1 **Online appendix**

2 Mass cytometry staining protocol

3 PBMCs were washed with RPMI 1640 with 10% fetal calf serum (FCS) and incubated in RPMI 4 1640 with 2% FCS and Pierce Universal Nuclease 25 kU (Thermo Fisher Scientific) diluted at 5 1:10000 and incubated at 37°C with 5% CO₂ for 30 min. Cells were incubated with cisplatin 1 6 µM to stain dead cells (Standard Biotools). Aspecific epitopes were blocked using 0.5 mg/mL 7 Human Fc Block (BD Biosciences) for 10 minutes at 4°C. Two panels of 35 and 40 antibodies 8 were developed for deep phenotyping of NK cells, CD4⁺ T cells, CD8⁺ T cells and V δ 2⁺ $\gamma\delta$ T 9 cells (Table S1). A total of 0.5 to 3 million PBMCs were incubated for 1 hour at 4°C with the extracellular antibodies. Cells were then fixed using 2% PFA. Cells were washed and 10 11 permeabilized with the Foxp3 Staining Buffer Set (eBioscience) for 30 min at 4°C. Intracellular 12 aspecific epitopes were blocked with 0.5 mg/mL Fc Block for 10 min at 4°C before incubation 13 with the mix of intracellular antibodies for 30 min at 4°C in Foxp3 Staining Buffer. Cells were 14 washed and samples were incubated with intracellular antibodies. Cells were then washed and 15 incubated overnight with 125 nM iridium intercalator (Standard Biotools) in 2% PFA. Finally, cells were diluted in EQTM Four Element Calibration Beads (Standard Biotools) before 16 17 acquisition on a Helios instrument (Standard Biotools). Raw .fcs files were manually pretreated 18 using FlowJo v10.8.1. After removal of beads, debris were excluded and cells were gated based 19 on iridium positivity. Dead cells were excluded based on cisplatin positivity.

Supplementary Table 1: Mass cytometry panels

22 Panel 1

Antigen	Metal	Localization	Company
CD45	89 Y	Extracellular	Standard Biotools
CD3	115 In	Extracellular	Immunomonitoring platform
CD45RA	143 Nd	Extracellular	Standard Biotools
CD270 (HVEM)	144 Nd	Extracellular	Standard Biotools
CD8a	146 Nd	Extracellular	Standard Biotools
CD278 (ICOS)	148 Nd	Extracellular	Standard Biotools
CD25 (IL-2R)	149 Sm	Extracellular	Standard Biotools
OX40	150 Nd	Extracellular	Standard Biotools
CD103	151 Eu	Extracellular	Standard Biotools
CD39	152 Sm	Extracellular	Biolegend
TIM-3	153 Eu	Extracellular	Standard Biotools
TIGIT	154 Sm	Extracellular	Standard Biotools
lgG4	147 Sm	Extracellular	Biolegend
CD279 (PD-1)	155 Gd	Extracellular	Standard Biotools
CD274 (PD-L1)	156 Gd	Extracellular	Standard Biotools
4-1BB	158 Gd	Extracellular	Standard Biotools
CCR7	159 Tb	Extracellular	Standard Biotools
CD28	160 Gd	Extracellular	Standard Biotools
CD272 (BTLA)	163 Dy	Extracellular	Standard Biotools
CD95	164 Dy	Extracellular	Standard Biotools
CD127 (IL-7R)	165 Ho	Extracellular	Standard Biotools
CD44	166 Er	Extracellular	Standard Biotools
CD27	167 Er	Extracellular	Standard Biotools
CD69	168 Er	Extracellular	Biolegend
TCRVδ2	169 Tm	Extracellular	Beckman Coulter
CD226 (DNAM-1)	171 Yb	Extracellular	Standard Biotools
CD57	172 Yb	Extracellular	Standard Biotools
CD73	173 Yb	Extracellular	Biolegend
CD4	174 Yb	Extracellular	Standard Biotools
LAG3	175 Lu	Extracellular	Standard Biotools
CD56	176 Yb	Extracellular	Standard Biotools
CD16	209 Bi	Extracellular	Standard Biotools
CD14	170 Er	Extracellular	Biolegend
CD15	170 Er	Extracellular	Biolegend
CD13	170 Er	Extracellular	Biolegend
CD33	170 Er	Extracellular	Biolegend
CD34	170 Er	Extracellular	Biolegend
Ki-67	141 Pr	Intracellaular	Biolegend
Foxp3	162 Dy	Intracellaular	Invitrogen
CD152 (CTLA-4)	161 Dy	Intracellaular	Standard Biotools

