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ABSTRACT

Background: Target trial emulation (TTE) has gained popularity in evaluating treatments and
health interventions. Its application to infectious disease outcomes requires careful
consideration, as infectious disease transmission violates the assumption of no interference. We
conducted a scoping review to understand how TTE approaches have been applied to vaccine
evaluation.

Methods: We conducted a systematic search of literature published in PubMed, Embase, and
Web of Science until May 2024, using keywords related to TTE, infectious diseases, and
vaccines. Three independent reviewers screened titles and abstracts for relevance. Full-text
articles meeting inclusion criteria were further assessed for eligibility.

Results: Our keyword-based search and citation search identified a total of 240 studies. Of
these, 34 original research studies used TTE approaches to evaluate vaccines, predominantly
published from 2022 to 2024. Most studies (n=32, 94%) were conducted in high-income
countries. The majority (n=31, 91%) evaluated the effect of COVID-19 vaccines, with one study
each evaluating influenza, mpox, and rotavirus vaccines. Nationwide healthcare databases
were used in 17 studies (50%). Twenty-one studies (62%) conducted analysis among adults
aged ≥18 years, while six studies (18%) focused on children <18 years. Most studies did not
define which of the four effects of vaccination they evaluated (direct, indirect, total, or overall
effect), and none incorporated interference in vaccine evaluation.

Conclusions: Our review highlights the increasing popularity of TTE in vaccine evaluation
following the COVID-19 pandemic. Further discussions are needed to establish TTE
approaches to estimating four effects of vaccination, using large, routinely collected data.

Keywords: vaccine evaluation, target trial emulation, scoping review, interference
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Key Messages

- This study performed a scoping review on how target trial emulation (TTE) approaches
have been applied to vaccine evaluation, which requires careful consideration of
interference.

- Among 34 studies in our scoping review, the majority evaluated the effect of COVID-19
vaccines, with one study each evaluating influenza, mpox, and rotavirus vaccines. Most
studies were conducted in high-income countries, predominantly published from 2022 to
2024.

- Most studies did not define which of the four effects of vaccination they evaluated (direct,
indirect, total, or overall effect), and none incorporated interference in vaccine
evaluation.

- Our scoping review indicates a need for careful discussions to estimate the four effects
of vaccination, using large, routinely collected data in the TTE framework.
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INTRODUCTION

Target trial emulation (TTE) is a causal inference framework that allows us to emulate a
hypothetical target trial using observational data. TTE has become a popular research method
to evaluate treatment and health interventions due to its practical and methodological
advantages, serving as an important alternative to randomized controlled trials (RCTs) (1). While
head-to-head RCTs are widely regarded as the gold standard for intervention evaluation, they
are time-consuming, and operational and ethical challenges often hinder the randomization of
participants in RCTs. Even when RCTs are feasible, they are generally restricted to small
sample sizes and short follow-up periods, making it difficult to detect rare or long-term outcomes
(2). RCTs also face constraints in comparing a large number of different protocols with various
doses and treatment schedules due to resource limitations. Additionally, RCTs are primarily
conducted in urban settings in high-income countries with selected population groups (3,4),
leaving underrepresented groups reliant on findings from contexts that may not align with their
own (5,6).

Observational studies could become useful to address these challenges posed by RCTs,
especially when leveraging existing surveillance systems or large-scale health data (7). Existing
surveillance systems can provide affordable and readily available data for intervention
evaluation, helping us overcome operational and ethical challenges with RCTs. If surveillance
systems cover the whole nation for a long time period, they could provide important information
on short- and long-term outcomes of various diseases across demographic characteristics and
geographic locations. However, as widely discussed, observational studies come with their own
set of analytic challenges, including selection bias, confounding, and immortal time bias (which
occurs when a time during which the outcome could not have happened is incorrectly handled in
the analysis, often due to the misalignment of eligibility criteria and treatment assignment)
(7–12).

TTE is a promising tool to harness the benefits of observational data while mitigating their
analytic challenges (1). TTE facilitates causal inference using observational data, by mimicking
a hypothetical target trial. By clearly specifying "time-zero" for treatment and control groups,
TTE aims to effectively remove selection bias and immortal time bias. With the blurred lines
between methodological advances in RCTs and observational studies, TTE has garnered
attention as a convenient design for evaluating interventions (13).

