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Supplementary methods

GWAS for complex human phenotypes

We leveraged GWAS summary statistics, including individuals of European ancestry, for
various complex human phenotypes, including neuropsychiatric disorders, (Supplementary
Table 33) to perform genetic correlation analyses. A detailed description of each of the GWAS
summary statistics for each phenotype is available in their corresponding publication. Below,
we briefly describe the main characteristics of each dataset. GWAS summary statistics from
the Psychiatric Genetics Consortium (PGC) are publicly available at
https://pgc.unc.edu/for-researchers/download-results/. For depression and Parkinson’s
disease, the full set of GWAS summary statistics, including samples for 23andMe, were
accessed via a Data Access Request Form https://research.23andme.com/dataset-access/.
Other phenotypes can be accessed following instructions in the Data Availability section in
their corresponding publication.

Publicly available GWAS summary statistics for ADHD included 38,691 cases and 186,843
controls 1. An inverse variance-weighted GWAS meta-analysis of childhood ADHD classified
under DSM-IV was performed on samples from the PGC, deCODE and the Lundbeck
Foundation Initiative for Integrative Psychiatric Research (iPSYCH) 1. Strict quality control and
imputation procedures were performed 1. Principal components were included as covariates
in the model to control for putative population stratification 1. This dataset is publicly
available on the PGC’s website.

Publicly available GWAS summary statistics for Alzheimer's disease were retrieved from the
GWAS catalogue (https://www.ebi.ac.uk/gwas/) under accession number GCST90027158 2.
These summary statistics included 111,326 clinically diagnosed/proxy cases and 677,663
controls from several cohorts, such as the Rotterdam study, FinnGen and the UK Biobank.
Briefly, a two-stage GWAS was performed 2. Stage I included several GWAS analyses of different
samples for clinically diagnosed and proxy cases. These GWAS were conducted using logistic
regression and an additive genetic model as implemented in SNPTEST 2.5.4-beta3 3, PLINK
v1.90 4, or SAIGE 5. In stage II, using GWAS from stage I, a fixed-effect meta-analysis with an
inverse variance weighted approach was performed as implemented in METAL 6.

Publicly available GWAS summary statistics for bipolar disorder 7 were obtained from the
PGC’s public repository. These summary statistics include 41,917 cases and 371,549 controls
from 57 cohorts collected in Europe, North America and Australia 7. Briefly, for each cohort, a
GWAS was conducted using an additive logistic regression model in PLINK v1.90 4. Then, a
GWAS meta-analysis was performed using an inverse-variance-weighted fixed-effects model in
METAL (version 2011-03-25) 6.

GWAS summary statistics for depression were obtained from the PGC and through a Data
Access Request Form via 23andMe 8. An inverse-variance weighted meta-analysis was
performed on samples from the UK Biobank, the PGC, and 23andMe, including 246,363 cases
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and 561,190 controls 8. This dataset, excluding the samples from 23andMe, is publicly
available on the PGC’s website.

Publicly available GWAS summary statistics for neuroticism score, excluding samples from
23andMe, were retrieved from the Department of Complex Trait Genetics public repository
(https://ctg.cncr.nl/software/summary_statistics) 9. These summary statistics include
449,484 individuals from the UK Biobank and the Genetics of Personality Consortium 10. This
GWAS meta-analysis was performed using a two-sided sample-size-weighted fixed-effects
analysis as implemented in METAL 6.

GWAS summary statistics for Parkinson’s disease included 56,306 cases and 1,417,791
controls, yielding a total sample size of 1,474,097 11. These summary statistics represent a
meta-analysis from several different cohorts, including the International Parkinson’s Disease
Genomics Consortium (IPDG), 23andMe, and the UK Biobank. The meta-analysis was
performed using a fixed-effects model as implemented in METAL 6.

Publicly available GWAS summary statistics for schizophrenia were obtained from the PGC’s
public repository 12. These summary statistics include 53,386 cases and 77,258 controls from
around 90 cohorts. For each cohort, a GWAS was performed using an additive logistic
regression model as implemented in PLINK 4. Covariates included a subset of the first 20
principal components derived within each cohort. In addition, the meta-analysis of the GWAS
for the individual cohorts was performed using a standard error inverse-weighted
fixed-effects model 12.

Publicly available GWAS summary statistics for multisite chronic pain were retrieved from its
corresponding publication 13. This GWAS was performed on 387,649 participants of European
ancestry from the UK Biobank cohort via the item pain types experienced in the last month
(field ID 6159). Possible answers for this item included ‘None of the above’; ‘Prefer not to
answer’; pain at seven different body sites (head, face, neck/shoulder, back,
stomach/abdomen, hip, knee); or ‘all over the body’. Those who reported pain, were asked if
this pain had lasted for three months or longer.

GWAS summary statistics for anorexia nervosa were obtained from the PGC’s public
repository 14 and included 33 datasets with 16,992 cases and 55,525 controls. The Ricopili
(Rapid Imputation Consortium Pipeline) was used to perform quality control procedures and
imputation.

