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ABSTRACT  27 

Purpose: To develop and test a deep learning (DL) algorithm for detecting referable glaucoma in the Los 28 

Angeles County (LAC) Department of Health Services (DHS) teleretinal screening program.  29 

Methods: Fundus photographs and patient-level labels of referable glaucoma (defined as cup-to-disc ratio 30 

[CDR] ≥ 0.6) provided by 21 trained optometrist graders were obtained from the LAC DHS teleretinal 31 

screening program. A DL algorithm based on the VGG-19 architecture was trained using patient-level 32 

labels generalized to images from both eyes. Area under the receiver operating curve (AUC), sensitivity, 33 

and specificity were calculated to assess algorithm performance using an independent test set that was also 34 

graded by 13 clinicians with one to 15 years of experience. Algorithm performance was tested using 35 

reference labels provided by either LAC DHS optometrists or an expert panel of 3 glaucoma specialists. 36 

Results: 12,098 images from 5,616 patients (2,086 referable glaucoma, 3,530 non-glaucoma) were used to 37 

train the DL algorithm. In this dataset, mean age was 56.8 ± 10.5 years with 54.8% females and 68.2% 38 

Latinos, 8.9% Blacks, 2.7% Caucasians, and 6.0% Asians. 1,000 images from 500 patients (250 referable 39 

glaucoma, 250 non-glaucoma) with similar demographics (p ≥ 0.57) were used to test the DL algorithm. 40 

Algorithm performance matched or exceeded that of all independent clinician graders in detecting patient-41 

level referable glaucoma based on LAC DHS optometrist (AUC = 0.92) or expert panel (AUC = 0.93) 42 

reference labels. Clinician grader sensitivity (range: 0.33-0.99) and specificity (range: 0.68-0.98) ranged 43 

widely and did not correlate with years of experience (p ≥ 0.49). Algorithm performance (AUC = 0.93) also 44 

matched or exceeded the sensitivity (range: 0.78-1.00) and specificity (range: 0.32-0.87) of 6 LAC DHS 45 

optometrists in the subsets of the test dataset they graded based on expert panel reference labels. 46 

Conclusions: A DL algorithm for detecting referable glaucoma developed using patient-level data provided 47 

by trained LAC DHS optometrists approximates or exceeds performance by ophthalmologists and 48 

optometrists, who exhibit variable sensitivity and specificity unrelated to experience level. Implementation 49 

of this algorithm in screening workflows could help reallocate eye care resources and provide more 50 

reproducible and timely glaucoma care. 51 

 52 
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Introduction 53 

Glaucoma is the leading cause of irreversible blindness worldwide with prevalence growing from 64.3 54 

million in 2013 to 111.8 million in 2040.1,2 In the United States, glaucoma is projected to affect 7.3 million 55 

people by 2050 with the majority being racial minorities.2 The rising burden of glaucoma in the United 56 

States is exacerbated by a critical shortage of eye care providers; the total supply of ophthalmologists is 57 

projected to decrease by 12% while demand for eye care services is projected to increase by 24% by 2035.3 58 

Underserved racial minorities and individuals living in non-metro areas who already experience difficulty 59 

accessing care will likely be disproportionately affected, thereby exacerbating ongoing disparities in 60 

glaucoam care.7 For example, Blacks and Hispanics in the US have a significantly higher risk of glaucoma-61 

related blindness and need for glaucoma surgery compared to non-Hispanic Whites.4–7 Therefore, there is 62 

an urgent need to develop and implement novel interventions that address the impending eye care crisis by 63 

ensuring timely and equitable detection of at-risk individuals. 64 

 The Los Angeles County (LAC) Department of Health Services (DHS), the second largest 65 

municipal health system in the United States, has operated a teleretinal screening program for newly 66 

diagnosed diabetics since 2013.19 While the program primarily focuses on detecting diabetic retinopathy, it 67 

also screens for other ocular conditions, including cataracts and referable glaucoma. The referable glaucoma 68 

component of the program has been effective; between 2016 to 2018, 817 patients were referred for 69 

glaucoma evaluations, 534 (65.4%) patients successfully completed in-person evaluations, and 131 (24.5%) 70 

patients were diagnosed with glaucoma by LAC DHS clinicians.8 Despite its success, the program is 71 

hindered by key workflow limitations. Reliance on trained optometrists to manually grade fundus 72 

photographs contributes to referral delays and takes time away from direct patient care. Manual grading by 73 

over 20 LAC DHS optometrists also potentially introduces inter-grader variability in disease detection.23 74 

