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ABSTRACT 

Lung adenocarcinoma (LUAD) is one of the most prevalent and deadly forms of lung 

cancer, necessitating the identification of novel biomarkers for diagnosis and 

prognosis. This study aims to explore the differential expression, diagnostic potential, 

underlying mechanisms, and clinical significance of PITPNC1 (phosphatidylinositol 

transfer protein, cytoplasmic 1) in LUAD.We utilized data from The Cancer Genome 

Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, comprising 530 

LUAD samples and 59 control samples from TCGA-LUAD, as well as GSE10072 and 

GSE75037 datasets with a total of 224 samples. Data preprocessing included 

normalization to Fragments Per Kilobase of transcript per Million mapped reads 

(FPKM) format and batch effect correction using the R package sva. Differential gene 

expression analysis was performed using DESeq2 for TCGA-LUAD and limma for 

GEO datasets. Receiver Operating Characteristic (ROC) curve analysis was 

conducted to assess the diagnostic efficacy of PITPNC1.Our results revealed that 

PITPNC1 is significantly overexpressed in LUAD samples compared to controls (p < 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 19, 2024. ; https://doi.org/10.1101/2024.08.18.24312183doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.08.18.24312183


0.001 in TCGA-LUAD; p < 0.01 in GEO). However, ROC curve analysis indicated 

moderate diagnostic accuracy with Area Under Curve (AUC) values between 0.5 and 

0.7. Differential expression analysis identified 3838 genes associated with PITPNC1 

expression, which were further subjected to Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. These genes 

were enriched in pathways related to external stimulus response, hormone level 

regulation, nitrogen metabolism, and neuroactive ligand-receptor interaction.Gene 

Set Enrichment Analysis (GSEA) highlighted significant enrichment in IL12 signaling 

pathway, Notch signaling pathway, MAPK6/MAPK4 signaling pathway, and 

Hedgehog On State pathway. Immune infiltration analysis using single-sample Gene 

Set Enrichment Analysis (ssGSEA) showed significant differences in five immune cell 

types between high and low PITPNC1 expression groups. Cox regression analysis 

indicated that PITPNC1 expression along with clinical stages are significant 

predictors of overall survival in LUAD patients.In conclusion, our comprehensive 

bioinformatics analysis underscores the potential role of PITPNC1 as a biomarker for 

LUAD diagnosis and prognosis. 

 

1. INTRODUCTION 
 

Lung adenocarcinoma (LUAD) represents the predominant subtype of non-small 

cell lung cancer (NSCLC) and continues to be a significant contributor to 

cancer-related deaths globally.In 2020, lung cancer accounted for approximately 2.2 

million new cases and 1.8 million deaths worldwide, with adenocarcinoma being the 

predominant histological type[1]. Despite advancements in diagnostic techniques and 

therapeutic strategies, the prognosis of LUAD patients remains poor, advanced 

NSCLC has a 5-year survival rate less than 20% [2]. Current treatments, including 

surgery, chemotherapy, radiotherapy, and targeted therapies, often face limitations 

such as drug resistance and adverse effects, underscoring the need for novel 

diagnostic and therapeutic markers[3]. 

PITPNC1 (phosphatidylinositol transfer protein, cytoplasmic 1) has been 
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identified as a potential oncogene in various cancers, including gastric cancer and 

colorectal cancer and melanoma cells，Halberg et al. identified PITPNC1 as a gene 

amplified in a significant portion of human breast cancer and observed its 

overexpression across multiple types of cancer [4], where it plays a role in tumor 

progression and metastasis[5]. Its involvement in LUAD, however, has not been 

extensively studied. In gastric cancer, PITPNC1 promotes cell invasion and 

proliferation by activating the PI3K/AKT signaling pathway[6]. These findings indicate 

that PITPNC1 could serve as a valuable biomarker and therapeutic target in LUAD. 

This study aims to explore the expression, diagnostic potential, and underlying 

mechanisms of PITPNC1 in LUAD. We examined the varying expression levels of 

PITPNC1 in both LUAD and normal lung tissues by utilizing information from the 

TCGA and GEO databases. Furthermore, we assessed the diagnostic performance 

of PITPNC1 through ROC curve analysis and examined its association with immune 

infiltration and clinical outcomes. Functional enrichment analyses, including GO, 

KEGG, and GSEA, were performed to elucidate the biological processes and 

pathways involving PITPNC1. Additionally, we constructed protein-protein interaction 

(PPI) networks and regulatory networks to identify key interacting partners and 

regulatory elements associated with PITPNC1. Finally, we evaluated the prognostic 

value of PITPNC1 using survival analysis and developed a nomogram to predict 

overall survival in LUAD patients. 

In summary, our comprehensive bioinformatics analysis revealed that PITPNC1 

is significantly overexpressed in LUAD and may serve as a promising diagnostic and 

prognostic biomarker. The findings also suggest that PITPNC1 is involved in critical 

oncogenic pathways and immune regulation, offering potential therapeutic targets for 

future interventions and delivering new perspectives on the molecular mechanisms 

that drive the progression of LUAD. 

2.MATERIALS AND METHODS 

2.1 Data Download 

We downloaded Lung Adenocarcinoma from The Cancer Genome Atlas (TCGA) 

via the R package TCGAbiolinks[7] (Version 2.30.0). The TCGA-LUAD dataset was 
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analyzed as a test set. After excluding data samples without prognostic information, 

530 LUAD samples with prognostic information and 59 Control samples were 

obtained in Counts format sequencing data. At the same time, it was standardized to 

FPKM (Fragments Per Kilobaseper Million) format, and the corresponding clinical 

data were obtained through UCSC Xena database[8], the specific information is 

shown in Table 1. 

Through the R package GEOquery[9] (Version 2.70.0) from GEO database[10] to 

download LUAD GSE10072[11], GSE75037[12] dataset. The samples of datasets 

GSE10072 and GSE75037 were all from Homo sapiens, and the tissue source was 

Lung; the specific information is shown in Table 2. Among them, the chip platform of 

dataset GSE10072 was GPL96, which included 58 LUAD samples and 49 Control 

samples. The chip platform of dataset GSE75037 was GPL6884, which included 83 

LUAD samples and 83 Control samples. All samples were included in this study. 

The R package sva[13] (Version 3.50.0) was used to debatching the Datasets 

GSE10072 and GSE75037 to obtain the Combined GEO datasets. Among them, the 

Combined Datasets included 141 cases and 132 controls. Finally, the Combined 

Datasets were standardized by R package limma[14] (Version 3.58.1), and the 

annotation probes were standardized and normalized. Principal component 

analysis(PCA) was performed on the matrix of equations before and after eliminating 

batch effects to verify the effect of removing batch effect [15]. PCA is a data 

dimensionality reduction method that extracts data feature vectors (components) from 

high-dimensional data. To transform the data into low-dimensional data and display 

these features in 2D or 3D graphs. 

 
2.2 Lung adenocarcinoma-associated differentially expressed genes 

Based on the sample classification of the lung adenocarcinoma dataset 

(TCGA-LUAD), the specimens were categorized into the LUAD group and the Control 

group. The differential analysis of genes in the LUAD group compared to the Control 

group was carried out using the R package DESeq2 (Version 1.42.0)[16]. The 

threshold for Differentially Expressed Genes (DEGs) is established with logFC > 0 
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and adjusted P < 0.01 for genes that are up-regulated, while logFC < 0 and adjusted 

P < 0.01 indicate down-regulated genes. The method employed for p-value correction 

was the Benjamini-Hochberg (BH) approach. The outcomes of the differential 

analysis were visualized utilizing the R package ggplot2 (Version 3.4.4) to create 

volcano plots. 