Autism spectrum disorder GWAS summary statistics were downloaded from the PGC’s public
repository 15. The Ricopili pipeline was used to perform quality control, imputation, PCA, and
primary association analyses. GWAS summary statistics included 8,381 individuals with
autism spectrum disorder and 27,969 controls and the meta-analysis was performed using
MTAG 16.
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GWAS summary statistics for birth weight included 321,223 participants of European ancestry
and were obtained 17 from the EGG website (https://egg-consortium.org/). The meta-analysis
was performed using a fixed-effects meta-analysis in GWAMA 18.

Birth head circumference GWAS summary statistics were retrieved from the EGG website
(https://egg-consortium.org/) and included 29,192 participants of European ancestry 19. This
GWAS meta-analysis was conducted with a fixed-effects inverse-variance weighted
meta-analysis as implemented in METAL 6.

GWAS summary statistics for body mass index were obtained from the GIANT consortium
website
(https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_fi
les) and included 456,426 participants of European ancestry from the UK Biobank cohort 20.
This GWAS was performed using a linear mixed model association testing implemented in
BOLT-LMM v2.3.

Height GWAS summary statistics, excluding samples from 23andMe, are available at the
GIANT consortium website
(https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_fi
les), and include 2,450,000 participants of European ancestry 21,22. These summary statistics
result from a GWAS meta-analysis conducted using a modified version of RAREMETAL 21.

Anxiety GWAS summary statistics included 31,977 cases and 82,144 controls of European
ancestry in an inverse-variance weighted, fixed-effect meta-analysis in METAL 23.

Obsessive-compulsive disorder GWAS summary statistics were downloaded from the PGC’s
public repository 24 and included 2,688 individuals of European ancestry as cases and 7,037
genomically matched controls. The meta-analysis was performed using the inverse variance
method as implemented in METAL.

GWAS summary statistics for Tourette Syndrome were obtained from the PGC’s public
repository and correspond to a GWAS meta-analysis in 4,819 case subjects and 9,488 controls
25. The GWAS meta-analysis was conducted using the inverse-variance method as
implemented in METAL.

Publicly available GWAS summary statistics for insomnia, excluding samples from 23andMe,
were retrieved from its corresponding publication 26. This GWAS included 109,402 cases and
277,131 controls from the UK Biobank cohort.

Publicly available GWAS summary statistics for snoring included 152,000 cases and 256,000
controls from the UK Biobank cohort. Participants were selected with the item (Field-ID:
1210) “Does your partner or a close relative or friend complain about your snoring?” which
could be answered with “Yes”, “No”, “Don’t know”, or “Prefer not to answer”. The GWAS was
performed using BOLT-LMM to account for cryptic relatedness and population stratification.
These summary statistics were retrieved from its corresponding publication 27.
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GWAS summary statistics for obstructive sleep apnoea included 175,522 cases and 350,475
controls of European ancestry. The meta-analysis was performed using 28. For this study, we
performed MTAG and combined sleep apnoea and snoring GWAS summary statistics 28.

GWAS summary statistics for suicide attempt included 35,786 cases and 779,392
ancestry-matched controls across 22 cohorts of European ancestry. These summary statistics
were obtained from The International Suicide Genetics Consortium (ISGC) Cohort. The
meta-analysis was performed using an inverse variance-weighted fixed effects model
(standard error) in METAL 29.

GWAS summary statistics for genetic generalized epilepsy were retrieved from the Epilepsy
Genetic Association Database (epiGAD) (epigad.org). These included 6,952 cases and 17,719
controls of European ancestry. Briefly, a P-value-based fixed-effects meta-analysis was
performed using METAL 30.

Variance in phenotype explained by SNPs (PVE)

We estimated the proportion of phenotypic variance (PVE) for intracranial and subcortical
brain volumes explained by the SNPs based on the equation used to evaluate that the genetic
variants selected for the exposure were strongly associated with the exposure:

𝑃𝑉𝐸 =  2β2 𝑀𝐴𝐹 (1 − 𝑀𝐴𝐹)

2β2𝑀𝐴𝐹(1−𝑀𝐴𝐹) +(𝑆𝐸(β))22𝑁 𝑀𝐴𝐹 (1−𝑀𝐴𝐹)

Where is the effect of the variant, is the minor allele frequency, the standard errorβ 𝑀𝐴𝐹 𝑆𝐸 
and N is the sample size.
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Supplementary figures

Supplementary Figure 1. Nucleus accumbens meta-analysis Manhattan plot. Results for
nucleus accumbens GWAS. Genome-wide significance is shown for the common threshold of
p-value < 5x10-8 (red dashed line), and also for the multiple comparisons-corrected threshold
of p-value < 6.25x10-9 (green dashed line). The p-values referenced here correspond to a
two-tailed Z-test test as implemented in MTAG.

Supplementary Figure 2. Nucleus accumbens meta-analysis QQ plot. The p-values
referenced here correspond to a two-tailed Z-test test as implemented in MTAG.



Supplementary Figure 3. Amygdala meta-analysis Manhattan plot. Results for amygdala
GWAS. Genome-wide significance is shown for the common threshold of p-value < 5x10-8 (red
dashed line), and also for the multiple comparisons-corrected threshold of p-value < 6.25x10-9

(green dashed line). The p-values referenced here correspond to a two-tailed Z-test test as
implemented in MTAG.

Supplementary Figure 4. Amygdala meta-analysis QQ plot. The p-values referenced here
correspond to a two-tailed Z-test test as implemented in MTAG.