Therefore, it is critical to consider alternative approaches for standardizing and streamlining referrals to 75 

ensure reproducibility and equity of care.  76 

Artificial intelligence (AI), specifically deep learning (DL), is an emerging technology in 77 

healthcare that could enhance the reproducibility and efficiency of glaucoma screening, thereby enabling 78 
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earlier detection and intervention. In this study, we develop a DL algorithm for detecting referable glaucoma 79 

from optic nerve photos of patients in LAC DHS teleretinal screening program. We also perform a rigorous 80 

validation of the algorithm by comparing its performance to a panel of 13 eye care providers, including 4 81 

fellowship-trained glaucoma specialists. This type of algorithm, once rigorously validated against standard-82 

of-care human grading, could be implemented to address the critical need for reproducible and scalable 83 

solutions in glaucoma screening, especially among vulnerable, safety net populations.  84 

 85 

Methods 86 

This study was approved by the University of Southern California Institutional Review Board. The study 87 

adhered to the tenets of the Declaration of Helsinki and complied with the Health Insurance Portability and 88 

Accountability Act. 89 

 90 

Data Source 91 

The LAC DHS health system administers a remote teleretinal screening program across 17 hospital- and 92 

community-based sites across Southern California.24 The program serves around 1,750 newly diagnosed 93 

diabetics per month. LAC DHS patients participating in the program receive dilation and fundus 94 

photography by trained technicians using the Topcon NW400 and NW8 (Topcon Corporation, Tokyo, 95 

Japan) and Canon CR-2 AF Digital (Canon U.S.A. Inc, Huntington, NY) cameras. These photographs are 96 

evaluated primarily for diabetic retinopathy and secondarily for referable glaucoma, defined as cup-to-disc 97 

ratio (CDR) ≥ 0.6, by 21 trained LAC DHS optometrists. Disease diagnoses, including for referable 98 

glaucoma, are recorded on the patient level. All patients 18 years of age or older with at least one fundus 99 

photograph taken between January 4, 2016 to December 2, 2022 were eligible for analysis. 100 

A segmentation-free approach to detecting referable glaucoma was selected given: 1) generally 101 

superior diagnostic performance compared to segmentation-reliant approaches; and 2) lack of access to 102 

CDR and segmentation data in the LAC DHS dataset.9 Fundus photos centered on the optic nerve from all 103 

patients diagnosed with referable glaucoma and a comparable number of patients diagnosed as non-104 
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glaucoma were retrieved for purposes of AI algorithm development. All photos underwent went manual 105 

review. Photos of low quality (e.g. blurry, underexposed or overexposed, or media opacities partially 106 

obscuring the optic nerve) were included to ensure generalizability of algorithms to real-world screening 107 

environments. However, photos were excluded if they could not be graded for glaucoma (e.g. media 108 

opacities totally obscuring the optic nerve, so out of focus that the optic nerve could not be delineated, or 109 

if the optic nerve was not in the field of view).  110 

 Fundus photos were cropped and centered around the optic nerve head for analysis in a two-step 111 

process that was programmed in Python. First, the program cropped each raw fundus image to the image 112 

region by removing any black or extraneous regions. Then, the program scanned the image using a sliding 113 

window approach that attempted to match the cropped image to the pattern of an optic disc. Once a potential 114 

match was found, that section of the image was saved as the final cropped image. If the program failed to 115 

locate or confirm an optic disc after multiple attempts, the entire uncropped image was saved. All images 116 

were manually reviewed to ensure cropping and centration were effective. Images where the optic disc was 117 

present but difficult to visualize due to occlusion or exposure issues were retained in the dataset to represent 118 

real-world scenarios. Images without an optic disc were excluded. Images were resized to 224 by 224 pixels 119 

to reduce hardware demands during training. Images were preprocessed by normalizing RGB channels and 120 

augmented through random rotation, translation, and perturbations to balance and contrast. 121 