Based on the classification of the Combined Datasets, the samples were 

separated into the LUAD group and the Control group. The differential gene analysis 

between the LUAD group and the control group was conducted using the limma 

package (Version 3.58.1) in R. The threshold for DEGs is defined as logFC > 0 and 

adjusted P < 0.01 for up-regulated genes, while down-regulated genes are 

characterized by logFC < 0 and adjusted P < 0.01. p value correction method was 

Benjamini-Hochberg (BH). The results of the difference analysis were plotted using 

the R package ggplot2 (Version 3.4.4) for volcano plots. 

To identify differentially expressed genes associated with LUAD, All up-regulated 

DEGs with logFC > 0 and adj.p < 0.01 obtained by differential analysis in the lung 

adenocarcinoma dataset (TCGA-LUAD) and the GEO Datasets (Combined Datasets) 

were interposed and Venn diagram was drawn. Then, differential analysis of 

theTCGA-LUAD and combined GEO datasets yielded all up-regulated DEGs with 

logFC > 0 and adj.p < 0.01, which were then interspersed, allowing for the creation of 

a Venn diagram. Genes that are differentially expressed concerning LUAD were 

identified by merging the intersecting genes, and a heatmap was generated using the 

R package pheatmap (Version 1.0.12). 

2.3  Differential expression verification and ROC curve analysis of PITPNC1 

In order to further study the expression differences of PITPNC1 in the LUAD 

group and the Control group of the TCGA-LUAD and the Combined GEO Datasets. 

The statistical significance of differences was estimated using independent Student's 

t test according to PITPNC1 expression levels, and comparison plots between groups 

were constructed. The ROC curve of PITPNC1 was plotted on the TCGA-LUAD and 

GEO combined data sets using the R software package pROC (version 1.18.5), and 

the area under the ROC curve (AUC) was calculated and used to estimate expression 
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levels. I calculated the AUC, PITPNC1, diagnostic role in the development of LUAD. 

The area under the receiver operating characteristic curve is usually between 0.5 and 

1. AUC values close to 1 indicate better diagnostic performance.An AUC between 0.5 

and 0.7 indicates low accuracy, an AUC between 0.7 and 0.9 indicates moderate 

accuracy, and an AUC above 0.9 indicates high accuracy. 

2.4 Differential analysis and co-expressed genes of PITPNC1 high and low expression 

groups 

To explore the differentially expressed genes in LUAD between the PITPNC1 

high expression group and the low expression group, as well as the underlying 

mechanism and related biological characteristics and pathways. Based on the 

median Expression of PITPNC1 in the LUAD samples of the TCGA-LUAD, we divided 

the LUAD samples into high expression group and low expression group. Difference 

analysis was performed using the R packages DESeq2 (version 1.42.0) and |logFC|. 

Match > 1.5 and aj. DEG threshold was set at P < 0.01. Contains logFC > 1.5 and adj. 

Genes with P < 0.01 are differentially up-regulated genes (up-regulated genes). 

logFC <-1.5 and adj.p <0.01 are downregulated genes. The results of the differential 

analysis were displayed by plotting volcano plots using the R package ggplot2 

(version 3.4.4).Subsequently, heatmaps of expression values of differentially 

expressed genes were created using the R package pheatmap (version 1.0.12). 

Next, in order to obtain the Co-expressed Genes of PITPNC1, we performed 

pairwise correlation analysis between PITPNC1 and other DEGs in the LUAD 

samples of the TCGA-LUAD dataset. The Co-expressed genes were identified as the 

top 20 genes correlated with PITPNC1, and the correlation heat map along with the 

co-expression heat map was created utilizing the R package ggplot2 (Version 3.4.4). 

2.5 Gene ontology (GO) and pathway (KEGG) enrichment analysis 

Gene Ontology (GO) analysis[17] serves as a prevalent approach for extensive 

functional enrichment investigations, which encompass Biological Process (BP), 

Cellular Component (CC), and Molecular Function (MF). The Kyoto Encyclopedia of 

Genes and Genomes (KEGG)[18] is a commonly utilized database that catalogs 

details regarding genomes, biological pathways, diseases, and drugs. In our study, 
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we employed the R package clusterProfiler[19] (Version 4.10.0) to perform Gene 

ontology  and pathway enrichment analysis of the DEGs from the differential 

analysis of high and low expression groups. p < 0.05 and FDR value (q value) < 0.25 

were considered to be statistically significant, with the Benjamini-Hochberg (BH) 

method applied for p-value correction. 

2.6 Gene Set Enrichment Analysis (GSEA) 

GSEA[20] is utilized to assess the pattern of gene distribution within a predefined 

gene set, which is organized in a gene table based on its correlation with the 

phenotype, thereby identifying their impact on the phenotype. In this study, the genes 

in the LUAD samples of the TCGA-LUAD were ranked according to logFC values, 

and then, The R package clusterProfiler (Version 4.10.0) was used to perform GSEA 

on all genes in LUAD samples.The parameters utilized in GSEA were defined as 

follows: the seed value set was 2020, with a minimum of 10 genes and a maximum of 

500 genes in each gene set. Access to the c2 gene sets was obtained from the 

Molecular Signatures Database (MSigDB). Specifically, the version used was Cp. All. 

V2022.1. Hs. Symbols. The GMT file containing [all Canonical Pathways](3050) was 

employed. The criteria for screening in GSEA included an adjusted p < 0.05 and FDR 

value (q value) < 0.25,with the p-value adjustment performed using the 

Benjamini-Hochberg (BH) method. 

2.7 Protein-protein Interaction (PPI) Network 

PPI Network, frequently referred to as the protein-protein interaction network, is 

made up of proteins that engage with one another, playing roles in biological signaling, 

gene expression regulation, and various life processes such as metabolism of energy 

and substances, as well as cell cycle regulation. Conducting a systematic analysis of 

protein interactions within biological systems holds significant importance for grasping 

how proteins function within these systems, elucidating the mechanisms behind 

biological signaling and the metabolism of energy and substances, especially under 

specific physiological conditions like diseases, and uncovering the functional 

relationships among proteins. The GeneMANIA database[21] serves to hypothesize 

gene functions, conduct gene list analyses, and prioritize genes for further functional 
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investigations. When provided with a list of query genes, GeneMANIA identifies 

functionally analogous genes utilizing an extensive range of genomics and 

proteomics data. In this approach, each functional genomic dataset is assigned a 

weight that corresponds to the expected value of the query. Additionally, GeneMANIA 

can predict gene functions; given a query gene, it identifies other genes likely to have 

shared functions based on their interactions. A PPI Network was developed by 

forecasting the functionally similar genes of PITPNC1 via the GeneMANIA online 

platform.2.8 Construction of regulatory network 

Transcription factors (TFS) regulate gene expression by interacting with 

PITPNC1 at post-transcriptional steps. We searched for transcription factors (TF) in 

the ChIPBase database [22], analyzed the regulation of transcription factors (TF), and 

transcribed PITPNC1-regulated genes into mRNA. -TF. Cytoscape [23] constructs 

networks through visualization software. In addition, miRNA plays an important 

regulatory role in biological development and evolution. It can be used to regulate 

many target genes,and the same target gene can also be regulated by multiple 

miRNAs. In order to analyze the relationship between the gene PITPNC1 and 

microRNAs, through a StarBase v3.0 database.The mRNA-miRNA regulatory 

network was visualized using Cytoscape software 

2.9 Immune infiltration analysis 

Single-Sample Gene-Set Enrichment Analysis (ssGSEA) [25] is a methodology 

utilized to quantify the relative abundance of various immune cell infiltrates within 

individual samples. Initially, distinct types of infiltrating immune cells were categorized, 

including Activated CD8 T cells, Activated dendritic cells, Gamma delta T cells, 

Natural killer cells, and various subtypes of human immune cells such as Regulatory 