Supplementary Figure 5. Brainstem meta-analysis Manhattan plot. Results for brainstem
GWAS. Genome-wide significance is shown for the common threshold of p-value < 5x10-8 (red
dashed line), and also for the multiple comparisons-corrected threshold of p-value < 6.25x10-9

(green dashed line). The p-values referenced here correspond to a two-tailed Z-test test as
implemented in MTAG.

Supplementary Figure 6. Brainstem meta-analysis QQ plot. The p-values referenced here
correspond to a two-tailed Z-test test as implemented in MTAG.



Supplementary Figure 7. Caudate nucleus meta-analysis Manhattan plot. Results for
caudate nucleus GWAS. Genome-wide significance is shown for the common threshold of
p-value < 5x10-8 (red dashed line), and also for the multiple comparisons-corrected threshold
of p-value < 6.25x10-9 (green dashed line). The p-values referenced here correspond to a
two-tailed Z-test test as implemented in MTAG.

Supplementary Figure 8. Caudate nucleus meta-analysis QQ plot. The p-values
referenced here correspond to a two-tailed Z-test test as implemented in MTAG.



Supplementary Figure 9. Hippocampus meta-analysis Manhattan plot. Results for
hippocampus GWAS. Genome-wide significance is shown for the common threshold of p-value
< 5x10-8 (red dashed line), and also for the multiple comparisons-corrected threshold of
p-value < 6.25x10-9 (green dashed line). The p-values referenced here correspond to a
two-tailed Z-test test as implemented in MTAG.

Supplementary Figure 10. Hippocampus meta-analysis QQ plot. The p-values referenced
here correspond to a two-tailed Z-test test as implemented in MTAG.



Supplementary Figure 11. Intracranial volumemeta-analysis Manhattan plot. Results for
intracranial volume GWAS. Genome-wide significance is shown for the common threshold of
p-value < 5x10-8 (red dashed line), and also for the multiple comparisons-corrected threshold
of p-value < 6.25x10-9 (green dashed line). The p-values referenced here correspond to a
two-tailed Z-test test as implemented in MTAG.

Supplementary Figure 12. Intracranial volume meta-analysis QQ plot. The p-values
referenced here correspond to a two-tailed Z-test test as implemented in MTAG.



Supplementary Figure 13. Globus pallidus meta-analysis Manhattan plot. Results for
globus pallidus GWAS. The p-values referenced here correspond to a two-tailed Z-test test as
implemented in MTAG.

Supplementary Figure 14. Globus pallidum meta-analysis QQ plot. The p-values
referenced here correspond to a two-tailed Z-test test as implemented in MTAG.



Supplementary Figure 15. Putamen meta-analysis Manhattan plot. Results for putamen
GWAS. Genome-wide significance is shown for the common threshold of p-value < 5x10-8 (red
dashed line), and also for the multiple comparisons-corrected threshold of p-value < 6.25x10-9

(green dashed line). The p-values referenced here correspond to a two-tailed Z-test test as
implemented in MTAG.

Supplementary Figure 16. Putamen meta-analysis QQ plot. The p-values referenced here
correspond to a two-tailed Z-test test as implemented in MTAG.



Supplementary Figure 17. Thalamus meta-analysis Manhattan plot. Results for thalamus
GWAS. Genome-wide significance is shown for the common threshold of p-value < 5x10-8 (red
dashed line), and also for the multiple comparisons-corrected threshold of p-value < 6.25x10-9

(green dashed line). The p-values referenced here correspond to a two-tailed Z-test test as
implemented in MTAG.

Supplementary Figure 18. Thalamus meta-analysis QQ plot. The p-values referenced here
correspond to a two-tailed Z-test test as implemented in MTAG.



Supplementary Figure 19. Ventral diencephalon meta-analysis Manhattan plot. Results
for ventral diencephalon GWAS. Genome-wide significance is shown for the common
threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). The p-values
referenced here correspond to a two-tailed Z-test test as implemented in MTAG.

Supplementary Figure 20. Ventral diencephalon meta-analysis QQ plot. The p-values
referenced here correspond to a two-tailed Z-test test as implemented in MTAG.



Supplementary Figure 21. UK Biobank nucleus accumbens Manhattan plot. Results for
nucleus accumbens GWAS in the UK Biobank. Genome-wide significance is shown for the
common threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 22. Nucleus accumbens QQ plot in the UK Biobank. Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.



Supplementary Figure 23. UK Biobank amygdala Manhattan plot. Results for amygdala
GWAS in the UK Biobank. Genome-wide significance is shown for the common threshold of
p-value < 5x10-8 (red dashed line), and also for the multiple comparisons-corrected threshold
of p-value < 6.25x10-9 (green dashed line). Two-sided P-values shown were derived from the
non-infinitesimal mixed model association test p-value as implemented in BOLT-LMM.

Supplementary Figure 24. Amygdala QQ plot in the UK Biobank. Two-sided P-values
shown were derived from the non-infinitesimal mixed model association test p-value as
implemented in BOLT-LMM.



Supplementary Figure 25. UK Biobank brainstem Manhattan plot. Results for brainstem
GWAS in the UK Biobank. Genome-wide significance is shown for the common threshold of
p-value < 5x10-8 (red dashed line), and also for the multiple comparisons-corrected threshold
of p-value < 6.25x10-9 (green dashed line). Two-sided P-values shown were derived from the
non-infinitesimal mixed model association test p-value as implemented in BOLT-LMM.