 122 

Algorithm Development and Validation 123 

The LAC DHS dataset was divided into development (80%) and test (20%) datasets. The development 124 

dataset was further split into training (75%) and validation (25%) datasets. Some patients with multiple 125 

teleretinal screening visits were represented multiple times in the training and validation datasets, although 126 

reference labels by LAC DHS optometrists were unique for each visit. The test dataset was used to derive 127 

a sample of 1000 test images from 500 patients with no overlap of patients with the training or validation 128 

datasets.  129 

Patient-level labels of referable glaucoma were provided by one of 21 trained LAC DHS 130 
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optometrists after analyzing photos of both eyes. These patient-level labels were generalized to photos from 131 

both eyes to train DL algorithms for detecting referable glaucoma on the eye level. A convolutional neural 132 

network (CNN) was developed based on the VGG-19 architecture using the training and validation datasets 133 

labeled in this manner. The VGG-19 architecture was chosen due to its efficiency with image-based data 134 

while providing similar performance to other architectures, including InceptionV3, MobileNetV3, 135 

EfficientNetV2, and ResNet50V2. The average pooling layer was replaced by an adaptive pooling layer 136 

where bin size is proportional to input image size, enabling the CNN to be applied to input images of 137 

arbitrary sizes. Softmax-regression was used to calculate the multinomial probability of the three classes 138 

with a cross-entropy loss used during training. All layers of the CNN were fine-tuned using 139 

backpropagation; optimization was performed using stochastic gradient descent with warm restarts. The 140 

algorithm was then fine-tuned using transfer learning from labels provided by a glaucoma specialist. 141 

The DL algorithm was tested using the 1000-image test dataset, which was also graded by 13 142 

clinicians (1 optometrist, 7 general ophthalmologists, 1 neuro-ophthalmologist, and 4 glaucoma specialists) 143 

with between one to 15 years of clinical experience. Prior to grading, each of these clinicians was provided 144 

with a standardization dataset comprised of 20 images per CDR between 0.2 to 0.9 in 0.1-unit increments. 145 

As one objective of the study was to assess the effect of provider experience, the size of the sample dataset 146 

was limited to avoid strongly biasing providers with less experience. 147 

Three sets of reference labels of the independent test set were used to assess algorithm performance. 148 

The LAC DHS optometrist reference labels were provided on the patient level by 21 trained LAC DHS 149 

optometrists who originally graded the photos in the test dataset. Expert panel reference labels were 150 

provided by 3 of the fellowship-trained glaucoma specialists (V.N., B.W., B.Y.X.) among the 13 study 151 

graders, with their majority diagnosis (at least 2 of 3) determining the glaucoma status for each individual 152 

photo. Expert panel reference labels were provided on the eye level and combined to generate patient-level 153 

labels; a patient was positive for referable glaucoma if at least one eye was labeled as such. 154 

 155 

Data Analysis 156 
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Demographic characteristics between the training/validation and test sets were compared using a 2-tailed 157 

student t-test or a chi-square test. The study cohort was stratified by glaucoma status based on LAC DHS 158 

optometrist labels to compare demographic and clinical characteristics. Continuous measures were 159 

summarized by means and standard deviations and categorical measures were summarized by proportions 160 

and percentages. Area under the receiver operating characteristic curve (AUC), sensitivity, and specificity 161 

were calculated to assess algorithm performance compared to the sensitivity and specificity of individual 162 

clinician graders using all three sets of reference labels. A sub-analysis comparing LAC DHS optometrist 163 

and algorithm performance was performed for the LAC DHS six optometrists who graded the largest 164 

proportion of the independent test set using the expert panel reference labels. Linear regression was 165 

performed to assess the association between grader sensitivity or specificity and years of clinical 166 

experience. Statistical tests were considered statistically significant when the P value < 0.05. Statistical 167 

analyses were performed using Python’s SciPy statistics library. 168 

 169 

Results 170 

A total of 13,098 images were retrieved, and 12,998 images were included in the analysis after excluding 171 