While TTE has promising applications, it requires careful attention when used in the context of
infectious diseases, where outcomes often do not satisfy the fundamental assumption of causal
inference—no interference (14,15). Infectious diseases, which spread from infected individuals
to susceptible individuals, challenge the assumption that the treatment of one person does not
affect another person (16,17). This concern becomes particularly important when evaluating the
effect of vaccines, because vaccination reduces population-level transmission, subsequently
lowering the risk of infection among both vaccinated and unvaccinated individuals. In fact,
vaccine evaluation has well-established guidelines categorizing vaccine effects into the following
four types (18,19):
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1) direct effect, which is the difference between the outcome in the vaccinated individual
and what the outcome would have been without vaccination in the same person;

2) indirect effect, which is the difference in the outcome in the unvaccinated individual in a
population with a vaccination program and what the outcome would have been in the
unvaccinated individual in a population without a vaccination program;

3) total effect, which is the difference between the outcome in the vaccinated individual in a
population with a vaccination program and what the outcome would have been in the
unvaccinated individual in a comparable population without a vaccination program; and

4) overall effect, which is the difference in the outcome in an average vaccinated individual
in a population with a vaccination program compared with the outcome of an
unvaccinated individual in a comparable population without a vaccination program.

In light of these considerations, we explored how the TTE framework has been applied to
vaccine evaluation. This scoping review investigated the recent trends in the use of TTE for
assessing vaccine effectiveness and safety. We summarized the target populations, data
sources, vaccine products, comparators, and clinical outcomes. Additionally, we examined
specific TTE and statistical methods used in each study, and investigated how studies defined
specific types of vaccine effects within the TTE framework. Finally, we evaluated whether and
how studies addressed the dependent nature of infectious diseases. Based on findings from the
scoping review, we highlighted methodological gaps and provided recommendations for future
studies using TTE in the field of vaccine evaluation.

METHODS

Search strategy

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) extension for a scoping review checklist to design this scoping review (20). The
protocol of this scoping review was registered with the Open Science Framework Registries on
January 29, 2024 (21). Studies were extracted from three databases: PubMed, Embase, and
Web of Science. The databases were searched from January 1, 2012, following the protocol of
a previous systematic review (22), to May 21, 2024. Studies published in English were included.
The search term included keywords related to vaccine evaluation and target trial emulation and
was determined through group consensus (Supplementary Table 1). As TTE approaches are
relatively new, especially in the field of vaccine evaluation, studies may have not explicitly stated
that TTE approaches were used. The authors aimed to identify these studies by going through
the literature and citations of identified studies.

Eligibility Criteria

Three independent reviewers (TK, MW, and KS) screened titles and abstracts based on the
following inclusion criteria: 1) original research articles, 2) primary objectives that include the
evaluation of vaccines, 3) study designs that adhere to a target trial emulation framework, and
4) peer-reviewed articles published in scientific journals.
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Data Extraction

To examine study characteristics, we extracted the following information: authors, year of
publication, countries of origin, target populations, data sources, treatments (i.e., evaluated
vaccine regimen), comparators, outcomes, types of vaccine effects evaluated, specific TTE
methods, applied statistical methods, and whether the interference was adjusted, incorporated,
or discussed. Three reviewers (TK, MW, and KS) independently conducted the full-text
screening.