Supplementary Figure 26. Brainstem QQ plot in the UK Biobank . Two-sided P-values
shown were derived from the non-infinitesimal mixed model association test p-value as
implemented in BOLT-LMM.



Supplementary Figure 27. UK Biobank caudate nucleus Manhattan plot. Results for
caudate nucleus GWAS in the UK Biobank. Genome-wide significance is shown for the common
threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 28. Caudate nucleus QQ plot in the UK Biobank. Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.



Supplementary Figure 29. UK Biobank hippocampus Manhattan plot. Results for
hippocampus GWAS in the UK Biobank. Genome-wide significance is shown for the common
threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 30. Hippocampus QQ plot in the UK Biobank. Two-sided P-values
shown were derived from the non-infinitesimal mixed model association test p-value as
implemented in BOLT-LMM.



Supplementary Figure 31. UK Biobank intracranial volume Manhattan plot. Results for
intracranial volume GWAS in the UK Biobank. Genome-wide significance is shown for the
common threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 32. Intracranial volume QQ plot in the UK Biobank. Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.



Supplementary Figure 33. UK Biobank globus pallidus Manhattan plot. Results for globus
pallidus GWAS in the UK Biobank. Genome-wide significance is shown for the common
threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 34. Globus pallidum QQ plot in the UK Biobank. Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.



Supplementary Figure 35. UK Biobank putamen Manhattan plot. Results for putamen
GWAS in the UK Biobank. Genome-wide significance is shown for the common threshold of
p-value < 5x10-8 (red dashed line), and also for the multiple comparisons-corrected threshold
of p-value < 6.25x10-9 (green dashed line). Two-sided P-values shown were derived from the
non-infinitesimal mixed model association test p-value as implemented in BOLT-LMM.

Supplementary Figure 36. Putamen QQ plot in the UK Biobank. Two-sided P-values
shown were derived from the non-infinitesimal mixed model association test p-value as
implemented in BOLT-LMM.



Supplementary Figure 37. UK Biobank thalamus Manhattan plot. Results for thalamus
GWAS in the UK Biobank. Genome-wide significance is shown for the common threshold of
p-value < 5x10-8 (red dashed line), and also for the multiple comparisons-corrected threshold
of p-value < 6.25x10-9 (green dashed line). Two-sided P-values shown were derived from the
non-infinitesimal mixed model association test p-value as implemented in BOLT-LMM.

Supplementary Figure 38. Thalamus QQ plot in the UK Biobank. Two-sided P-values
shown were derived from the non-infinitesimal mixed model association test p-value as
implemented in BOLT-LMM.



Supplementary Figure 39. UK Biobank ventral diencephalon Manhattan plot. Results for
ventral diencephalon GWAS in the UK Biobank. Genome-wide significance is shown for the
common threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 40. Ventral diencephalon QQ plot in the UK Biobank. Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.



Supplementary Figure 41. ABCD cohort nucleus accumbens Manhattan plot. Results for
nucleus accumbens GWAS in the ABCD cohort. Genome-wide significance is shown for the
common threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 42. Nucleus accumbens QQ plot in the ABCD cohort. Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.



Supplementary Figure 43. ABCD cohort amygdala Manhattan plot. Results for amygdala
GWAS in the ABCD cohort. Genome-wide significance is shown for the common threshold of
p-value < 5x10-8 (red dashed line), and also for the multiple comparisons-corrected threshold
of p-value < 6.25x10-9 (green dashed line). Two-sided P-values shown were derived from the
non-infinitesimal mixed model association test p-value as implemented in BOLT-LMM.

Supplementary Figure 44. Amygdala QQ plot in the ABCD cohort. Two-sided P-values
shown were derived from the non-infinitesimal mixed model association test p-value as
implemented in BOLT-LMM.



Supplementary Figure 45. ABCD cohort brainstem Manhattan plot. Results for brainstem
GWAS in the ABCD cohort. Genome-wide significance is shown for the common threshold of
p-value < 5x10-8 (red dashed line), and also for the multiple comparisons-corrected threshold
of p-value < 6.25x10-9 (green dashed line). Two-sided P-values shown were derived from the
non-infinitesimal mixed model association test p-value as implemented in BOLT-LMM.

Supplementary Figure 46. Brainstem QQ plot in the ABCD cohort. Two-sided P-values
shown were derived from the non-infinitesimal mixed model association test p-value as
implemented in BOLT-LMM.



Supplementary Figure 47. ABCD cohort caudate nucleus Manhattan plot. Results for
caudate nucleus GWAS in the ABCD cohort. Genome-wide significance is shown for the
common threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 48. Caudate nucleus QQ plot in the ABCD cohort. Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.



Supplementary Figure 49. ABCD cohort hippocampus Manhattan plot. Results for
hippocampus GWAS in the ABCD cohort. Genome-wide significance is shown for the common
threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 50. Hippocampus QQ plot in the ABCD cohort. Two-sided P-values
shown were derived from the non-infinitesimal mixed model association test p-value as
implemented in BOLT-LMM.