T cells. The enrichment scores derived from the ssGSEA analysis were subsequently 

employed to indicate the relative abundance of immune cell infiltration across each 

sample, thereby generating an immune cell infiltration matrix for LUAD samples 

sourced from the TCGA-LUAD.Following this, the R package ggplot2 (Version 3.4.4) 

was utilized to create comparative visualizations that illustrate the expression 

disparities of immune cells between the high expression and low expression groups 
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within the LUAD samples. Immune cells exhibiting significant differences between 

these two groups were identified for further analysis, and the correlation among 

immune cells was assessed using the Spearman algorithm. To represent the 

correlation analysis results visually, the R package pheatmap (Version 1.0.12) was 

employed to generate a correlation heatmap. Additionally, the Spearman algorithm 

was applied to evaluate the correlation between PITPNC1 and the various immune 

cells, with the correlation bubble plot created using the R package ggplot2 (Version 

3.4.4) to depict the results of this correlation analysis. 

2.10 Construction of clinical prognostic model and prognostic analysis of lung 

adenocarcinoma 

  The time-dependent Receiver Operating Characteristic Curve (ROC) [26]serves as 

a graphical tool for model selection, enabling the identification of the optimal model, 

the exclusion of inferior models, or the establishment of the best threshold within a 

given model. The R package survivalROC (Version 1.0.3.1) was employed to 

generate the time-dependent ROC Curve and to compute the Area Under the Curve 

(AUC) for PITPNC1 expression in relation to overall survival (OS) among LUAD 

samples. This analysis aimed to predict the survival outcomes at 1, 2, and 3 years for 

LUAD samples from the TCGA-LUAD dataset. Generally, the AUC values of the ROC 

curve range from 0.5 to 1, with values closer to 1 indicating superior diagnostic 

performance. An AUC greater than 0.5 suggests a tendency for the expression of the 

molecule to promote the occurrence of the event; an AUC between 0.5 and 0.7 

indicates low accuracy, between 0.7 and 0.9 signifies moderate accuracy, and above 

0.9 reflects high accuracy. 

To investigate the differences in overall survival (OS) between the high 

expression and low expression groups of LUAD samples within TCGA-LUAD, a 

Kaplan-Meier (KM) curve[27] analysis was conducted utilizing the R package survival 

(Version 3.5-7). The KM curve was generated based on the expression levels of the 

PITPNC1 gene in LUAD samples. 

The findings from both univariate and multivariate Cox regression analyses were 

illustrated using a Forest Plot, which highlighted the expression levels of the 
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PITPNC1 gene alongside relevant clinical information from the LUAD samples 

analyzed in these regression models. A Nomogram, which is a graphical 

representation employing a series of disjoint line segments to depict the functional 

relationships among multiple independent variables within a rectangular coordinate 

system, was constructed using the R package "rms" (Version 6.7-1). This Nomogram 

elucidated the relationship between PITPNC1 expression levels and clinical data in 

LUAD samples incorporated in the multivariate Cox regression analysis. 

Additionally, the R package "ggplot2" (Version 3.4.4) was employed to create a 

risk factor map based on the expression levels of PITPNC1 in LUAD samples. To 

assess the predictive performance of the model concerning actual outcomes, a 

Calibration Curve was generated. This curve plotted the correspondence between the 

actual probabilities and the probabilities predicted by the model under varying 

conditions. Calibration analysis was performed to evaluate the accuracy and 

discriminative ability of the prognostic risk model grounded in PITPNC1 gene 

expression. 

2.11 Statistical analysis 

The data processing and analytical procedures described in this study were 

conducted utilizing R software (Version 4.3.0). When comparing continuous variables 

across two groups, the statistical significance of normally distributed variables was 

assessed using the independent Student's T-Test, unless stated otherwise. For 

variables that did not conform to a normal distribution, the Mann-Whitney U Test (also 

known as the Wilcoxon Rank Sum Test) was employed to evaluate differences. The 

Kruskal-Wallis test was applied for the comparison of three or more groups. To 

determine the correlation coefficient among various molecules, Spearman correlation 

analysis was utilized. Unless indicated otherwise, all statistical p-values were 

two-sided, with a threshold of p < 0.05 denoting statistical significance. 

3.RESULTS 

3.1  Technology Roadmap 

3.2  Merging of lung adenocarcinoma datasets 

Firstly, the R package sva was used to perform batch effect removal on LUAD 
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Datasets GSE10072 and GSE75037 to obtain Combined GEO datasets. 

Subsequently, the distribution boxplots (Fig2A-B) were used to compare the 

expression values of the datasets prior to and following batch effect. Secondly, PCA  

plot (Fig2C-D) was used to compare the distribution of low-dimensional features 

before and after batch effect removal. The results of distribution boxplot and PCA 

plot indicated that the batch effect of the LUAD dataset was basically eliminated after 

removing the batch. 

3.3 Lung adenocarcinoma-related differentially expressed genes 

The TCGA-LUAD data were divided into LUAD group and Control group. In order 

to analyze the difference of gene expression values between the LUAD group and the 

Control group in the TCGA-LUAD, the R package DESeq2 was used for differential 

analysis of the TCGA-LUAD to obtain the differentially expressed genes in the two 

groups of data, and the results are as follows: TCGA - LUAD a total of 23873 data 

sets meet | logFC | > 0 and adj. P < 0.01 threshold of DEGs; Under the threshold, 

raised expressed genes (logFC > 0 and adj. P < 0.01), a total of 17336 cut expressed 

genes logFC < 0 and adj. (p < 0.01), a total of 6537, according to the variance 

analysis results of the data set map volcano (Fig3A). 

Then, the data of the Combined GEO Datasets were divided into LUAD group 

and Control group. In order to examine the variations in gene expression levels 

between the LUAD group and the Control group within the Combined GEO Datasets, 

the R package limma was employed for the differential analysis. This approach 

facilitated the identification of differentially expressed genes across the two datasets, 

yielding the following results:  

Combined Datasets a total of 6624 meet | logFC | > 0 and adj. P < 0.01 threshold 

of DEGs; Under the threshold, raised expressed genes (logFC > 0 and adj. P < 0.01), 

a total of 3777 cut expressed genes logFC < 0 and adj. (p < 0.01), a total of 2847, 

according to the variance analysis results of the data set map volcano (Fig3B). 