Antigen	Metal	Localization	Company
CD45	89 Y	Extracellular	Standard Biotools
CD3	115 In	Extracellular	Immunomonitoring platform
TCRVδ2	141 Pr	Extracellular	Beckman coulter
CD19	142 Nd	Extracellular	Standard Biotools
CD45RA	143 Nd	Extracellular	Standard Biotools
CD4	145 Nd	Extracellular	Standard Biotools
CD8a	146 Nd	Extracellular	Standard Biotools
NKG2C	147 Sm	Extracellular	Miltenyi
SIGLEC 7	152 Sm	Extracellular	Biotechne
TCRpanγδ	153 Eu	Extracellular	Beckman coulter
CD158b1/b2j	154 Sm	Extracellular	Beckman coulter
CD27	155 Gd	Extracellular	Standard Biotools
CD96	160 Gd	Extracellular	BD
NKp46	162 Dy	Extracellular	Standard Biotools
CD158a/h	163 Dy	Extracellular	Beckman coulter
NKG2A	165 Ho	Extracellular	Miltenyi
NKG2D	166 Er	Extracellular	Standard Biotools
NKp30	169 Tm	Extracellular	Beckman coulter
DNAM-1	171 Yb	Extracellular	Standard Biotools
CD57	172 Yb	Extracellular	Standard Biotools
lgG4	174 Yb	Extracellular	Biolegend
CD56	176 Yb	Extracellular	Standard Biotools
CD16	209 Bi	Extracellular	Standard Biotools
CD14	170 Er	Extracellular	Biolegend
CD15	170 Er	Extracellular	Biolegend
CD13	170 Er	Extracellular	Biolegend
CD34	170 Er	Extracellular	Biolegend
CD33	170 Er	Extracellular	Biolegend
Bcl-2	150 Nd	Intracellular	Biolegend
Bcl-XL	158 Gd	Intracellular	Biolegend
KI 67	159 Tb	Intracellular	Biolegend
CD107α	151 Eu	Intracellular	Standard Biotools
EOMES	149 Sm	Intracellular	BD Pharmigen
Tbet	161 Dy	Intracellular	Standard Biotools
Granzyme B	173 Yb	Intracellular	Standard Biotools

Supplementary Figure 1: Consort diagram.

A: 0.1 mg/kg Q12W

	0.1 mg/kg O/N	Placebo O/N	HR (CI)	0.1 mg/kg better	Placebo better	
Primary vs secondary AML Primary Secondary	28/41 8/9	31 / 44 5 / 7	0.78(0.46,1.3 1.80(0.53,6.0	81) — —	<u> </u> ■	>
Number of consolidation cy	cles	5 / 10	1 50/0 50 5 6		_	
2 cycles	29/41	31/41	0.74(0.43,1.2	24) -	-	
Cytogenetics Adverse Intermediate Irrelevant	5 / 6 27 / 40 4 / 4	4/5 28/41 4/5	0.77(0.17,3.5 0.94(0.55,1.6 0.62(0.13.2	52) — -		
Age category <=70 >70	17 / 26 19 / 24	25 / 35 11 / 16	0.72(0.38,1.3	87) — 51) —	-	
Sex Female Male	11 / 16 25 / 34	12 / 17 24 / 34	0.89(0.38,2.0 0.89(0.50,1.5	08) — 58) —	 	
ECOG 0 1	19 / 27 17 / 23	25 / 35 11 / 16	0.95(0.51,1.7 1.06(0.48,2.3	78) —		_
Dose of Cytarabine >= 9000 mg <= 2000 mg	14 / 20 21 / 29	25 / 32 11 / 19	0.70(0.35,1.4 1.57(0.74,3.3	41) — — —		>
Induction Therapy Idarubicine Daunorubicine	33 / 45 2 / 4	33 / 44 3 / 7	0.79(0.48,1.3 0.97(0.16,5.8	80) — — 87) ——	 	
Number of platelets < 100*10E9/L >= 100*10E9/L	3 / 3 33 / 47	5/6 31/45	1.03(0.15,6.9 0.90(0.55,1.4	93)	.	>
Genotype KIR AA1 BX	11 / 13 25 / 37	16 / 21 20 / 30	0.93(0.41,2.1 0.94(0.52,1.7	12) 72) —		
				0 :	1 2	3
O= Number of patients with event, N= Total number of patients						