Supplementary Figure 51. ABCD cohort intracranial volume Manhattan plot. Results for
intracranial volume GWAS in the ABCD cohort. Genome-wide significance is shown for the
common threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 52. Intracranial volume QQ plot in the ABCD cohort. Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.



Supplementary Figure 53. ABCD cohort globus pallidus Manhattan plot. Results for
globus pallidus GWAS in the ABCD cohort. Genome-wide significance is shown for the
common threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 54. Globus pallidum QQ plot in the ABCD cohort. Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.



Supplementary Figure 55. ABCD cohort putamen Manhattan plot. Results for putamen
GWAS in the ABCD cohort. Genome-wide significance is shown for the common threshold of
p-value < 5x10-8 (red dashed line), and also for the multiple comparisons-corrected threshold
of p-value < 6.25x10-9 (green dashed line). Two-sided P-values shown were derived from the
non-infinitesimal mixed model association test p-value as implemented in BOLT-LMM.

Supplementary Figure 56. Putamen QQ plot in the ABCD cohort. Two-sided P-values
shown were derived from the non-infinitesimal mixed model association test p-value as
implemented in BOLT-LMM.



Supplementary Figure 57. ABCD cohort thalamus Manhattan plot. Results for thalamus
GWAS in the ABCD cohort. Genome-wide significance is shown for the common threshold of
p-value < 5x10-8 (red dashed line), and also for the multiple comparisons-corrected threshold
of p-value < 6.25x10-9 (green dashed line). Two-sided P-values shown were derived from the
non-infinitesimal mixed model association test p-value as implemented in BOLT-LMM.

Supplementary Figure 58. Thalamus QQ plot in the ABCD cohort. Two-sided P-values
shown were derived from the non-infinitesimal mixed model association test p-value as
implemented in BOLT-LMM.



Supplementary Figure 59. ABCD cohort ventral diencephalon Manhattan plot. Results
for ventral diencephalon GWAS in the ABCD cohort. Genome-wide significance is shown for
the common threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 60. Ventral diencephalon QQ plot in the ABCD cohort. Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.



Supplementary Figure 61. UK Biobank nucleus accumbens Manhattan plot without
adjusting for ICV. Results for nucleus accumbens GWAS in the UK Biobank. Genome-wide
significance is shown for the common threshold of p-value < 5x10-8 (red dashed line), and also
for the multiple comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line).
Two-sided P-values shown were derived from the non-infinitesimal mixed model association
test p-value as implemented in BOLT-LMM.

Supplementary Figure 62. Nucleus accumbens QQ plot in the UK Biobank without
adjusting for ICV. Two-sided P-values shown were derived from the non-infinitesimal mixed
model association test p-value as implemented in BOLT-LMM.



Supplementary Figure 63. UK Biobank amygdala Manhattan plot without adjusting for
ICV. Results for amygdala GWAS in the UK Biobank. Genome-wide significance is shown for the
common threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 64. Amygdala QQ plot in the UK Biobank without adjusting for
ICV. Two-sided P-values shown were derived from the non-infinitesimal mixed model
association test p-value as implemented in BOLT-LMM.



Supplementary Figure 65. UK Biobank brainstem Manhattan plot without adjusting for
ICV. Results for brainstem GWAS in the UK Biobank. Genome-wide significance is shown for
the common threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 66. Brainstem QQ plot in the UK Biobank without adjusting for
ICV. Two-sided P-values shown were derived from the non-infinitesimal mixed model
association test p-value as implemented in BOLT-LMM.



Supplementary Figure 67. UK Biobank caudate nucleus Manhattan plot without
adjusting for ICV. Results for caudate nucleus GWAS in the UK Biobank. Genome-wide
significance is shown for the common threshold of p-value < 5x10-8 (red dashed line), and also
for the multiple comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line).
Two-sided P-values shown were derived from the non-infinitesimal mixed model association
test p-value as implemented in BOLT-LMM.

Supplementary Figure 68. Caudate nucleus QQ plot in the UK Biobank without adjusting
for ICV. Two-sided P-values shown were derived from the non-infinitesimal mixed model
association test p-value as implemented in BOLT-LMM.



Supplementary Figure 69. UK Biobank hippocampus Manhattan plot without adjusting
for ICV. Results for hippocampus GWAS in the UK Biobank. Genome-wide significance is
shown for the common threshold of p-value < 5x10-8 (red dashed line), and also for the
multiple comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line).
Two-sided P-values shown were derived from the non-infinitesimal mixed model association
test p-value as implemented in BOLT-LMM.

Supplementary Figure 70. Hippocampus QQ plot in the UK Biobank without adjusting
for ICV. Two-sided P-values shown were derived from the non-infinitesimal mixed model
association test p-value as implemented in BOLT-LMM.



Supplementary Figure 71. UK Biobank globus pallidus Manhattan plot without
adjusting for ICV. Results for globus pallidus GWAS in the UK Biobank. Genome-wide
significance is shown for the common threshold of p-value < 5x10-8 (red dashed line), and also
for the multiple comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line).
Two-sided P-values shown were derived from the non-infinitesimal mixed model association
test p-value as implemented in BOLT-LMM.

Supplementary Figure 72. Globus pallidum QQ plot in the UK Biobank without adjusting
for ICV. Two-sided P-values shown were derived from the non-infinitesimal mixed model
association test p-value as implemented in BOLT-LMM.