In order to obtain LUAD related DEGs, the intersection of all up-regulated DEGs 

with logFC > 0 and adj.p < 0.01 obtained from the TCGA-LUAD and the GEO dataset 

(Combined Datasets) was taken and the Venn diagram (Fig3C) was drawn. Then, the 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 19, 2024. ; https://doi.org/10.1101/2024.08.18.24312183doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.18.24312183


intersection of all down-regulated DEGs with logFC < 0 and adj.p < 0.01 obtained 

from the TCGA-LUAD and the Combined Datasets was taken and the Venn diagram 

(Fig3D) was drawn. A total of 4967 LUAD related DEGs were obtained after merging 

the intersection genes, and the detailed information is shown in TableS1. According to 

the intersection results, The TCGA-LUAD and the integrated GEO dataset 

(Combined The logFC sorted TOP10 up-regulated and TOP10 down-regulated DEGs 

and the expression difference of PITPNC1 in Datasets ) were analyzed and the R 

package pheatmap was used to draw a heatmap to display the analysis results 

(Fig3E-F). 

 

3.4 Differential expression verification and ROC curve analysis of PITPNC1 

To explore the expression differences of PITPNC1 in TCGA-LUAD and the 

Combined GEO Datasets, The difference analysis results of PITPNC1 expression in 

LUAD group and the Control group in the TCGA-LUAD (Fig4A) and the Combined 

Datasets (Fig4B) were shown by group comparison plots. The differential results 

showed that the expression of PITPNC1 in the LUAD group and the Control group of 

the TCGA-LUAD was highly statistically significant (p < 0.001). The expression of 

PITPNC1 in the LUAD group and the Control group of the Combined Datasets was 

highly statistically significant (p < 0.01). Finally, the R package pROC was used to 

draw ROC curves based on the expression of the gene PITPNC1 in the TCGA-LUAD 

(Fig4C) and the Combined Datasets (Fig4D). ROC curve showed that the expression 

level of PITPNC1 in the TCGA-LUAD had a low accuracy in the classification of 

LUAD group and Control group (0.5 < AUC < 0.7). The expression level of PITPNC1 

in the Combined Datasets showed a low accuracy (0.5 < AUC < 0.7) in the 

classification of LUAD and Control groups. 

3.5 Differential analysis and co-expressed genes of PITPNC1 high and low 

expression groups 

Firstly, the LUAD samples of the TCGA-LUAD were divided into high expression 

group and low expression group according to the median expression of PITPNC1. To 

analyze the difference of gene expression values between high expression group and 
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low expression group in the LUAD samples of the TCGA-LUAD, The R package 

DESeq2 was used for differential analysis of LUAD samples in the TCGA-LUAD to 

obtain the differentially expressed genes in the two groups of data, and the results are 

as follows: TCGA-LUAD datasets  specimens of 3838 patients with LUAD meet    

|logFC | > 1.5 and adj. P < 0.01 threshold of DEGs; Under the threshold, raised 

expressed genes (logFC > 1.5 and adj., p < 0.01), a total of 273 cut expressed genes 

(logFC < - 1.5 and adj. P < 0.01), a total of 3565, according to the results of variance 

analysis map volcano (Fig5A). Then, the logFC ranked TOP10 up-regulated and 

TOP10 down-regulated DEGs and PITPNC1 expression differences in the LUAD 

samples of the TCGA-LUAD were analyzed, and the R package pheatmap was used 

to draw a heatmap to display the analysis results (Fig5B). 

Then, the DEGs from the high-low expression group differential analysis and all 

genes in the LUAD samples of the Combined Datasets were intersected to obtain 133 

LUAD related DEGs. For detailed information, see TableS2. Then the correlation 

analysis was performed between PITPNC1 and other LUAD related DEGs. The top 

20 genes with the largest absolute value of correlation coefficient (r value) were 

Co-expressed genes, which were FGL1, PAEP, PCSK1, and LUAD. CHRNA9, FGB, 

BARX1, SLC25A21, BMP6, BAALC, DLL3, CYP24A1, HAL, CPS1, OBP2A, CALCA, 

INHA, PITX2, CGA, CNGA3, PCK1, and the correlation heat map was drawn (Fig5C). 

The results showed that PITPNC1 gene was positively correlated with all 

Co-expressed Genes (r value > 0). Then, the correlation between PITPNC1 gene and 

20 Co-expressed Genes in the LUAD samples of the Combined GEO Datasets was 

analyzed, and the correlation heat map was drawn (Fig5D). The results showed that 

PITPNC1 was positively correlated with all Co-expressed Genes (r value > 0). Finally, 

the co-expression heatmap of 20 Co-expressed Genes and PITPNC1 was drawn 

(Fig5E-F). 

3.6 Gene Ontology (GO) and pathway (KEGG) enrichment analysis 

GO and KEGG enrichment analysis were used to further explore the relationship 

between biological process (BP), cellular component (CC), molecular function (MF) 

and biological pathway (KEGG) of 133 DEGs and LUAD. These 133 DEGs were used 
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for GO and KEGG enrichment analysis, and the specific results are shown in Table 3. 

The results showed that 133 DEGs were mainly enriched in response to xenobiotic 

stimulus, regulation of hormone levels, and response to xenobiotic stimulus in LUAD. 

endocrine system development, cellular response to glucagon stimulus and 

neuropeptide signaling pathway and other biological processes (BP); neuronal cell 

body, axon terminus, neuron projection terminus, terminal bouton and distal axon 

(CC); hormone activity, receptor ligand activity, signaling receptor activator activity, 

carbonate dehydratase activity and metal ion transmembrane transporter activity in 

molecular function (MF). At the same time, it was also enriched in Nitrogen 

metabolism and Neuroactive ligand-receptor interaction biological pathway. The 

results of GO and pathway enrichment analysis were visualized by bar diagram 

(Fig6A) and bubble diagram (Fig6B). 

Concurrently, a network diagram illustrating the biological process (BP), cellular 

component (CC), molecular function (MF), and biological pathway (KEGG) was 

constructed based on the findings from GO and KEGG enrichment analyses (Fig. 

6C-F). The connecting lines represent the associated molecules along with their 

respective annotations, while the size of the nodes indicates the quantity of molecules 

encompassed within each entry. The analysis revealed a notable enrichment of 

genes within the neuronal cell body pertaining to the cellular component (CC). 

3.7 Gene set Enrichment analysis (GSEA) 

To determine the influence of the expression levels of all genes in LUAD samples 

on the risk of developing LUAD, GSEA was used to investigate the relationship 

between the expression levels of all genes in LUAD samples and the biological 

processes, cellular components and molecular functions they play. And presented by 

bubble plot (Fig7A), the specific results are shown in Table 4. The results showed that 

all genes in LUAD samples were significantly enriched in IL12 2pathway (Fig7B), 

Signaling By Notch (Fig7C), MAPK6, MAPK4 Signaling (Fig7D), Hedgehog On State 

(Fig7E) and other biologically relevant functions and signaling pathways. 

3.8 Construction of protein-protein interaction Network (PPI Network) 

The interaction network of PITPNC1 and its functional similar genes was 
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predicted by GeneMANIA website (Fig8), and the lines with different colors represent 

the co-expression between them, sharing protein domains and other information. 

Among them, it contains gene PITPNC1 and 20 functionally similar proteins, and the 

detailed information is shown in TableS3. 

