chloe Bishop PhD 72, Dr Vicki Chalker PhD 72, Dr Ian Harrison PhD 72, Laura Gifford MSc ⁷⁴, Dr Zoltan Molnar PhD ⁷⁷, Dr Cressida Auckland FRCPath ⁷⁹, Dr Cariad Evans PhD ^{85, 109}, Dr Kate Johnson PhD^{85, 109}, Dr David G Partridge FRCP, FRCPath^{85, 109}, Dr Mohammad Raza PhD^{85, 109}, Paul Baker MD ⁸⁶, Prof Stephen Bonner PhD ⁸⁶, Sarah Essex ⁸⁶, Leanne J Murray ⁸⁶, Andrew I Lawton MSc ⁸⁷, Dr Shirelle Burton-Fanning MD⁸⁹, Dr Brendan AI Payne MD⁸⁹, Dr Sheila Waugh MD⁸⁹, Andrea N Gomes MSc ⁹¹, Maimuna Kimuli MSc ⁹¹, Darren R Murray MSc ⁹¹, Paula Ashfield MSc ⁹², Dr Donald Dobie MBCHB ⁹², Dr Fiona Ashford PhD ⁹³, Dr Angus Best PhD ⁹³, Dr Liam Crawford PhD ⁹³, Dr Nicola Cumley PhD ⁹³, Dr Megan Mayhew PhD ⁹³, Dr Oliver Megram PhD ⁹³, Dr Jeremy Mirza PhD ⁹³, Dr Emma Moles-Garcia PhD ⁹³, Dr Benita Percival PhD ⁹³, Megan Driscoll BSc ⁹⁶, Leah Ensell BSc ⁹⁶, Dr Helen L Lowe PhD ⁹⁶, Laurentiu Maftei BSc ⁹⁶, Matteo Mondani MSc ⁹⁶, Nicola J Chaloner BSc ⁹⁹, Benjamin J Cogger BSc ⁹⁹, Lisa J Easton MSc ⁹⁹, Hannah Huckson BSc 99, Jonathan Lewis MSc, PgD, FIBMS 99, Sarah Lowdon BSc 99, Cassandra S Malone MSc 99, Florence Munemo BSc ⁹⁹, Manasa Mutingwende MSc ⁹⁹, Roberto Nicodemi BSc ⁹⁹, Olga Podplomyk FD ⁹⁹, Thomas Somassa BSc ⁹⁹, Dr Andrew Beggs PhD ¹⁰⁰, Dr Alex Richter PhD ¹⁰⁰, Claire Cormie ¹⁰², Joana Dias MSc ¹⁰², Sally Forrest BSc ¹⁰², Dr Ellen E Higginson PhD ¹⁰², Mailis Maes MPhil ¹⁰², Jamie Young BSc ¹⁰², Dr Rose K Davidson PhD ¹⁰³, Kathryn A Jackson MSc ¹⁰⁷, Dr Lance Turtle PhD, MRCP ¹⁰⁷, Dr Alexander J Keeley MRCP ¹⁰⁹, Prof Jonathan Ball PhD ¹¹³, Timothy Byaruhanga MSc ¹¹³, Dr Joseph G Chappell PhD ¹¹³, Jayasree Dey MSc ¹¹³, Jack D Hill MSc ¹¹³, Emily J Park MSc ¹¹³, Arezou Fanaie MSc ¹¹⁴, Rachel A Hilson MSc ¹¹⁴, Geraldine Yaze MSc ¹¹⁴ and Stephanie Lo ¹¹⁶

Sequencing and analysis:

Safiah Afifi BSc ¹⁰, Robert Beer BSc ¹⁰, Joshua Maksimovic FD ¹⁰, Kathryn McCluggage Masters ¹⁰, Karla Spellman FD ¹⁰, Catherine Bresner BSc ¹¹, William Fuller BSc ¹¹, Dr Angela Marchbank BSc ¹¹, Trudy Workman HNC ¹¹, Dr Ekaterina Shelest PhD ¹³, ⁸¹, Dr Johnny Debebe PhD ¹⁸, Dr Fei Sang PhD ¹⁸, Dr Marina Escalera Zamudio PhD ²³, Dr Sarah Francois PhD ²³, Bernardo Gutierrez MSc ²³, Dr Tetyana I Vasylyeva DPhil ²³, Dr Flavia Flaviani PhD ³¹, Dr Manon Ragonnet-Cronin PhD ³⁹, Dr Katherine L Smollett PhD ⁴², Alice Broos BSc ⁵³, Daniel Mair BSc ⁵³, Jenna Nichols BSc ⁵³, Dr Kyriaki Nomikou PhD ⁵³, Dr Lily Tong PhD ⁵³, Ioulia Tsatsani MSc ⁵³, Prof Sarah O'Brien PhD ⁵⁴, Prof Steven Rushton PhD ⁵⁴, Dr Roy Sanderson PhD ⁵⁴, Dr Jon Perkins MBCHB ⁵⁵, Seb Cotton MSc ⁵⁶, Abbie Gallagher BSc ⁵⁶, Dr Elias Allara MD, PhD ⁷⁰, ¹⁰², Clare Pearson MSc ⁷⁰, ¹⁰², Dr David Bibby PhD ⁷², Dr Gavin Dabrera PhD ⁷², Dr Nicholas Ellaby PhD ⁷², Dr Eileen Gallagher PhD ⁷², Dr Jonathan Hubb PhD⁷², Dr Angie Lackenby PhD⁷², Dr David Lee PhD⁷², Nikos Manesis ⁷², Dr Tamyo Mbisa PhD⁷², Dr Steven Platt PhD⁷², Katherine A Twohig⁷², Dr Mari Morgan PhD⁷⁴, Alp Aydin MSci⁷⁵, David J Baker BEng⁷⁵, Dr Ebenezer Foster-Nyarko PhD⁷⁵, Dr Sophie J Prosolek PhD⁷⁵, Steven Rudder⁷⁵, Chris Baxter BSc⁷⁷, Sílvia F Carvalho MSc⁷⁷, Dr Deborah Lavin PhD⁷⁷, Dr Arun Mariappan PhD⁷⁷, Dr Clara Radulescu PhD⁷⁷, Dr Aditi Singh PhD⁷⁷, Miao Tang MD⁷⁷, Helen Morcrette BSc⁷⁹, Nadua Bayzid BSc⁹⁶, Marius Cotic MSc⁹⁶, Dr Carlos E Balcazar PhD¹⁰⁴, Dr Michael D Gallagher PhD¹⁰⁴, Dr Daniel Maloney PhD¹⁰⁴, Thomas D Stanton BSc¹⁰⁴, Dr Kathleen A Williamson PhD¹⁰⁴, Dr Robin Manley PhD¹⁰⁵, Michelle L Michelsen BSc¹⁰⁵, Dr Christine M Sambles PhD¹⁰⁵, Dr David J Studholme PhD¹⁰⁵, Joanna Warwick-Dugdale BSc¹⁰⁵, Richard Eccles MSc¹⁰⁷, Dr Lucille Rainbow PhD¹⁰⁷, Dr Edith E Vamos PhD¹⁰⁷, Hermione J Webster BSc¹⁰⁷, Dr Mark Whitehead PhD¹⁰⁹, Emma Betteridge BSc¹¹⁶, Dr Iraad F Bronner PhD¹¹⁶, Ben W Farr BSc¹¹⁶, Scott Goodwin MSc¹¹⁶, Dr Stefanie V Lensing PhD¹¹⁶, Shane A McCarthy^{116, 102}, Dr Michael A Quail PhD¹¹⁶, Diana Rajan MSc¹¹⁶, Dr Nicholas M Redshaw PhD¹¹⁶, Carol Scott ¹¹⁶, Lesley Shirley MSc¹¹⁶ and Scott AJ Thurston BSc¹¹⁶

Software and analysis tools:

Dr Will Rowe PhD⁴³, Amy Gaskin MSc ⁷⁴, Dr Thanh Le-Viet PhD ⁷⁵, James Bonfield BSc ¹¹⁶, Jennifier Liddle ¹¹⁶ and Andrew Whitwham BSc ¹¹⁶