Supplementary Figure 73. UK Biobank putamen Manhattan plot without adjusting for
ICV. Results for putamen GWAS in the UK Biobank. Genome-wide significance is shown for the
common threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 74. Putamen QQ plot in the UK Biobank without adjusting for
ICV. Two-sided P-values shown were derived from the non-infinitesimal mixed model
association test p-value as implemented in BOLT-LMM.



Supplementary Figure 75. UK Biobank thalamus Manhattan plot without adjusting for
ICV. Results for thalamus GWAS in the UK Biobank. Genome-wide significance is shown for the
common threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 76. Thalamus QQ plot in the UK Biobank without adjusting for
ICV. Two-sided P-values shown were derived from the non-infinitesimal mixed model
association test p-value as implemented in BOLT-LMM.



Supplementary Figure 77. UK Biobank ventral diencephalon Manhattan plot without
adjusting for ICV. Results for ventral diencephalon GWAS in the UK Biobank. Genome-wide
significance is shown for the common threshold of p-value < 5x10-8 (red dashed line), and also
for the multiple comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line).
Two-sided P-values shown were derived from the non-infinitesimal mixed model association
test p-value as implemented in BOLT-LMM.

Supplementary Figure 78. Ventral diencephalon QQ plot in the UK Biobank without
adjusting for ICV. Two-sided P-values shown were derived from the non-infinitesimal mixed
model association test p-value as implemented in BOLT-LMM.



Supplementary Figure 79. UK Biobank subsample 1 nucleus accumbens Manhattan
plot. Results for nucleus accumbens GWAS in the UK Biobank. Genome-wide significance is
shown for the common threshold of p-value < 5x10-8 (red dashed line), and also for the
multiple comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line).
Two-sided P-values shown were derived from the non-infinitesimal mixed model association
test p-value as implemented in BOLT-LMM.

Supplementary Figure 80. Nucleus accumbens QQ plot in the UK Biobank subsample 1.
Two-sided P-values shown were derived from the non-infinitesimal mixed model association
test p-value as implemented in BOLT-LMM.



Supplementary Figure 81. UK Biobank subsample 1 amygdala Manhattan plot. Results
for amygdala GWAS in the UK Biobank. Genome-wide significance is shown for the common
threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 82. Amygdala QQ plot in the UK Biobank subsample 1. Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.



Supplementary Figure 83. UK Biobank subsample 1 brainstem Manhattan plot. Results
for brainstem GWAS in the UK Biobank. Genome-wide significance is shown for the common
threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 84. Brainstem QQ plot in the UK Biobank subsample 1. Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.



Supplementary Figure 85. UK Biobank subsample 1 caudate nucleus Manhattan plot.
Results for caudate nucleus GWAS in the UK Biobank. Genome-wide significance is shown for
the common threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 86. Caudate nucleus QQ plot in the UK Biobank subsample 1.
Two-sided P-values shown were derived from the non-infinitesimal mixed model association
test p-value as implemented in BOLT-LMM.



Supplementary Figure 87. UK Biobank subsample 1 hippocampus Manhattan plot.
Results for hippocampus GWAS in the UK Biobank. Genome-wide significance is shown for the
common threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 88. Hippocampus QQ plot in the UK Biobank subsample 1.
Two-sided P-values shown were derived from the non-infinitesimal mixed model association
test p-value as implemented in BOLT-LMM.



Supplementary Figure 89. UK Biobank subsample 1 intracranial volume Manhattan
plot. Results for intracranial volume GWAS in the UK Biobank. Genome-wide significance is
shown for the common threshold of p-value < 5x10-8 (red dashed line), and also for the
multiple comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line).
Two-sided P-values shown were derived from the non-infinitesimal mixed model association
test p-value as implemented in BOLT-LMM.

Supplementary Figure 90. Intracranial volume QQ plot in the UK Biobank subsample 1.
Two-sided P-values shown were derived from the non-infinitesimal mixed model association
test p-value as implemented in BOLT-LMM.



Supplementary Figure 91. UK Biobank subsample 1 globus pallidus Manhattan plot.
Results for globus pallidus GWAS in the UK Biobank. Genome-wide significance is shown for
the common threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 92. Globus pallidum QQ plot in the UK Biobank subsample 1.
Two-sided P-values shown were derived from the non-infinitesimal mixed model association
test p-value as implemented in BOLT-LMM.



Supplementary Figure 93. UK Biobank subsample 1 putamen Manhattan plot. Results
for putamen GWAS in the UK Biobank. Genome-wide significance is shown for the common
threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 94. Putamen QQ plot in the UK Biobank subsample 1. Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.



Supplementary Figure 95. UK Biobank subsample 1 thalamus Manhattan plot. Results
for thalamus GWAS in the UK Biobank. Genome-wide significance is shown for the common
threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 96. Thalamus QQ plot in the UK Biobank subsample 1. Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.



Supplementary Figure 97. UK Biobank subsample 1 ventral diencephalon Manhattan
plot. Results for ventral diencephalon GWAS in the UK Biobank. Genome-wide significance is
shown for the common threshold of p-value < 5x10-8 (red dashed line), and also for the
multiple comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line).
Two-sided P-values shown were derived from the non-infinitesimal mixed model association
test p-value as implemented in BOLT-LMM.