RESULTS

Characteristics, target populations, and data sources of included studies

A total of 234 studies were identified from the keyword-based literature search, and 28 of them
met the inclusion criteria after the screening (Figure 1) (23–50). Additionally, we identified six
studies through citation search that did not explicitly state that the TTE approach was used but
applied it for vaccine evaluation (51–56). Therefore, a total of 34 studies were included in the
analysis. Most studies were published from 2022 to 2024 (2021: n=5, 15%; 2022: n= 10, 29%;
2023: n= 12, 35%; and 2024: n=7, 21%) (Table 1). The United States (n= 14,
41%)(24,27–29,32,38–40,44,45,47,48,50,51) and the United Kingdom (n= 5,
15%)(26,30,36,37,43) were the most common countries represented in the studies. According
to the World Bank classification (57), almost all studies (n=32, 94%) were conducted in
high-income countries (23–33,35–48,50–56), except for two (6%) in upper-middle-income
countries (34,49). Regarding the target population, nine studies (26%) conducted analysis
among veterans (24,27–29,32,38,39,45,47), and one study (3%) was conducted among nursing
home residents (40). Twenty-one studies (62%) conducted analysis among adults aged ≥18
years (24,26–30,32–34,36–39,41,43–49), three of which (9%) specifically focused on older
adults aged ≥60 years (26,34,43). Six studies (18%) focused on children <18 years
(23,31,35,51,55,56). Among studies conducted in the U.S., the most common data source was
the national healthcare databases of the Department of Veterans Affairs (n= 9, 64%)
(24,27–29,32,38,39,45,47), whereas, in other countries, national healthcare service data,
primary care data, cohort data, surveillance data, vaccine registry data, and insurance service
data were used. Nationwide healthcare databases were used in 17 studies (50%)
(23–25,27–29,32,35,36,38,39,41,42,45–47,49).

Evaluated vaccines, outcomes, and comparators

Almost all studies (n= 31, 91%) evaluated COVID-19 vaccines (23–34,36–47,49,50,52–56), with
one study each evaluating influenza, mpox, and rotavirus vaccines (35,48,51). Among the
COVID-19 vaccine studies, 18 (53%) examined the effectiveness against hospitalization and
death (24,25,28–30,32,34,36,38–44,49,52,54), eight (24%) evaluated the effectiveness against
infection only (23,26,31,37,45,50,55,56), one (3%) evaluated the effectiveness against death
only (47), and one (3%) evaluated the effectiveness against infection and death but not
hospitalization (27). One study (3%) focused on long COVID symptoms (46), and two studies
(6%) evaluated the safety of COVID-19 vaccines against adverse events (46,53). Fourteen
studies (41%) compared outcomes among vaccinated and unvaccinated individuals
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(23,25–27,31,33,34,43,45,47,52,53,55,56), while seven studies (21%) compared outcomes
among those who received a booster dose and those who did not (28,38,40,41,44,49,54). Ten
studies (29%) compared outcomes among those who received two different types of COVID-19
vaccines, such as BNT162b2 and mRNA-1273 (24,29,30,32,36,37,39,41,46,49). Two studies
(6%) used individuals who had previous infections as a comparator (42,53), and one study (3%)
evaluated the comparative effectiveness of different dosing intervals (50).

TTE approaches and statistical methods

Twenty one studies (62%) used a matched cohort (23,24,26–29,32–36,38,41–43,45,46,49,52–54),
while three studies (9%) used the clone-censor weight analysis to emulate target trials
(47,50,51). One study (3%) prospectively collected observational data to conduct TTE analysis
(37). Various statistical methods were used to quantify and compare vaccine effectiveness and
safety across comparators. The majority (n= 25, 74%) used the Kaplan-Meier estimator, Cox
proportional hazards model, or both (23–32,34,37,38,41–45,49,50,52–56). Seven studies (21%)
applied the cumulative incidence function, the Fine-Gray subdistribution hazards model, or both
to explicitly account for competing risks (30,38–40,44,47,51). Four studies (12%) used Poisson
regression (35,36,46,54). Five studies (15%) applied a causal survival analysis framework to
evaluate vaccine effectiveness (33,40,47,48,51).

Evaluated types of vaccine effects and interference

Among the included studies, three studies (9%) defined the type of vaccine effect that they
evaluated, all of which were direct effects (23,50,51). We did not find any study that explicitly
incorporated indirect effects in vaccine evaluation. Only three studies (9%) mentioned the lack
of adjustment for interference as a limitation (40,50,51).

DISCUSSION

Our review showed that TTE approaches have increasingly become a popular method for
vaccine evaluation in recent years, particularly following the introduction of COVID-19 vaccines.
The majority of the included studies focused on the evaluation of COVID-19 vaccines, but TTE
started to be applied to other vaccines, such as rotavirus vaccines, influenza vaccines, and
mpox vaccines. Many studies did not specify which type of vaccine effects – direct, indirect,
total, or overall effect – they evaluated. Interference of infectious diseases was not incorporated
or addressed in vaccine evaluation in the included studies.