3.9 Construction of regulatory network 

Firstly, the transcription factors (TFS) that bind to PITPNC1 were obtained from 

ChIPBase database, and the mRNA-TF Regulatory Network was constructed and 

visualized using Cytoscape software (Fig9A). Among them, it contains gene 

PITPNC1 and 17 transcription factors, and the detailed information is shown in 

TableS4. 

Then, the miRNA related to PITPNC1 was obtained from StarBase database, 

and the mRNA-miRNA Regulatory Network was constructed and visualized by 

Cytoscape software (Fig9B). Among them, the gene PITPNC1 and 19 miRNAs were 

included, and the detailed information is shown in TableS5. 

3.10 Immune infiltration analysis of high and low expression groups (ssGSEA) 

The expression matrix of LUAD samples in the TCGA-LUAD was utilized to 

calculate the immune infiltration abundance of 28 immune cells in LUAD samples by 

ssGSEA algorithm. Firstly, the expression differences of infiltrating abundance of 

immune cells in different groups were shown by group comparison plot. The group 

comparison diagram (Fig10A) showed that all the five immune cells were statistically 

significant (p < 0.05), which were: CD56dim natural killer cell, Eosinophil, Neutrophil, 

Type 17 T helper cell, Type 2 T helper cell. Then, the correlation results of the 

abundance of five immune cell infiltration in LUAD samples were shown by 

correlation heat map (Fig10B-C). The results showed that most of the immune cells in 

the high expression group of LUAD samples showed strong positive correlation, and 

the immune cell Type 2 T helper cell and Neutrophil had the strongest significant 

positive correlation (r = 0.459, P < 0.05). Most of the immune cells in the Low 

Expression group showed strong positive correlation, and the immune cell Type 17 T 

helper cell and Neutrophil had the strongest significant positive correlation (r = 0.464, 

p < 0.05). Finally, the correlation between PITPNC1 gene and the abundance of 
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immune cell infiltration was shown by correlation bubble plot (Fig10D-E). The results 

of the correlation bubble plot showed that: Most of the immune cells in the high 

expression group of LUAD samples showed strong positive correlation, and the gene 

PITPNC1 and immune cell CD56dim natural killer cell had the strongest significant 

positive correlation (r = 0.237, P < 0.05). Most of the immune cells in the low 

expression group showed strong correlation, and the gene PITPNC1 and immune cell 

Type 2 T helper cell had the strongest significant positive correlation (r = 0.19, p < 

0.05). 

3.11 Construction of clinical prognostic model and prognostic analysis of lung 

adenocarcinoma 

Firstly, time-dependent ROC curves (Fig11A) were plotted for the LUAD samples 

from the TCGA-LUAD. The results showed that the clinical prognostic model of LUAD 

had low accuracy (0.7 > AUC > 0.5) at 1 year, 2 years and 3 years. In addition, we 

also performed prognostic Kaplan-Meier (KM) curve analysis based on PITPNC1 

expression in LUAD samples combined with median grouping of overall survival (OS) 

in LUAD samples from the TCGA-LUAD dataset (Fig11B). The results showed that 

there was a statistically significant difference in overall survival (OS) between the high 

expression group and the low expression group and the LUAD samples in the 

TCGA-LUAD (p < 0.05). 

Then, univariate Cox regression analysis was performed based on the median 

PITPNC1 expression level in LUAD samples combined with the overall survival (OS) 

and clinical information of LUAD samples, and variables with p < 0.10 were screened 

for multivariate Cox regression analysis. The results of univariate and multivariate 

Cox regression analysis were visualized by Forest Plot (Fig11C-D), and 

comprehensive details are presented in Table 5. The outcomes derived from the 

univariate multivariate Cox regression analysis indicated that the expression level of 

PITPNC1 gene and clinical information NStage, TStage, Stage were statistically 

significant (p < 0.05). 

In order to further explore the value of clinical prognostic model of LUAD, a 

Nomogram was drawn based on the findings derived from both univariate and 
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multivariate Cox regression analyses, it is essential to demonstrate the relationship 

between PITPNC1 expression level and three clinical information in LUAD samples 

(Fig11E). The results showed that the utility of TStage in the clinical prognostic model 

of LUAD was significantly higher than that of other variables. 

Subsequently, The R package ggplot2 was utilized to visualize the risk factors 

associated with the expression levels of the gene PITPNC1 (Fig11F). The findings 

indicated that the number of mortality occurrences in the high expression cohort 

exceeded that of the low expression cohort. 

Furthermore, we performed 1 -, 2 -, and 3-year prognostic Calibration analysis on 

the clinical prognostic model of LUAD and plotted a Calibration Curve (Fig11G-I). The 

horizontal axis of the calibration curve represents the survival probabilities forecasted 

by the model. Conversely, the vertical axis illustrates the survival probabilities derived 

from the actual data. This configuration indicates that when the model's predicted line 

at various time points aligns more closely with the gray line representing the ideal 

scenario, it signifies an improved predictive accuracy at those specific time points. 

The results showed that the clinical prognostic model of LUAD had the best clinical 

prediction performance for 3 years. 

 
4. DISCUSSION 

LUAD poses substantial threats to human health due to its aggressive nature 

and poor prognosis. The rising incidence and high mortality rate of LUAD underscore 

the urgent need for novel diagnostic and therapeutic strategies to improve patient 

outcomes [29, 30].  

Investigating the phenotypic characteristics of LUAD and their underlying 

molecular mechanisms is crucial for advancing diagnostic and treatment approaches. 

Previous studies have shown that genetic and transcriptional profiling can reveal 

distinct properties of LUAD subtypes, aiding in the identification of potential 

biomarkers [31, 32]. The current research focuses on the differential expression of 

the PITPNC1 gene and its association with immune infiltration and clinical prognosis 

in LUAD. By leveraging comprehensive bioinformatics analyses and clinical data, this 
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study aims to elucidate the potential of PITPNC1 as a key player in LUAD 

pathogenesis and its implications for personalized medicine [33, 34]. 

PITPNC1, a phosphatidylinositol transfer protein, is critically implicated in 

multiple cancer types, including LUAD. Recent research indicates that PITPNC1 is 

upregulated in LUAD and correlates with decreased patient survival. Mechanistically, 

PITPNC1 facilitates the interaction between KRAS and MYC, inhibiting autophagy 

through the mTOR pathway[35]. This regulatory function underscores a novel 

mechanism of KRAS-driven oncogenesis, presenting potential targets for therapeutic 

intervention. PITPNC1 enhances MYC protein stability and mTOR localization, crucial 

for tumor cell proliferation and survival. Targeting PITPNC1 could be a promising 

LUAD treatment strategy, potentially improving patient outcomes by disrupting key 

oncogenic pathways. 

The study of the Hedgehog signaling pathway has revealed its critical role in 

development and tissue homeostasis, with its dysregulation being linked to various 

cancers and other diseases. The Hh pathway is essential for cell fate determination, 

proliferation, and differentiation, and its components include key molecules such as 

Smoothened (Smo) and Gli1, which are crucial for signal transduction. Aberrant Hh 

signaling has been implicated in the pathogenesis of liver fibrosis, where it modulates 

hepatic stellate cell (HSC) activation and extracellular matrix production, leading to 

fibrogenesis [36]. 