Supplementary Figure 98. Ventral diencephalon QQ plot in the UK Biobank subsample
1. Two-sided P-values shown were derived from the non-infinitesimal mixed model
association test p-value as implemented in BOLT-LMM.



Supplementary Figure 99. UK Biobank subsample 2 nucleus accumbens Manhattan
plot. Results for nucleus accumbens GWAS in the UK Biobank. Genome-wide significance is
shown for the common threshold of p-value < 5x10-8 (red dashed line), and also for the
multiple comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line).
Two-sided P-values shown were derived from the non-infinitesimal mixed model association
test p-value as implemented in BOLT-LMM.

Supplementary Figure 100. Nucleus accumbens QQ plot in the UK Biobank subsample 2.
Two-sided P-values shown were derived from the non-infinitesimal mixed model association
test p-value as implemented in BOLT-LMM.



Supplementary Figure 101. UK Biobank subsample 2 amygdala Manhattan plot. Results
for amygdala GWAS in the UK Biobank. Genome-wide significance is shown for the common
threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 102. Amygdala QQ plot in the UK Biobank subsample 2.
Two-sided P-values shown were derived from the non-infinitesimal mixed model association
test p-value as implemented in BOLT-LMM.



Supplementary Figure 103. UK Biobank subsample 2 brainstemManhattan plot. Results
for brainstem GWAS in the UK Biobank. Genome-wide significance is shown for the common
threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 104. Brainstem QQ plot in the UK Biobank subsample 2.
Two-sided P-values shown were derived from the non-infinitesimal mixed model association
test p-value as implemented in BOLT-LMM.



Supplementary Figure 105. UK Biobank subsample 2 caudate nucleus Manhattan plot.
Results for caudate nucleus GWAS in the UK Biobank. Genome-wide significance is shown for
the common threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 106. Caudate nucleus QQ plot in the UK Biobank subsample 2.
Two-sided P-values shown were derived from the non-infinitesimal mixed model association
test p-value as implemented in BOLT-LMM.



Supplementary Figure 107. UK Biobank subsample 2 hippocampus Manhattan plot.
Results for hippocampus GWAS in the UK Biobank. Genome-wide significance is shown for the
common threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 108. Hippocampus QQ plot in the UK Biobank subsample 2.
Two-sided P-values shown were derived from the non-infinitesimal mixed model association
test p-value as implemented in BOLT-LMM.



Supplementary Figure 109. UK Biobank subsample 2 intracranial volume Manhattan
plot. Results for intracranial volume GWAS in the UK Biobank. Genome-wide significance is
shown for the common threshold of p-value < 5x10-8 (red dashed line), and also for the
multiple comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line).
Two-sided P-values shown were derived from the non-infinitesimal mixed model association
test p-value as implemented in BOLT-LMM.

Supplementary Figure 110. Intracranial volume QQ plot in the UK Biobank subsample
2. Two-sided P-values shown were derived from the non-infinitesimal mixed model
association test p-value as implemented in BOLT-LMM.



Supplementary Figure 111. UK Biobank subsample 2 globus pallidus Manhattan plot.
Results for globus pallidus GWAS in the UK Biobank. Genome-wide significance is shown for
the common threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 112. Globus pallidum QQ plot in the UK Biobank subsample 2.
Two-sided P-values shown were derived from the non-infinitesimal mixed model association
test p-value as implemented in BOLT-LMM.



Supplementary Figure 113. UK Biobank subsample 2 putamen Manhattan plot. Results
for putamen GWAS in the UK Biobank. Genome-wide significance is shown for the common
threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 114. Putamen QQ plot in the UK Biobank subsample 2. Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.



Supplementary Figure 115. UK Biobank subsample 2 thalamus Manhattan plot. Results
for thalamus GWAS in the UK Biobank. Genome-wide significance is shown for the common
threshold of p-value < 5x10-8 (red dashed line), and also for the multiple
comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line). Two-sided
P-values shown were derived from the non-infinitesimal mixed model association test p-value
as implemented in BOLT-LMM.

Supplementary Figure 116. Thalamus QQ plot in the UK Biobank subsample 2.
Two-sided P-values shown were derived from the non-infinitesimal mixed model association
test p-value as implemented in BOLT-LMM.



Supplementary Figure 117. UK Biobank subsample 2 ventral diencephalon Manhattan
plot. Results for ventral diencephalon GWAS in the UK Biobank. Genome-wide significance is
shown for the common threshold of p-value < 5x10-8 (red dashed line), and also for the
multiple comparisons-corrected threshold of p-value < 6.25x10-9 (green dashed line).
Two-sided P-values shown were derived from the non-infinitesimal mixed model association
test p-value as implemented in BOLT-LMM.

Supplementary Figure 118. Ventral diencephalon QQ plot in the UK Biobank subsample
2. Two-sided P-values shown were derived from the non-infinitesimal mixed model
association test p-value as implemented in BOLT-LMM.