100 cropped images (0.76%) without visible optic nerves. The training dataset had 8,996 images from 4,212 172 

patients, the validation dataset had 3,002 images from 1,404 patients, and the test dataset had 1,000 images 173 

from 500 patients. The 5,616 patients (2,086 referable glaucoma, 3,530 non-glaucoma) in the training and 174 

validation datasets had mean age of 56.8 ± 10.5 years, and there were 54.8% (N = 3091) females, 68.2% 175 

(N = 3826) Latinos, 8.9% (N = 501) Blacks, 2.7% (N = 153) Caucasians, 6.0% (N = 338) Asians, and 176 

14.2% (N = 798) Other or Not Specified race (Table 1). The 500 patients (250 referable glaucoma, 250 177 

non-glaucoma) in the test dataset had mean age of 57.3 ± 10.3 years, and were 52.4% (N = 262) females, 178 

69.2% (N = 346) Latino, 8.6% (N = 43) Black, 2.6% (N = 13) Caucasian, 5.2% (N = 26) Asian, and 15.0% 179 

(N = 75) Other or Not Specified race (Figure 1). There was no difference in age (p = 0.295), race (p = 180 

0.781), or sex (p = 0.569) between patients in the training/validation and test datasets (Table 1).  181 

Algorithm performance for detecting referable glaucoma on the patient level based on expert panel 182 
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labels of the test dataset had an AUC of 0.93 (95% CI, 0.91-0.95), with a sensitivity of 0.89 and specificity 183 

of 0.83. Individual graders had a sensitivity ranging from 0.33 to 0.99 and a specificity ranging from 0.68 184 

to 0.98, including a sensitivity of 0.98 and specificity of 0.79 by a 4th glaucoma specialist (Figure 1). There 185 

was no association between years of clinical experience and grader sensitivity (p = 0.491) or specificity (p 186 

= 0.559) (Figure 2). 187 

Algorithm performance for detecting referable glaucoma on the patient level based on LAC DHS 188 

optometrist labels of the test dataset had an AUC of 0.92 (95% CI, 0.90-0.94). Individual graders, including 189 

a 4th glaucoma specialist, had a sensitivity ranging from 0.32 to 0.91 and a specificity ranging from 0.61 to 190 

0.98 (Figure 3).  191 

Algorithm performance on the eye level based on expert panel labels of the test dataset had an AUC 192 

of 0.92 (95% CI, 0.90-0.93) with a sensitivity of 0.85 and specificity of 0.83. Individual graders had a 193 

sensitivity ranging from 0.28 to 0.99 and a specificity ranging from 0.74 to 0.99, including a sensitivity of 194 

0.90 and specificity of 0.82 by a 4th glaucoma specialist (Supplementary Figure 2). 195 

In the sub-analysis of the 6 most frequent LAC DHS optometrist graders (N = 70 to 150 images), 196 

the DL algorithm (AUC = 0.93) approximated or exceeded optometrist sensitivity (range: 0.78 to 1.0) and 197 

specificity (range: 0.32 to 0.87) in all 6 cases (Figure 4).  198 

 199 

Discussion 200 

In this study, we developed a DL algorithm for detecting referable glaucoma from fundus photographs of 201 

LAC DHS teleretinal screening patients that matched or exceeded performance by clinicians with a wide 202 

range of clinical expertise, including LAC DHS optometrists and independent ophthalmologists. The 203 

algorithm, trained on patient-level labels provided by 21 trained LAC DHS optometrists, demonstrated 204 

robust performance across three sets of reference labels. In addition, LAC DHS optometrists independent 205 

ophthalmologists exhibited wide ranges of sensitivity and specificity that raise concerns about variability 206 

associated with human grading of fundus photographs. Our findings highlight potential benefits of adopting 207 

AI-based strategies to improve the reproducibility, timeliness, and scalability of glaucoma care, which 208 
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could lead to earlier glaucoma detection and intervention. 209 