In the context of LUAD, the Hh pathway's involvement in promoting cell 

proliferation and survival suggests that its dysregulation could contribute to 

tumorigenesis. The pathway's role in maintaining stem cell populations and its 

interaction with other signaling mechanisms, such as Notch and IL12, underscores its 

potential as a therapeutic target. For instance, targeting the Hh pathway in 

combination with other treatments could enhance the efficacy of cancer therapies by 

disrupting the supportive tumor microenvironment and inhibiting cancer stem cell 

maintenance [37]. 

Furthermore, the Notch signaling pathway, another critical regulator of cell fate 

and differentiation, has been shown to interact with the Hh pathway. Notch signaling 
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is involved in cell proliferation, apoptosis, and angiogenesis, and its dysregulation is 

associated with several cancers, including LUAD. The cross-talk between Notch and 

Hh signaling pathways can modulate the tumor microenvironment and influence 

cancer progression, highlighting the importance of understanding these interactions 

for developing effective therapeutic strategies [38]. 

In conclusion, the intricate interplay between the Hh, IL12, and Notch signaling 

pathways plays a significant role in the pathogenesis of LUAD. Targeting these 

pathways could provide new avenues for therapeutic intervention, potentially 

improving clinical outcomes for patients with LUAD. Further research into the 

molecular mechanisms underlying these interactions will be crucial for developing 

targeted therapies that can effectively disrupt tumor growth and progression. 

The immune landscape of LUAD is complex and involves various immune cells 

that play crucial roles in tumor progression and patient prognosis. In our study, we 

observed significant differences in the infiltration of several immune cells, including 

eosinophils, across high and low PITPNC1 expression groups. Eosinophils, 

traditionally known for their role in allergic reactions and parasitic infections, have 

been increasingly recognized for their involvement in cancer. Specifically, eosinophilia 

has been associated with both tumor-promoting and tumor-suppressing activities. For 

instance, a study by Wang et al. highlighted that eosinophilia could potentially 

increase the risk of squamous cell lung cancer, suggesting a complex interplay 

between eosinophils and lung cancer pathogenesis[39]. Furthermore, eosinophil 

peroxidase (EPO), an enzyme abundantly expressed in eosinophils, has been shown 

to correlate with worse clinical outcomes in LUAD patients, indicating its potential as a 

prognostic marker[40]. 

The presence of eosinophils in the tumor microenvironment (TME) can influence 

tumor behavior and patient outcomes. Eosinophils contribute to the TME by releasing 

cytotoxic granules, cytokines, and chemokines, which can modulate immune 

responses and affect tumor growth. For example, eosinophil infiltration has been 

linked to poorer survival rates in LUAD patients, as demonstrated by Ye et al., where 

high EPO expression was associated with advanced tumor stages and lymph node 
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metastasis[40]. This suggests that eosinophils may facilitate tumor progression 

through their interactions within the TME. 

Our findings also indicated significant differences in the infiltration of other 

immune cells, such as CD56dim natural killer (NK) cells, which are known for their 

cytotoxic activity against tumor cells. Although no relevant literature was found 

directly linking CD56dim NK cells to LUAD, their role in immune surveillance and 

tumor eradication is well-documented in other cancers. The differential abundance of 

these immune cells in high and low PITPNC1 expression groups underscores the 

potential impact of PITPNC1 on the immune landscape of LUAD. 

the varying infiltration patterns of eosinophils and other immune cells in LUAD 

highlights the intricate relationship between the immune system and tumor biology. 

The elevated presence of eosinophils in high PITPNC1 expression groups may 

contribute to a more immunosuppressive TME, promoting tumor progression and 

impacting patient prognosis. Understanding these interactions provides valuable 

insights into the potential mechanisms by which PITPNC1 influences LUAD and 

underscores the importance of considering immune cell infiltration in the development 

of targeted therapies. 

 
Conclusion 

In summary, this study systematically elucidates the potential mechanisms and 

clinical significance of PITPNC1 in LUAD. Through various bioinformatics 

approaches, we confirmed the high expression of PITPNC1 in LUAD and 

demonstrated its potential as a diagnostic biomarker. Furthermore, we explored its 

association with immune infiltration, co-expressed genes, and clinical prognosis, 

providing a solid foundation for future research. These findings highlight the 

importance of PITPNC1 in LUAD and suggest that it could serve as a valuable target 

for diagnostic and therapeutic strategies in the future. Future studies should focus on 

validating these results through experimental and clinical approaches to fully realize 

the potential of PITPNC1 in LUAD management. 

Limitation 

Despite the comprehensive bioinformatics analysis conducted in this study, 
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several limitations should be acknowledged. Firstly, the study lacks validation through 

wet-lab experiments, which are crucial for confirming the bioinformatics predictions 

and understanding the underlying biological mechanisms. Secondly, although the 

sample size from TCGA and GEO databases is relatively large, it may still be 

insufficient to capture the full heterogeneity of LUAD. Thirdly, the absence of clinical 

validation, such as independent patient cohorts and prospective studies, limits the 

immediate clinical applicability of our findings. Additionally, the integration of multiple 

datasets could introduce batch effects despite the use of batch effect correction 

methods, potentially affecting the robustness of the results. 

 
 

Fig.1 Flow Chart for the Comprehensive Analysis of PITPNC1 

TCGA, The Cancer Genome Atlas; LUAD, Lung Adenocarcinoma; DEGs, Differentially Expressed Genes; 

PPI, Protein-protein Interaction; ROC, Receiver Operating Characteristic; TF, Transcription Factor; GSEA, 

Gene Set Enrichment Analysis; ssGSEA, Single-Sample Gene-Set Enrichment Analysis; GO, Gene 

Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. 

 

Fig.2 Batch Effects Removal of GSE10072 and GSE75037 

A. Box plot of Combined GEO Datasets distribution before batch removal. B. Post-batch integrated GEO 

Datasets (Combined Datasets) distribution boxplots. C. PCA plot of integrated GEO Datasets 

(Combined Datasets) before debatching. D. PCA plot of integrated GEO Datasets (Combined Datasets) 

after debatching. PCA, Principal Component Analysis; LUAD, Lung Adenocarcinoma. The lung 

adenocarcinoma (LUAD) dataset GSE10072 is green, and the lung adenocarcinoma (LUAD) dataset 

GSE75037 is brown. 

 

Fig.3 Differential Gene Expression Analysis 

A. Volcano plot of differentially expressed genes analysis between lung adenocarcinoma (LUAD) group and 

Control (Control) group in the lung adenocarcinoma dataset (TCGA-LUAD). B. Volcano plot of 

differentially expressed gene analysis between lung adenocarcinoma (LUAD) group and Control (Control) 

group in the Combined Datasets. C. Venn diagram of up-regulated differentially expressed genes (DEGs) in 

the lung adenocarcinoma dataset (TCGA-LUAD) and the integrated GEO dataset (Combined Datasets). D. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 19, 2024. ; https://doi.org/10.1101/2024.08.18.24312183doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.18.24312183


Down-regulated differentially expressed genes (DEGs) Venn diagram in lung adenocarcinoma Datasets 

(TCGA-LUAD) and integrated GEO datasets (Combined Datasets). E. logFC ranked TOP10 up-regulated 

and TOP10 down-regulated differentially expressed genes (DEGs) and heatmap of PITPNC1 in the lung 

adenocarcinoma dataset (TCGA-LUAD). F. Heat map of logFC-ranked TOP10 up-regulated and TOP10 

down-regulated differentially expressed genes (DEGs) and PITPNC1 in Combined GEO Datasets. TCGA, 

The Cancer Genome Atlas; LUAD, Lung Adenocarcinoma; DEGs, Differentially Expressed Genes. In the 

heat map grouping, pink is the Control group, and orange is the lung adenocarcinoma (LUAD) group. In the 

heat map, red represents high expression and blue represents low expression. 