TTE approaches prove useful to evaluate the comparative effectiveness and safety of different
vaccines (e.g., BNT162b2 and mRNA-1273 for COVID-19) or various dosing schedules (e.g.,
single dose vs. two doses of rotavirus vaccines; with vs. without a booster dose of COVID-19
vaccines), using observational data. RCTs cannot practically evaluate the full spectrum of
dosing schedules (combination of a total number of doses and timing of each dose) in fine scale
due to resource constraints. Real-world observational data, in contrast, have great variations in
actual dosing schedules followed by vaccine recipients, which could be used in TTE approaches
for evaluation. Selection bias and immortal time bias are major concerns when using
observational data for intervention evaluation, as observational studies inherently assume that
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individuals successfully completed their assigned protocols, with no dropouts or outcomes
during the course of intervention. This assumption is frequently violated when evaluating
vaccines, especially for those requiring multiple doses, because vaccine schedules themselves
affect the completion rate of the schedules. For example, the completion rate would be lower for
schedules with a larger number of doses (e.g., with vs. without booster dose). Clone-censor
weight analysis was specifically designed to address these issues by aligning the beginning of
the follow-up time period with the date when individuals became eligible for and assigned to
each protocol, rather than the date when they completed each protocol (58). These modern
techniques are a promising tool to evaluate the impact of vaccines, especially when RCTs are
not feasible or suitable.

Many of the included studies evaluated vaccines among the general population. This is a
significant advantage of TTE approaches using large, routinely collectedd data, compared to
RCTs that generally focus on smaller populations in selected settings. However, global disparity
remained in the TTE studies. Most studies in our scoping review were from the U.S. and
Europe. Since the impact of vaccines can vary across different settings due to varying
population characteristics, disease burden, and transmission levels, data from diverse
populations and regions are critical to guide global and local vaccine policy. TTE could be an
affordable tool to achieve this if countries have surveillance databases and vaccine registry
databases (3). To facilitate the use of TTE, it is important to teach these methods in workshops
or include them in public health training curricula worldwide.

Despite various advantages of TTE, challenges persist in the application of TTE to vaccine
evaluation, particularly concerning interference. The assumption of no interference is violated in
studies of vaccines (59,60), because vaccines reduce population-level transmission and
subsequently lower the risk of infection among both vaccinated and unvaccinated individuals.
As different vaccine products and their dosing schedules may produce varying levels of indirect
effects, it is crucial to incorporate these effects into vaccine evaluation to identify optimal
vaccine strategies. None of the studies in our scoping review addressed or incorporated
interference in their vaccine evaluation, although a few mentioned it as a limitation. A few
studies specified the types of vaccine effects evaluated, all of which were the direct effect.
Further discussions are needed to establish formal TTE methods for estimating the four effects
of vaccination in the presence of interference, using large, routinely collected data. Halloran and
Hudgens have discussed ways to estimate these four effects of vaccination with big data,
addressing specific data requirements (61). Perez-Heydrich, et al. have estimated the four
effects of cholera vaccination by applying inverse-probability weighted estimators to an
individually-randomized controlled trial (62,63). This approach could potentially be extended to
the TTE methodology. Additionally, agent-based modeling or other types of simulation modeling
could be alternative approaches to addressing interference within the TTE framework. For
example, agent-based modeling has been used to investigate the causal effects of preexposure
prophylaxis among men who have sex with men in the presence of interference or spillover
(64,65). The issue of interference is not restricted to infectious disease research; it is also
relevant in fields such as health promotion programs, social epidemiology, mental health, and
drug use disorder (66–70). Further work is needed to explore methods that address interference
in various contexts of the target trial emulation framework.
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The reliance on conventional survival analysis methods like Kaplan-Meier curves and Cox
proportional hazards models in TTE studies raises concerns regarding potential biases,
especially concerning competing risks (71). This is of particular concern when using surveillance
data in which studies generally assume that if individuals do not show up in surveillance
databases they did not have an outcome. To enhance the robustness of vaccine evaluation, we
advocate for the adoption of causal survival analysis frameworks, such as pooled logistic
regression with inverse probability weighting, which mitigate bias in long-term follow-up settings
(72). Novel measures like restricted mean survival time (RMST) offer alternatives to evaluate
vaccine effectiveness on an absolute scale, complementing traditional hazard ratio estimations
(73).