B: 1 mg/kg Q4W

	1 mg/kg O/N	Placebo O/N	HR (CI)	1 mg/kg better	Placebo better
Primary vs secondary AML Primary Secondary	32 / 45 6 / 6	31 / 44 5 / 7	1.21(0.73,2.01) 5.97(1.17,30.58)		
Number of consolidation cycl 1 cycle 2 cycles	es 10 / 10 28 / 41	5/10 31/41	4.00(1.21,13.24) 1.14(0.68,1.92)		»
Cytogenetics Adverse Intermediate Irrelevant	4/5 33/44 1/2	4/5 28/41 4/5	0.84(0.20,3.57) 1.60(0.95,2.71) 0.76(0.08,6.90)	• _	
Age category <=70 >70	22 / 30 16 / 21	25 / 35 11 / 16	1.39(0.75,2.55) 1.35(0.60,3.05)	_	— ———————————————————————————————————
Sex Female Male	24 / 28 14 / 23	12 / 17 24 / 34	1.91(0.92,3.98) 0.96(0.49,1.87)		
ECOG 0 1	19 / 28 19 / 23	25 / 35 11 / 16	1.05(0.56,1.97) 1.84(0.82,4.14)		₽
Dose of Cytarabine >= 9000 mg <= 2000 mg	21 / 28 17 / 23	25 / 32 11 / 19	1.33(0.72,2.45) 2.09(0.94,4.65)		 →
Induction Therapy Idarubicine Daunorubicine	36 / 47 2 / 4	33 / 44 3 / 7	1.35(0.84,2.18) 1.27(0.21,7.62)		 ■→
Number of platelets < 100*10E9/L >= 100*10E9/L	4 / 4 34 / 47	5/6 31/45	4.14(0.73,23.53) 1.31(0.80,2.15)	_	-
Genotype KIR AA1 BX	10 / 13 28 / 37	16 / 21 20 / 30	1.51(0.63,3.58) 1.49(0.84,2.66)	 	
0 1 2 3 O= Number of patients with event, N= Total number of patients					

Supplementary Figure 2: Factors affecting LFS (Forest Plot analysis). A: lirilumab 0.1 mg/kg arm versus placebo; B: lirilumab 1.0 mg/kg arm versus placebo.

Supplementary Figure 3. KIR Occupancy According to Lirilumab Dose. KIR occupancy was assessed for the first 60 patients randomized at screening, C1 at H0 (pre-dose) and H+3; C1 Day 8; C2, C3 and C4 at H0. KIR saturation on peripheral-blood NK cells was assessed on whole blood by flow cytometry. KIR occupancy evaluation was based on the detection of free KIR on NK cells at each timepoint in comparison with the amount of KIR expressed on NK cells before dosing. LLOQ: lower limit of quantification.

Supplementary figure 4: Impact of lirilumab on NK cell maturation. A: NK cell expression CD56, CD57 and NKG2A by time point of blood collection (pooled analysis of arms 1.0 and 0.1). B: Total peripheral NK cells were manually pregated and exported for t-SNE analysis. Consensus files of NK cells were generated with fixed number cells for each treatment arm at each time point. Arrows indicate KIR+ clusters; red arrows indicate decreased density of KIR+ clusters.