 
 

Fig.4 PPI Network and Differential Expression Validation and ROC Curve Analysis 

A. Group comparison diagram of PITPNC1 gene in the lung adenocarcinoma (LUAD) group and the 

Control (Control) group of the lung adenocarcinoma dataset (TCGA-LUAD). B. Group comparison plot of 

PITPNC1 gene in the lung adenocarcinoma (LUAD) group and Control (Control) group of the Combined 

GEO Datasets. C. ROC curve of PITPNC1 in the lung adenocarcinoma dataset (TCGA-LUAD). D. ROC 

curves of PITPNC1 gene in the Combined GEO Datasets. TCGA, The Cancer Genome Atlas; LUAD, Lung 

Adenocarcinoma; ROC, Receiver Operating Characteristic; AUC, Area Under the Curve; TPR, True 

Positive Rate; FPR, False Positive Rate. In the group comparison figure, pink is the Control (Control) group 

and orange is the lung adenocarcinoma (LUAD) group. ** represents a p-value < 0.01, indicating a high 

degree of statistical significance; *** represents p value < 0.001 and highly statistically significant. When 

AUC > 0.5, it indicates that the expression of the molecule is a trend to promote the occurrence of the event, 

and the closer the AUC is to 1, the better the diagnostic effect. AUC values between 0.5 and 0.7 were 

associated with lower accuracy. 

Fig.5 Expression Difference Analysis of Expression Group of PITPNC1 

A. Volcano plot of differential expression between PITPNC1 high and low expression groups in lung 

adenocarcinoma (LUAD) samples from the Lung Adenocarcinoma dataset (TCGA-LUAD). B. logFC 

ranked TOP10 up-regulated and TOP10 down-regulated differentially expressed genes (DEGs) and heat 

map of PITPNC1 in lung adenocarcinoma (LUAD) samples from the Lung Adenocarcinoma dataset 

(TCGA-LUAD). C-d. Correlation heatmap between PITPNC1 and Co-expressed Genes in lung 

adenocarcinoma (LUAD) samples from TCGA-LUAD Datasets (C) and Combined GEO datasets (D). 
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E-f. PITPNC1 and Co-expressed genes in PITPNC1 high and low expression groups in lung 

adenocarcinoma (LUAD) samples from the TCGA-LUAD dataset (E) and the integrated GEO Datasets 

(F) Genes) co-expression heatmap. TCGA, The Cancer Genome Atlas; LUAD, Lung Adenocarcinoma; 

DEGs, Differentially Expressed Genes. The absolute value of correlation coefficient (r value) below 0.3 

was weak or no correlation, 0.3-0.5 was weak correlation, and 0.5-0.8 was moderate correlation. * 

represents p value < 0.05, indicating statistical significance. In the correlation heat map, red indicates 

positive correlation and blue indicates negative correlation. Red is positive correlation and blue is 

negative correlation in the correlation heat map. In the co-expression heatmap group, purple is the High 

Expression group, and blue is the Low Expression group. In the co-expression heatmap, red is high 

expression and blue is low expression. 

Fig.6 GO and KEGG Enrichment Analysis for DEGs 

A-b. Gene ontology (GO) and pathway (KEGG) enrichment analysis results of differentially expressed 

genes (DEGs) Bar graph (A) and bubble plot (B) show: biological process (BP), cellular component (CC), 

molecular function (MF) and biological pathway (KEGG). GO terms and KEGG terms are shown on the 

ordinate. C-f. Gene ontology (GO) and pathway (KEGG) enrichment analysis results network diagram of 

differentially expressed genes (DEGs) : BP (C), CC (D), MF (E) and KEGG (F). Blue nodes represent items, 

purple nodes represent molecules, and lines represent the relationship between items and molecules. DEGs, 

Differentially Expressed Genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; 

BP, Biological Process; CC, Cell Component; MF, Molecular Function. The bubble size in the bubble plot 

represents the number of genes, and the color of the bubble represents the size of the adj. P-value, the reder 

the color, the smaller the adj. P-value, and the bluer the color, the larger the adj. P-value. The screening 

criteria for gene ontology (GO) and pathway (KEGG) enrichment analysis were adj.p < 0.05 and FDR value 

(q value) < 0.25, and the p value correction method was Benjamini-Hochberg (BH). 

Fig.7 GSEA for Risk Group 

A. Bubble plot presentation of 4 biological functions of gene set enrichment analysis (GSEA) of lung 

adenocarcinoma (LUAD) samples. Gene set enrichment analysis (GSEA) showed that all genes were 

significantly enriched in IL12 2pathway (B), Signaling By Notch (C), MAPK6 MAPK4 Signaling (D) and 

Hedgehog On State (E). LUAD, Lung Adenocarcinoma; GSEA, Gene Set Enrichment Analysis. In the 

bubble plot, the size of the bubble represents the number of enriched genes, and the color of the bubble 

represents the size of the NES value. The more red the color, the larger the NES, and the more blue the 
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smaller the NES. The screening criteria of gene set enrichment analysis (GSEA) were adj.p < 0.05 and FDR 

value (q value) < 0.25, and the p value correction method was Benjamini-Hochberg (BH). 

Fig.8 PPI Network Analysis 

The protein-protein interaction Network (PPI Network) of PITPNC1 was predicted by GeneMANIA website. 

The circles in the figure show PITPNC1 and its functionally similar genes, and the colors corresponding to 

the lines represent the interconnected functions. PPI, Protein-protein Interaction. 

Fig.9 Regulatory Network of PITPNC1 

A. The mRNA-TF Regulatory Network of PITPNC1. B. mRNA-miRNA Regulatory Network of PITPNC1. 

TF, Transcription Factor. Yellow is mRNA, blue is TF, and red is miRNA. 

Fig.10 Risk Group Immune Infiltration Analysis by ssGSEA Algorithm 

A. Comparison of the grouping of immune cells in the High Expression group and Low Expression group of 

lung adenocarcinoma (LUAD) samples. B-c. Results of correlation analysis of immune cell infiltration 

abundance in High Expression group (B) and Low Expression group (C) of lung adenocarcinoma (LUAD) 

samples are shown. D-e. Bubble plot of correlation between immune cell infiltration abundance and 

PITPNC1 in High Expression group (D) and Low Expression group (E) of lung adenocarcinoma (LUAD) 

samples. ssGSEA, single-sample Gene-Set Enrichment Analysis; LUAD, Lung Adenocarcinoma. ns stands 

for p value ≥ 0.05, not statistically significant; * represents p value < 0.05, statistically significant; ** 

represents p value < 0.01, highly statistically significant; *** represents p value < 0.001 and highly 

statistically significant. The absolute value of the correlation coefficient (r value) below 0.3 was considered 

as weak or no correlation, and the r value between 0.3 and 0.5 was considered as weak correlation. Purple is 

the High Expression group, blue is the Low Expression group. Red is positive correlation, blue is negative 

correlation, and the depth of the color represents the strength of the correlation. 