A limitation of our study is the potential omission of studies that applied TTE approaches but did
not explicitly label them as such. As TTE methodologies are relatively new, with standardized
protocols recently being proposed and implemented (22), our keyword-based search might not
have captured all relevant studies. To mitigate this issue, we conducted a review of the literature
and examined the citations of identified studies to include any that were initially missed in our
keyword-based search. Nonetheless, this approach may not have been exhaustive.

In summary, TTE has various practical and methodological advantages and is a useful approach
for evaluating vaccine programs, especially when RCTs are not feasible. Clone-censor weight
analysis is particularly effective for evaluating multi-dose vaccines to avoid selection bias and
immortal time bias. Challenges related to interference need to be addressed to incorporate
indirect effects or spillover effects in the evaluation of interventions, including vaccines. Moving
forward, further collaboration between causal inference researchers and infectious disease
experts will be beneficial for developing new approaches and guidelines on the application of
TTE for vaccine evaluation in the presence of interference.
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FIGURES

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) 2020
flow diagram for the systematic review.

Abbreviation: TTE, target trial emulation
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TABLES

Table 1. Characteristics of included studies.

Researchers Target
population Country Data source

Evaluated
vaccine and
schedule

Comparator Outcome
Evaluated
type of

vaccine effect

Specific
target trial
emulation
method

Statistical
method Year

Chemaitelly, et
al.

37,456 children
between 5 to 11
years of age and
adolescents
between 12 to 17
years of age

Qatar

National databases
for vaccination,
SARS-CoV-2
testing, and
hospitalization and
death

BNT162b2
(first dose) Unvaccinated SARS-CoV-2

infection Direct effect*
Matched
retrospective
cohort (1:1)

Kaplan–Meier
estimator and
Cox proportional
hazards model

2022

Dickerman, et
al.

219,842 veterans
aged ≥18 years US

National healthcare
databases of the
Department of
Veterans Affairs

BNT162b2
(first dose)

mRNA-1273
(first dose)

SARS-CoV-2
infection
hospitalization,
and death

Not specified Matched
cohort (1:1)

Kaplan–Meier
estimator 2022

Gazit, et al.

2,044,257
individuals aged
≥16 years and
previously
infected to
SARS-CoV-2

Israel

National database
of Maccabi
Healthcare
Services

BNT162b2
(first dose) Unvaccinated

SARS-CoV-2
infection,
hospitalization,
and death

Not specified Retrospective
cohort

Cox proportional
hazards model 2022
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Català, et al.
459,000
individuals aged
≥75

UK

Primary care data
from the Clinical
Practice Research
Datalink AURUM

BNT162b2 or
ChAdOx1
(first dose)

Unvaccinated SARS-CoV-2
infection Not specified Matched

cohort

Kaplan–Meier
estimator and
Cox proportional
hazards model

2023

Ioannou, et al.

4,199,742
individuals aged
≥18 receiving
care in the
Veterans Affairs
health care
system

US

National healthcare
databases of the
Department of
Veterans Affairs

mRNA
COVID-19
vaccines (first
dose)

Unvaccinated
SARS-CoV-2
infection and
death

Not specified Matched
cohort (1:1)

Kaplan–Meier
estimator and
Cox proportional
hazards model

2022

Ioannou, et al.

490,838
individuals aged
≥18 receiving
care in the
Veterans Affairs
health care
system

US

National healthcare
databases of the
Department of
Veterans Affairs

Booster
monovalent
mRNA
vaccination
(BNT162b2
or
mRNA-1273)

Not receiving
the booster

SARS-CoV-2
infection,
hospitalization,
and death

Not specified
Retrospective
matched
cohort (1:1)

Kaplan–Meier
estimator and
Cox proportional
hazards model

2022

Ioannou, et al.

902,235
individuals aged
≥18 receiving
care in the
Veterans Affairs
health care
system

US

National healthcare
databases of the
Department of
Veterans Affairs

BNT162b2
(first dose)

mRNA-1273
(first dose)

SARS-CoV-2
infection,
hospitalization,
and death

Not specified
Retrospective
matched
cohort (1:1)

Kaplan–Meier
estimator and
Cox proportional
hazards model

2022

Wei, et al.