While several DL algorithms for detecting referable or manifest glaucoma from fundus 210 

photographs have previously been reported, none have been as rigorously validated against standard-of-211 

care human grading as in the current study.10-13 Our algorithm’s performance (AUC > 0.9) falls within the 212 

general range of performance demonstrated by these previous algorithms.9-14 However, it is difficult to 213 

evaluate algorithm performance based solely on comparisons with previous algorithms due to inter-study 214 

differences in disease definitions, study populations, and AI methodology. Therefore, we focused on 215 

producing a higher level of evidence to instill confidence in LAC DHS clinicians, patients, and healthcare 216 

administrators, especially given our plan to implement the algorithm in a real-world teleretinal screening 217 

environment. In a rigorous comparison with human graders, our algorithm demonstrated excellent 218 

performance, matching or exceeding the sensitivity and specificity of 13 independent clinicians with a wide 219 

range of clinical experience. In a separate sub-analysis, the algorithm also matched or outperformed 6 220 

current LAC DHS optometrists. This robust performance compared to current standard-of-care human 221 

grading provides evidence supporting algorithm integration into existing LAC DHS teleretinal screening 222 

workflows to improve timeliness of referable glaucoma detection and re-allocate optometrist time for direct 223 

eye care.  224 

We tested our DL algorithm using three different sets of reference labels to further assess the 225 

robustness of its performance. It is somewhat unsurprising that the algorithm matched or outperformed 226 

independent human graders when test labels were provided by the same LAC DHS optometrists who 227 

provided the training labels. However, it is interesting that the algorithm matched or outperformed 228 

independent human graders even when using test labels provided by an expert panel of three glaucoma 229 

specialists. The robust performance observed across test labels may partially stem from the diversity of 230 

training labels by 21 LAC DHS optometrists, which is likely advantageous when automating a task that is 231 

inherently variable on the individual-grader level.26 It may also partially stem from using reference labels 232 

provided by real-world LAC DHS optometrists rather than specially trained study graders. Using real-world 233 

training labels could help minimize the Hawthorne effect, by which individuals may modify their behaviors 234 
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in response to being observed or scrutinized, thereby making the labels more applicable in real-world 235 

clinical settings.28 It is also interesting that our algorithm, which was trained on patient-level training labels 236 

generalized to both eyes, maintained stable performance even when tested using eye-level reference labels. 237 

This suggests that the majority of referable glaucoma was bilateral and that our approach was resistant to 238 

noisy training labels to some degree. 239 

The high degree of variability among clinicians in referable glaucoma detection regardless of 240 

experience level presents a significant barrier for teleglaucoma screening programs. Our finding is 241 

consistent with previous studies that reported high variability among optometrists and/or ophthalmologists 242 

in grading CDR or detecting manifest glaucoma from fundus photographs.23, 27 This highlights an important 243 

issue associated with human grading in teleretinal screening workflows; systematic biases by graders can 244 

lead to large-scale over- or under-detection of disease, making it difficult to standardize disease detection 245 

and limiting the scalability of teleglaucoma screening overall.  This variability was also not correlated with 246 

experience level, which suggests that it may be an intrinsic property of graders that is not easily modifiable, 247 

even with extensive training. In contrast to human graders, AI algorithms can be trained using collective 248 

labels provided by a large number of graders, which may help mitigate systematic biases associated with a 249 

small number of undercallers (high specificity) or overcallers (high sensitivity). AI algorithms also provide 250 

consistent and reproducible image analysis, and sensitivity and specificity can be tailored to suit the specific 251 

needs and capacities of individual healthcare systems. Therefore, the relatively unbiased, reproducible, and 252 

adaptable nature of certain AI algorithms may make them better suited for large-scale, high throughput 253 

teleretinal screening. 254 

Our study has some limitations. First, our training data reflects the unique demographics of the 255 

communities served by LAC DHS, which may limit algorithm generalizability in other populations.2,5 This 256 

concern is mitigated by our primary intention to implement the algorithm locally in the LAC DHS teleretinal 257 

screening program. However, if the algorithm is implemented more widely in the future, it would likely 258 

