Supplementary material

Long-term monitoring of SARS-CoV-2 load and variant composition at a large metropolitan wastewater treatment plant using a simple two-step direct capture RNA extraction, droplet digital PCR, and targeted mutation assays

Steven J. Balogh^a, George B. Sprouse^a*, Kenneth B. Beckman^b, Ray H.B. Watson^b, Darrell M. Johnson^b, Lee D. Pinkerton^a, Yabing H. Nollet^a, Adam W. Sealock^a, Walter S.C. Atkins^a, Laura M. Selenke^b, Joseph A. Kinney^b, Patrick J.R. Grady^{b,1}, Brandon Vanderbush^b, Jerry J. Daniel^b

^aMetropolitan Council Environmental Services, 2400 Childs Road, Saint Paul, MN, 55106, USA ^bUniversity of Minnesota Genomics Center, Minneapolis, MN, 55455, USA

***Corresponding author at:** *Metropolitan Council Environmental Services, 2400 Childs Road, Saint Paul, MN 55106, USA.* Email address: **george.sprouse@metc.state.mn.us** (G.B. Sprouse)

¹Current address: University of Minnesota, Department of Microbiology and Immunology, Minneapolis, MN 55455, USA

Abstract

Wastewater surveillance offers an objective, comprehensive, and cost-effective means of monitoring the prevalence and genomic heterogeneity of pathogens circulating in a community. Here, a novel two-step extraction procedure for the direct capture of SARS-CoV-2 RNA from raw wastewater is presented. Combined with reverse transcription-droplet digital polymerase chain reaction (RT-ddPCR) detection, the method provides a fast and sensitive method for measuring viral RNA concentrations in wastewater. The method was used to measure the concentration of SARS-CoV-2 RNA in daily samples of wastewater entering a major metropolitan wastewater treatment plant over the course of 32 months, from November 2020 through June 2023. In addition, targeted mutation assays were used with RT-ddPCR to characterize the evolving presence and prevalence of specific SARS-CoV-2 RNA, and chronicle its evolving variant composition, in wastewater treatment plant influent, providing near-real-time characterization of COVID-19 disease prevalence and trends in the served community.

Contents:

Table S1: RT-ddPCR conditions.

Table S2: Targeted mutation assays used in this study.

Table S3. Dilution series data.

Table S4: Recovery of SARS-CoV-2 RNA from spiked wastewater.

Table S5: Pearson correlation coefficients, r, of RIN-transformed data sets of 1) daily total wastewater load with daily new case counts; and 2) daily variant prevalence in wastewater with daily variant prevalence in MDH clinical sequences.

Table S6: Total amounts of total and variant RNA entering the Metro Plant from June 1, 2021, through June 30, 2023.

Figure S1: Dilution series results showing the average N1 and N2 concentrations (n=8) at each dilution level.

Figure S2. Variant frequency data with clinical data submitted by "Lab A" from March 21 to April 2, 2022, omitted.

Figure S3: Stacked area plot of variant loads over time.

Table S1. RT-ddPCR conditions.

Cycling step	N1, N2, and Thermo Fisher Mutation Assavs	Bio-Rad Mutation Assavs	Time	Number of cycles
	Temperature °C			
Reverse transcription	45	45	60 min	1
Enzyme activation	95	95	10 min	1
Denaturation	95	95	30 sec	40
Annealing/extension	60	55	1 min	40
Enzyme deactivation	98	98	10 min	1
Hold	4	4	infinite	1
Ramp rate for all tempera	ature changes = 2°C	/sec		

Table S2. Targeted mutation assays used in this study.

mutation	vendor	assay number
S.L452R	Bio-Rad	dMDS983315944
S.HV69/70del	Bio-Rad	dMDS944624402
S.K417N	Bio-Rad	dMDS817055273
S.L452Q	Thermo Fisher	CVKA3AV
ORF7b.L11F	Thermo Fisher	CVCE3VH
M.D3N	Thermo Fisher	CVAAAAK
N.E136D	Thermo Fisher	CV9HHWW
ORF1b:Y264H	Thermo Fisher	CV47VR3
S.F157L	Thermo Fisher	CVGZE4Y
ORF1ab.N4060S	Thermo Fisher	CVCE3VJ
ORF1b.P1953P	Thermo Fisher	CV32Z67