1,311,075
individuals aged
≥18 from the
IQVIA Medical
Research
Database (IMRD)

UK
IQVIA Medical
Research
Database

BNT162b2
(first dose)

ChAdOx1
nCoV-19 (first
dose)

SARS-CoV-2
infection,
hospitalization,
and death

Not specified Cohort

Cumulative
incidence curves
and Cox
proportional
hazards model

2023
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Gazit, et al.

780,148 children
between 5 to 11
years of age and
adolescents
between 12 to 16
years of age

Israel
The Maccabi
Healthcare
Services

BNT162b2
(first dose) Unvaccinated SARS-CoV-2

infection Not specified Retrospective
cohort

Cox proportional
hazards model 2023

Dickerman, et
al.

130,392 veterans
aged ≥18 years US

National healthcare
databases of the
Department of
Veterans Affairs

BNT162b2
(third dose)

mRNA-1273
(third dose)

SARS-CoV-2
infection,
hospitalization,
and death

Not specified Matched
cohort (1:1)

Kaplan–Meier
estimator 2023

Tran, et al. 910 adult patients
aged ≥18 years France The ComPaRe

long covid cohort
BNT162b2
(first dose) Unvaccinated Long COVID

symptoms Not specified Matched
cohort (1:1)

Multivariable
logistic
regression
model

2023

Monteiro, et al. 125,286 adults
aged ≥60 years Brazil

INTEGRASUS (a
surveillance tool by
the State Health
Department) and
VACINE JÁ (a
COVID-19
vaccination
database)

CoronaVac
(first dose) Unvaccinated

SARS-CoV-2
infection,
hospitalization,
and death

Not specified
Retrospective
matched
cohort (1:1)

Kaplan–Meier
estimator 2023

Kildegaard, et
al.

308,520 children
aged 2–6 years Denmark

Nationwide Danish
health-care
registries and
databases

Live
attenuated
influenza
vaccines
(LAIV-4)

Unvaccinated

Any hospital
contact for
influenza and
influenza-relat
ed hospital
admissions

Not specified Matched
cohort (1:1)

Poisson
regression
model

2023
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Kerr, et al. 4,566,696 adults
aged ≥18 years UK

Linkage across 28
National databases
across UK nations

ChAdOx1
(first/second
dose)

BNT162b2
(first/second
dose)

SARS-CoV-2
infection,
hospitalization,
and death

Not specified Matched
cohort (1:1)

Poisson
regression
model

2023

Nguyen, et al.

19 ,159 adults
aged ≥18 years
who received
booster
vaccination

UK The Virus Watch
cohort

ChAdOx1
(primary
courses)

BNT162b2
(primary
courses)

SARS-CoV-2
infection Not specified Prospective

cohort

Kaplan–Meier
estimator and
Cox proportional
hazards model

2023

Butt, et al. 925,900 veterans
≥21 years US

National health
care databases of
the Department of
Veterans Affairs

BNT162b2 or
mRNA-1273
(booster)

Not receiving
the booster

SARS-CoV-2
infection,
hospitalization,
and death

Not specified
Retrospective
matched
cohort (1:1)

Cumulative
incidence curves
and Cox
proportional
hazards model

2022

Kelly, et al.
1,703,189
veterans aged
≥18 years

US

National health
care databases of
the Department of
Veterans Affairs

Three doses
of
mRNA-1273

Three doses of
BNT162b2

SARS-CoV-2
infection,
hospitalization,
and death

Not specified Cohort

Cumulative
incidence
function and
Fine-Gray model

2023

McConeghy, et
al.

10,949 nursing
home residents US

Databases of
Genesis
HealthCare and
Veterans Health
Administration
community living
centers

Receiving a
SARS-CoV-2
mRNA
booster

Not receiving
the booster

SARS-CoV-2
infection,
hospitalization,
and death

Not specified Cohort

Cumulative
incidence curves
and pooled
logistic
regression
model

2022
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Andersson, et
al.