1 Barking, Havering and Redbridge University Hospitals NHS Trust, 2 Barts Health NHS Trust, 3 Belfast Health & Social Care Trust, 4 Betsi Cadwaladr University Health Board, 5 Big Data Institute, Nuffield Department of Medicine, University of Oxford, 6 Blackpool Teaching Hospitals NHS Foundation Trust, 7 Bournemouth University, 8 Cambridge Stem Cell Institute, University of Cambridge, 9 Cambridge University Hospitals NHS Foundation Trust, 10 Cardiff and Vale University Health Board, 11 Cardiff University, 12 Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, 13 Centre for Enzyme Innovation, University of Portsmouth, 14 Centre for Genomic Pathogen Surveillance, University of Oxford, 15 Clinical Microbiology Department, Queens Medical Centre, Nottingham University Hospitals NHS Trust, 16 Clinical Microbiology, University Hospitals of Leicester NHS Trust, 17 County Durham and Darlington NHS Foundation Trust, 18 Deep Seq, School of Life Sciences, Queens Medical Centre, University of Nottingham, 19 Department of Infectious Diseases and Microbiology, Cambridge University Hospitals NHS Foundation Trust, 20 Department of Medicine, University of Cambridge, 21 Department of Microbiology, Kettering General Hospital, 22 Department of Microbiology, South West London Pathology, 23 Department of Zoology, University of Oxford, 24 Division of Virology, Department of Pathology, University of Cambridge, 25 East Kent Hospitals University NHS Foundation Trust, 26 East Suffolk and North Essex NHS Foundation Trust, 27 East Sussex Healthcare NHS Trust, 28 Gateshead Health NHS Foundation Trust, 29 Great Ormond Street Hospital for Children NHS Foundation Trust, 30 Great Ormond Street Institute of Child Health (GOS ICH), University College London (UCL), 31 Guy's and St. Thomas' Biomedical Research Centre, 32 Guy's and St. Thomas' NHS Foundation Trust, 33 Hampshire Hospitals NHS Foundation Trust, 34 Health Services Laboratories, 35 Heartlands Hospital, Birmingham, 36 Hub for Biotechnology in the Built Environment, Northumbria University, 37 Hull University Teaching Hospitals NHS Trust, 38 Imperial College Healthcare NHS Trust, 39 Imperial College London, 40 Infection Care Group, St George's University Hospitals NHS Foundation Trust, 41 Institute for Infection and Immunity, St George's University of London, 42 Institute of Biodiversity, Animal Health & Comparative Medicine, 43 Institute of Microbiology and Infection, University of Birmingham, 44 Isle of Wight NHS Trust, 45 King's College Hospital NHS Foundation Trust, 46 King's College London, 47 Liverpool Clinical Laboratories, 48 Maidstone and Tunbridge Wells NHS Trust, 49 Manchester University NHS Foundation Trust, 50 Microbiology Department, Buckinghamshire Healthcare NHS Trust, **51** Microbiology, Royal Oldham Hospital, **52** MRC Biostatistics Unit, University of Cambridge, 53 MRC-University of Glasgow Centre for Virus Research, 54 Newcastle University, 55 NHS Greater Glasgow and Clyde, 56 NHS Lothian, 57 NIHR Health Protection Research Unit in HCAI and AMR, Imperial College London, 58 Norfolk and Norwich University Hospitals NHS Foundation Trust, 59 Norfolk County Council, 60 North Cumbria Integrated Care NHS Foundation Trust, 61 North Middlesex University Hospital NHS Trust, 62 North Tees and Hartlepool NHS Foundation Trust, 63 North West London Pathology, 64 Northumbria Healthcare NHS Foundation Trust, 65 Northumbria University, 66 NU-OMICS,

Northumbria University, 67 Path Links, Northern Lincolnshire and Goole NHS Foundation Trust, 68 Portsmouth Hospitals University NHS Trust, 69 Public Health Agency, Northern Ireland, 70 Public Health England, 71 Public Health England, Cambridge, 72 Public Health England, Colindale, 73 Public Health Scotland, 74 Public Health Wales, 75 Quadram Institute Bioscience, 76 Queen Elizabeth Hospital, Birmingham, 77 Queen's University Belfast, 78 Royal Brompton and Harefield Hospitals, 79 Royal Devon and Exeter NHS Foundation Trust, 80 Royal Free London NHS Foundation Trust, 81 School of Biological Sciences, University of Portsmouth, 82 School of Health Sciences, University of Southampton, 83 School of Medicine, University of Southampton, 84 School of Pharmacy & Biomedical Sciences, University of Portsmouth, 85 Sheffield Teaching Hospitals NHS Foundation Trust, 86 South Tees Hospitals NHS Foundation Trust, 87 Southwest Pathology Services, 88 Swansea University, 89 The Newcastle upon Tyne Hospitals NHS Foundation Trust, 90 The Queen Elizabeth Hospital King's Lynn NHS Foundation Trust, 91 The Royal Marsden NHS Foundation Trust, 92 The Royal Wolverhampton NHS Trust, 93 Turnkey Laboratory, University of Birmingham, 94 University College London Division of Infection and Immunity, 95 University College London Hospital Advanced Pathogen Diagnostics Unit, 96 University College London Hospitals NHS Foundation Trust, 97 University Hospital Southampton NHS Foundation Trust, 98 University Hospitals Dorset NHS Foundation Trust, 99 University Hospitals Sussex NHS Foundation Trust, 100 University of Birmingham, 101 University of Brighton, 102 University of Cambridge, 103 University of East Anglia, 104 University of Edinburgh, 105 University of Exeter, 106 University of Kent, 107 University of Liverpool, 108 University of Oxford, 109 University of Sheffield, 110 University of Southampton, 111 University of St Andrews, 112 Viapath, Guy's and St Thomas' NHS Foundation Trust, and King's College Hospital NHS Foundation Trust, 113 Virology, School of Life Sciences, Queens Medical Centre, University of Nottingham, 114 Watford General Hospital, 115 Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, 116 Wellcome Sanger Institute, 117 West of Scotland Specialist Virology Centre, NHS Greater Glasgow and Clyde, 118 Whittington Health NHS Trust