Supplementary Figure 119. Heatmap describing the variance explained by subcortical brain
volume and intracranial volume PRS on Europeans using both SBayesR and a clumping and
thresholding approach with a linear mixed effects model implemented in GCTA. P-values on
the y-axis represent different thresholds for clumping and thresholding approach. Results
with an asterisk (*) were nominally significant (p-value < 0.05), while those with two asterisks
(**) were significant after a Bonferroni multiple testing correction [0.05 / 90 [total number of
tests] = 5x10-5]. P-values in this figure correspond to two-sided wald-tests derived from the
linear mixed model results



Supplementary Figure 120. Heatmap describing the variance explained by subcortical brain
volume PRS on individuals of Non-European ancestry (African, Asian and admixed) using both
SBayesR and a clumping and thresholding approach with a linear mixed effects model
implemented in GCTA. P-values on the y-axis represent different thresholds for clumping and
thresholding approach. Results with an asterisk (*) were nominally significant (p-value <
0.05), while those with two asterisks (**) were significant after a Bonferroni multiple testing
correction [0.05 / 90 [total number of tests] = 5x10-5]. P-values in this figure correspond to
two-sided wald-tests derived from the linear mixed model results



Supplementary Figure 121. Heatmap describing the variance explained by subcortical brain
volume PRS on individuals of African ancestry using both SBayesR and a clumping and
thresholding approach with a linear mixed effects model implemented in GCTA. P-values on
the y-axis represent different thresholds for clumping and thresholding approach. Results
with an asterisk (*) were nominally significant (p-value < 0.05), while those with two asterisks
(**) were significant after a Bonferroni multiple testing correction [0.05 / 90 [total number of
tests] = 5x10-5]. P-values in this figure correspond to two-sided wald-tests derived from the
linear mixed model results



Supplementary Figure 122. Heatmap describing the variance explained by subcortical brain
volume PRS on individuals of Asian ancestry using both SBayesR and a clumping and
thresholding approach with a linear mixed effects model implemented in GCTA. P-values on
the y-axis represent different thresholds for clumping and thresholding approach. Results
with an asterisk (*) were nominally significant (p-value < 0.05), while those with two asterisks
(**) were significant after a Bonferroni multiple testing correction [0.05 / 90 [total number of
tests] = 5x10-5]. P-values in this figure correspond to two-sided wald-tests derived from the
linear mixed model results



Supplementary Figure 123. Heatmap describing the variance explained by subcortical brain
volume PRS on all ancestral samples (European, African, and Asian) using both SBayesR and a
clumping and thresholding approach with a linear mixed effects model implemented in GCTA.
P-values on the y-axis represent different thresholds for clumping and thresholding approach.
Results with an asterisk (*) were nominally significant (p-value < 0.05), while those with two
asterisks (**) were significant after a Bonferroni multiple testing correction [0.05 / 90 [total
number of tests] = 5x10-5]. P-values in this figure correspond to two-sided wald-tests derived
from the linear mixed model results.



Supplementary Figure 124. Polygenic prediction in the ABCD cohort
Barplots describing the variance explained by intracranial and subcortical brain volume
polygenic scores using the SBayesR approach with a multivariate linear regression model for
the whole sample and for European, Non-European, African-only and Asian-only ancestral
groups. The p-value of the association is shown at the top of each bar, those with an asterisk
(*) were significant after a Bonferroni multiple testing correction [0.05 / 50 [total number of
tests] = 1x10-3]. P-values in this figure correspond to two-sided wald-tests derived from the
linear regression results.



Supplementary Figure 125. Variance explained for subcortical brain structures with
and without adjustment for intracranial volume
Barplots describing the variance explained by intracranial and subcortical brain volume
polygenic scores using the SBayesR approach with a multivariate linear regression model for
individuals of European ancestry only. The p-value of the association is shown at the top of
each bar, those with an asterisk (*) were significant after a Bonferroni multiple testing
correction [0.05 / 20 [total number of tests] = 2.5x10-3]. P-values in this figure correspond to
two-sided wald-tests derived from the linear regression results.



Supplementary Figure 126. Genetic overlap with neuropsychiatric traits and disorders

Heatmap depicting genetic correlations (rG) of subcortical brain volumes (without adjusting

for ICV) from the UK Biobank with complex human phenotypes. *p-value < 0.05; **p-value

significant after Bonferroni multiple testing correction (0.05 / 198 [total number of genetic

correlation tests] = 2.53x10-4). Genetic correlations were estimated using LD score regression.

P-values correspond to chi-squared tests with one degree of freedom as implemented in LDSC

regression.



Supplementary Figure 127. Genetic overlap with neuropsychiatric traits and disorders

Heatmap depicting genetic correlations (rG) of subcortical brain volumes (adjusted for ICV)

from the UK Biobank with complex human phenotypes. *p-value < 0.05; **p-value significant

after Bonferroni multiple testing correction (0.05 / 198 [total number of genetic correlation

tests] = 2.53x10-4). Genetic correlations were estimated using LD score regression. P-values

correspond to chi-squared tests with one degree of freedom as implemented in LDSC

regression.



a)

b)

Supplementary Figure 128. ABCD cohort ancestry principal components. a) ABCD
cohort first two principal components of the 1000Genomes project. b) ABCD cohort second
and third principal components of the 1000Genomes project.



Supplementary Figure 129. ABCD cohort ancestry classification. Receiver operating
characteristic (ROC) curve assessment of sample classification according to self-reported
white race, which could be considered a proxy for European ancestry.
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