4,333,174
individuals aged
≥50 years

Denmark
, Finland,
Norway,
and
Sweden

Nationwide
demography and
healthcare
registers

A: Receiving
a fourth dose
B: Bivalent
BA.4-5
mRNA
booster
(fourth dose)

A: Not receiving
the fourth dose
B: Bivalent BA.1
mRNA booster
(fourth dose)

SARS-CoV-2
infection,
hospitalization,
and death

Not specified Matched
cohort (1:1)

Kaplan–Meier
estimator 2023

Chemaitelly, et
al.

209,000
individuals Qatar

National databases
for vaccination,
SARS-CoV-2
testing, and
hospitalization and
death

Two doses of
same vaccine
(BNT162b2
or
mRNA-1273)

Natural infection

SARS-CoV-2
infection,
hospitalization,
and death

Not specified Matched
cohort (1:1)

Kaplan–Meier
estimator and
Cox proportional
hazards model

2022

Hulme, et al.
2,780,931
individuals aged
≥70 years

UK

Primary care
records, linked with
hospital, death
registry,
vaccination, and
surveillance
database

BNT162b2 or
ChAdOx1
(first dose)

Unvaccinated

SARS-CoV-2
infection,
hospitalization,
and death

Not specified Matched
cohort (1:1)

Kaplan–Meier
estimator and
Cox proportional
hazards model

2023

Hanberg, et al.

4,305 patients
aged ≥18 years
with systemic
autoimmune
rheumatic
diseases

US
The Mass General
Brigham
health-care system

BNT162b2 or
mRNA-1273
(fourth dose)

Not receiving
the fourth dose

SARS-CoV-2
infection,
hospitalization,
and death

Not specified Cohort

Cox proportional
hazards model,
cumulative
incidence
function and
Fine-Gray model

2024

Li, et al.
1,093,620
veterans aged
≥18 years

US

National healthcare
databases of the
Department of
Veterans Affairs

BNT162b2
(first dose) Unvaccinated SARS-CoV-2

infection Not specified

Test-negative
design
matched
cohort (1:1)

Kaplan–Meier
estimator 2024
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Choi, et al.
1,767,539
individuals aged
≥18 years

South
Korea

The National
Health Insurance
Service database

ChAdOx1
(first dose)

BNT162b2 or
mRNA-1273
(first dose)

Adverse
events of
special
interest (Incl.
acute cardiac
injury,
myocarditis
/pericarditis,
arrhythmia,
Guillain–Barré
syndrome,
vasovagal
syncope,
radiculopathy,
and aseptic
arthritis)

Not specified
Retrospective
matched
cohort (1:1)

Poisson
regression 2024

McConeghy, et
al.

3,158,507
veterans aged
≥18

US

National healthcare
databases of the
Department of
Veterans Affairs

mRNA
COVID-19
vaccination
(first dose)

Unvaccinated

Any cause of
death
excluding
recent
SARS-CoV-2
infection

Not specified

Cohort
(clone-censor
weight
analysis)

Cumulative
incidence curves 2024

Rosen, et al.

594 NYC
residents aged
≥18 and having
had a high-risk or
intermediate-risk
exposure to a
person with
confirmed or
probable mpox
disease

US

The New York City
Department of
Health and Mental
Hygiene
surveillance
database

A single
dose of
JYNNEOSTM
vaccine as
post-exposur
e prophylaxis
(PEP)

Not receiving
PEP

Development
of mpox Not specified Retrospective

cohort
Pooled logistic
regression 2024
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Lazar, et al.

53,456,500
individuals aged ≥
40 who received
at least 3 doses
of COVID-19
vaccination

Brazil

eSUS,
SIVEP-Gripe, the
national
vaccination
database (SI-PNI),
and the mortality
registry system
(SIM)

Cohort A:
Receiving a
fourth
vaccination
Cohort B:
mRNA-based
fourth
vaccination

Cohort A: Not
receiving fourth
vaccination
Cohort B:
Adenovirus-bas
ed fourth
vaccination

SARS-CoV-2
associated
hospitalization
or death

Not specified

Matched
cohort
(rolling entry
matching)

Kaplan-Meyer
estimator and
Cox proportional
hazard models

2024

Shioda, et al.
6,128,364 mRNA
COVID-19
vaccine recipients

US

The Georgia
Department of
Public Health
vaccine database,
the State Electronic
Notifiable Disease
Surveillance
System