benefit from re-tuning using data from local populations. Second, the utility of glaucoma screening in the 259 

general population remains unclear, which calls into question the role of algorithms for detecting referable 260 
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glaucoma.25 However, LAC DHS serves a high-risk population that is predominantly Latino, which may 261 

explain why glaucoma referrals at a CDR cutoff of 0.6 are high yield; around a quarter of LAC DHS 262 

teleretinal patients detected with referable glaucoma were diagnosed with manifest glaucoma after in-office 263 

evaluation.8 Finally, our algorithm only evaluates single fundus photographs, which is rather simplistic 264 

compared to the comprehensive glaucoma evaluation.8 However, it is important to point out that we plan 265 

to implement this algorithm in resource-constrained screening environments, where the cost of expensive 266 

diagnostic tests is prohibitive and the effectiveness of fundus photography alone has been demonstrated. 267 

Nevertheless, it is important to consider future opportunities to incorporate accessible factors, such as age 268 

and race, that could improve the predictive accuracy of glaucoma referrals and minimize the burden placed 269 

on the LAC DHS health system.16 270 

In conclusion, the performance of our DL algorithm for detecting referable glaucoma matched or 271 

exceeded LAC DHS optometrists and independent clinicians, including glaucoma specialists. 272 

Implementation of validated AI algorithms that approximate expert-level performance into existing clinical 273 

workflows could enhance the timeliness and quality of care while also conserving clinician time for direct 274 

patient care, which is a valuable commodity in resource-constrained healthcare systems providing care to 275 

undeserved, safety net populations.29-31 AI can also provide more reproducible and adaptable diagnostic 276 

capabilities, ensuring that more patients have consistent access to a higher standard of care.21 However, 277 

further work is needed to address technical, ethical, and legal questions surrounding AI for glaucoma care 278 

prior to wide-spread implementation.17,18 279 
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Table and Figure Captions 391 

 392 

Table 1. Baseline demographics stratified by training/validation or test dataset. 393 

Parameter Training/Validation Test P-value 

Age 56.8 ± 10.5 57.3 ± 10.3 0.30 

Sex   0.57 

   Female 55.0% (N = 3091) 52.4% (N = 262)  

   Male 42.8% (N = 2401) 44.8% (N = 224)  

Race   0.78 

   Latinos 68.1% (N = 3826) 69.2% (N = 346)  

   Blacks 8.9% (N = 501) 8.6% (N = 43)  

   Caucasians 2.7% (N = 153) 2.6% (N = 13)  

   Asians 6.0% (N = 338) 5.2% (N = 26)  

   Other or Not Specified 14.2% (N = 798) 15.0% (N = 75)  

Glaucoma status   < 0.001 

   Referable 37.1% (N = 2086) 50.0% (N = 250)  

   Non-Referable 62.9% (N = 3530) 50.0% (N = 250)  

 394 

Statistical significance tested by 2-tailed student t-test or Chi-squared test. 395 

 396 
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Figure 1. Patient-level algorithm and independent clinician performance (with years of experience) when 409 

using patient-level expert panel reference labels. 410 

 411 

Sn = Sensitivity; Sp = Specificity. 412 

 413 
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Figure 2. Correlation between sensitivity (left) or specificity (right) in detecting referable glaucoma and 418 

years of clinical experience among independent clinician graders. 419 
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Figure 3. Patient-level algorithm and independent clinician performance (with years of experience) when 444 

using patient-level Los Angeles County Department of Health Services (LAC DHS) optometrist 445 

reference labels.  446 

 447 

 448 

Sn = Sensitivity; Sp = Specificity. 449 
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Figure 4: Sub-analysis of patient-level algorithm and 6 LAC DHS optometrist performance in subsets of 453 

the test dataset when using patient-level expert panel reference labels. 454 

 455 

 456 

Sn = Sensitivity; Sp = Specificity. 457 
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Supplementary Figure 1: Eye-level algorithm and independent clinician performance (with years of 467 

experience) when using patient-level expert panel reference labels. 468 

 469 

 470 

Sn = Sensitivity; Sp = Specificity. 471 
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