	N1	N2
sample	cp/LWW	cp/LWW
A1	54556	63029
A2	67175	50597
A3	61164	50295
A4	67077	73053
A5	70719	86930
A6	58961	78971
A7	45850	64115
A8	62411	73810
B1	13402	20525
B2	16001	12399
B 3	13099	11043
B4	14185	13889
B5	11624	32302
B6	11836	17947
B7	18008	17150
B8	13933	30231
C1	9559	10911
C2	5581	11548
C3	7321	7802
C4	5438	14031
C5	5608	17380
C6	6970	14146
C7	7213	10917
C8	6259	6164
D1	3476	8265
D2	1843	3312
D3	5483	7515
D4	5676	7025
D5	0	8924
D6	3420	4872
D7	4998	6988
D8	4964	3146

Table S3. Dilution series data. Samples A1-A8 are at 1:4 dilution; B1-B8 are at1:16 dilution; C1-C8 are at 1:32 dilution; and D1-D8 are at 1:64 dilution.

	N1	N2
1	87%	62%
2	79%	80%
3	111%	106%
4	75%	83%
5	79%	96%
6	77%	85%
7	82%	101%
8	74%	87%
9	122%	80%
10	86%	95%
11	74%	83%
12	76%	88%
13	74%	80%
14	105%	115%
15	98%	87%
16	73%	84%
17	70%	75%
18	66%	69%
avg	84%	86%
stdev	15%	13%
%CV	18	15

Table S4. Recovery of SARS-CoV-2 RNA from spiked wastewater (%).

Table S5. Pearson correlation coefficients, r, of RIN-transformed data sets of 1) daily total wastewater load with daily new case counts; and 2) daily variant prevalence in wastewater with daily variant prevalence in MDH clinical sequences; n = number of daily data pairs; p = p-value at $\alpha = 0.05$.

statistical comparison	r	n	p @ α=0.05
1) total load vs. daily new cases	0.75	970	<0.00001
2) variant prevalence, wastewater vs. clinical			
Delta	0.75	211	<0.00001
BA.1	0.89	144	<0.00001
BA.2 excluding BA.2.12.1	0.84	117	<0.00001
BA.2.12.1	0.88	116	<0.00001
BA.5 excluding BQ.1	0.87	235	<0.00001
BQ.1	0.85	161	<0.00001
XBB	0.78	192	<0.00001

Table S6. Total amounts of total and variant RNA entering the Metro Plant during our variant monitoring effort (i.e., from June 1, 2021, through June 30, 2023).

	sum (M copies/person)	% of total
Total RNA	117795	
Delta	26105	22%
BA.1	22229	19%
BA.2.12.1	6759	6%
BA.2 excl BA.2.12.1	8000	7%
BA.4	2902	2%
BQ.1	9782	8%
BA.5 excl BQ.1	21422	18%
BA.2.75	1227	1%
ХВВ	14452	12%
sum of measured		
variants	112878	96%
other (unmeasured)		4%

Figure S1. Dilution series results showing the average N1 and N2 concentrations (n=8) at each dilution level.

Figure S2. Variant frequency data with clinical data submitted by "Lab A" from March 21 to April 2, 2022, omitted. The 7-day simple moving average of the frequency of individual variants in clinical sequences collected in Minnesota is shown as consolidated colored bars, vs time. The 7-day simple moving average of the frequency of individual variants in Metro Plant influent is shown in solid or dashed black lines, vs time. Variants are labeled across the top.

Figure S3. Stacked area plot of variant loads over time. The 7-day simple moving average of the load of individual variants in Metro Plant influent is shown by the colored areas with black outline, vs time, from June 1, 2021, to June 30, 2023. The 7-day simple moving average of the total daily SARS-CoV-2 load in Metro Plant influent is shown in gray bars with red/black outline, vs. time. The sum of the calculated variant loads over this period comes to 96% of the total load measured using N1 and N2.