Late-but-allo
wable
interdose
interval, and
late interdose
interval

Recommended
interdose
interval by the
FDA

SARS-CoV-2
infection Direct effect

Cohort
(clone-censor
weight
analysis)

Cox proportional
hazard models
and cumulative
risk curves

2024

Butler, et al.
1,147,699 infants
with ≥38 days of
age

US

IBM®
MarketScan®
Commercial
Database

1 or 2 doses
of rotavirus
vaccine

Unvaccinated

Acute
gastroenteritis-
related
emergency
department
visits or
hospitalization

Direct effect

Cohort
(clone-censor
weight
analysis)

Cumulative risk
function 2021

Dagan, et al.
3,159,136
individuals aged ≥
16

Israel Clalit Health
Services Data

BNT162b2
(first dose) Unvaccinated

SARS-CoV-2
infection,
symptomatic
Covid-19,
hospitalization,
severe illness,
and death

Not specified Matched
cohort (1:1)

Kaplan-Meyer
estimator 2021

Barda, et al.

1,970,224
individuals aged ≥
16 Israel Clalit Health

Services Data

Cohort A:
BNT162b2
(first dose)
Cohort B:
SARS-CoV-2
infection

Cohort A:
Unvaccinated
Cohort B: Not
previously
infected

Adverse
events Not specified Matched

cohort (1:1)
Kaplan-Meyer
estimator 2021
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Barda, et al.
1,158,269
individuals aged
≥ 16

Israel Clalit Health
Services Data

BNT162b2
(third dose)

Not receiving
the third dose

COVID-19-rela
ted
hospitalization
severe
disease, and
death

Not specified Matched
cohort (1:1)

Kaplan-Meyer
estimator and
Poisson
regression

2021

Reis, et al.

130,464
adolescents
between 12 to 18
years of age

Israel Clalit Health
Services Data

BNT162b2
(first dose) Unvaccinated

Documented
SARS-CoV-2
infection and
symptomatic
COVID-19

Not specified Observational
cohort

Kaplan-Meyer
estimator 2021

Cohen-Stavi,
et al.

136,127 children
5 to 11 years of
age

Israel Clalit Health
Services Data

BNT162b2
(first dose) Unvaccinated

Documented
SARS-CoV-2
infection and
symptomatic
COVID-19

Not specified Observational
cohort

Kaplan-Meyer
estimator 2022

*The original paper mentioned that they evaluated the overall effect, but it was the direct effect.
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SUPPLEMENTARY MATERIALS

Supplementary Table 1. Search terms and results of the literature review.

Search word Medium Start Date End Date Result

(("2012/01/01"[Date - Publication] : "2024/5/21"[Date -
Publication])) AND (((target trial[Title/Abstract]) OR (target
emulation[Title/Abstract]) OR (trial emulation[Title/Abstract])
OR (targeted trial[Title/Abstract]) OR (emulated
trial[Title/Abstract]) OR (emulated target[Title/Abstract])) AND
((infectious diseases[Title/Abstract]) OR
(infection[Title/Abstract]) OR (vaccine[Title/Abstract]) OR
(vaccination[Title/Abstract]) OR (immunization[Title/Abstract])))

PubMed 2012/01/01 2024/05/21 74

(‘target trial':ti,ab OR ‘target emulation':ti,ab OR ‘trial
emulation':ti,ab OR ‘targeted trial':ti,ab OR ‘emulated trial':ti,ab
OR ‘emulated target':ti,ab) AND (‘infectious diseases':ti,ab OR
‘infection':ti,ab OR ‘vaccine':ti,ab OR ‘vaccination':ti,ab OR
‘immunization':ti,ab)

Embase 2012/01/01 2024/05/21 101

(TI=("target trial" OR "target emulation" OR "trial emulation"
OR "targeted trial" OR "emulated trial" OR "emulated
target")OR AB=("target trial" OR "target emulation" OR "trial
emulation" OR "targeted trial" OR "emulated trial" OR
"emulated target")) AND (TI=("infectious diseases" OR
"infection" OR "vaccine" OR "vaccination" OR "immunization")
OR AB=("infectious diseases" OR "infection" OR "vaccine" OR
"vaccination" OR "immunization"))

Web of Science 2012/01/01 2024/05/21 59

*Results as of May 21, 2024
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