Fig.11 Prognostic Analysis 

A. Time-dependent ROC curves of lung adenocarcinoma (LUAD) samples in the Lung adenocarcinoma 

dataset (TCGA-LUAD). B. Prognostic KM curve between PITPNC1 expression level and overall survival 

(OS) of LUAD samples. C. Forest Plot of PITPNC1 expression level and clinical information in univariate 

Cox regression model (C) and multivariate Cox regression model (D). E. Nomogram of PITPNC1 

expression level and clinical information in univariate and multivariate Cox regression model. F. Risk factor 

map of lung adenocarcinoma (LUAD) samples in the Lung Adenocarcinoma Dataset (TCGA-LUAD). G-i. 1 

year (G), 2 year (H), and 3 year (I) Calibration Curve of the prognostic risk model for lung adenocarcinoma 
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(LUAD). TCGA, The Cancer Genome Atlas; LUAD, Lung Adenocarcinoma; OS, Overall Survival; KM, 

Kaplan-Meier; ROC, Receiver Operating Characteristic Curve; AUC, Area Under the Curve. When AUC > 

0.5, it indicates that the expression of the molecule is a trend to promote the occurrence of the event, and the 

closer the AUC is to 1, the better the diagnostic effect. AUC values between 0.5-0.7 were associated with 

lower accuracy. p value < 0.05 was considered statistically significant. 

Table 1 Baseline Table with LUAD Patients Characteristics 

Characteristics overall 

Age, median (IQR) 66 (59, 72) 

Gender, n (%)  

MALE 247 (46.6%) 

female 283 (53.4 percent) 

NStage, n (%)  

N0 345 (65.2%) 

N1 96 (18.1%) 

N2&3 73 (13.8 percent) 

NX 15 (2.8%) 

TStage, n (%)  

T1 176 (33.2%) 

T2 285 (53.8%) 

T3&4 66 (12.5%) 

TX 3 (0.6%) 

Stage, n (%)  

I 292 (55.9%) 

III&IV 107 (20.5%) 

II 123 (23.6%) 

LUAD, Lung Adenocarcinomas.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 19, 2024. ; https://doi.org/10.1101/2024.08.18.24312183doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.18.24312183


Table 2 GEO Microarray Chip Information 

 GSE10072 GSE75037 

Platform GPL96 GPL6884 

Species Homo sapiens Homo sapiens 

Tissue Lung Lung 

Samples in LUAD group 58 83 

Samples in Control group 49 83 

Reference PMID: 18297132 PMID: 27354471 

GEO, Gene Expression Omnibus; LUAD, Lung Adenocarcinoma.
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Table 3 Result of GO and KEGG Enrichment Analysis for DEGs 

ONTOLOGY ID Description GeneRatio BgRatio pvalue p.adjust qvalue 

BP GO:0009410 response to xenobiotic stimulus 12/123 411/18800 1.64 e-05 1.42 e-02 1.30 e-02 

BP GO:0010817 regulation of hormone levels 13/123 496/18800 2.24 e-05 1.42 e-02 1.30 e-02 

BP GO:0035270 endocrine system development 7/123 132/18800 2.59 e-05 1.42 e-02 1.30 e-02 

BP GO:0071377 cellular response to glucagon stimulus 3/123 11/18800 4.34 e-05 1.78 e-02 1.63 e-02 

BP GO:0007218 neuropeptide signaling pathway 6/123 108/18800 7.70 e-05 2.53 e-02 2.32 e-02 

CC GO:0043025 neuronal cell body 15/129 482/19594 6.75 e-07 1.09 e-04 9.94 e-05 

CC GO:0043679 axon terminus 6/129 113/19594 1.03 e-04 8.34 e-03 7.59 e-03 

CC GO:0044306 neuron projection terminus 6/129 129/19594 2.13 e-04 1.13 e-02 1.03 e-02 

CC GO:0043195 terminal bouton 4/129 48/19594 2.79 e-04 1.13 e-02 1.03 e-02 

CC GO:0150034 distal axon 8/129 270/19594 4.25 e-04 1.38 e-02 1.25 e-02 

MF GO:0005179 hormone activity 9/127 122/18410 1.68 e-07 4.73 e-05 4.04 e-05 

MF GO:0048018 receptor ligand activity 14/127 489/18410 7.21 e-06 7.93 e-04 6.78 e-04 

MF GO:0030546 signaling receptor activator activity 14/127 496/18410 8.47 e-06 7.93 e-04 6.78 e-04 

MF GO:0004089 carbonate dehydratase activity 3/127 14/18410 1.10 e-04 7.75 e-03 6.62 e-03 

MF GO:0046873 metal ion transmembrane transporter activity 11/127 428/18410 1.87 e-04 1.05 e-02 8.98 e-03 

KEGG hsa00910 Nitrogen metabolism 4/67 17/8164 9.10 e-06 1.09 e-03 1.01 e-03 
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KEGG hsa04080 Neuroactive ligand-receptor interaction 12/67 362/8164 3.17 e-05 1.90 e-03 1.75 e-03 

GO, Gene Ontology; BP, Biological Process; CC, Cellular Component; MF, Molecular Function; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, 

Differentially Expressed Genes.  
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Table 4 Results of GSEA for Expression Group 

ID Set Size 
Enrichment 

Score 
NES p value p.adjust q value 

REACTOME_CELL_CYCLE_CHECKPOINTS 237 6.67 e-01 3.04 e+00 3.31 e-03 3.19 e-02 2.54 e-02 

REACTOME_MITOTIC_G1_PHASE_AND_G1_S_TRANSITION 142 7.01 e-01 3.00 e+00 2.84 e-03 3.05 e-02 2.43 e-02 

REACTOME_DNA_REPLICATION 137 6.96 e-01 2.96 e+00 2.78 e-03 3.04 e-02 2.42 e-02 

REACTOME_CELL_CYCLE_MITOTIC 458 6.07 e-01 2.95 e+00 4.65 e-03 3.91 e-02 3.12 e-02 

REACTOME_G2_M_CHECKPOINTS 134 6.87 e-01 2.90 e+00 2.76 e-03 3.04 e-02 2.42 e-02 

REACTOME_SYNTHESIS_OF_DNA 110 7.11 e-01 2.90 e+00 2.72 e-03 3.04 e-02 2.42 e-02 

REACTOME_MITOTIC_METAPHASE_AND_ANAPHASE 201 6.50 e-01 2.89 e+00 3.21 e-03 3.16 e-02 2.52 e-02 

WP_RETINOBLASTOMA_GENE_IN_CANCER 84 7.30 e-01 2.81 e+00 2.62 e-03 3.04 e-02 2.42 e-02 

REACTOME_S_PHASE 145 6.55 e-01 2.80 e+00 2.92 e-03 3.06 e-02 2.44 e-02 

REACTOME_MITOTIC_SPINDLE_CHECKPOINT 92 7.02 e-01 2.77 e+00 2.61 e-03 3.04 e-02 2.42 e-02 

REACTOME_DNA_REPLICATION_PRE_INITIATION 111 6.81 e-01 2.76 e+00 2.82 e-03 3.04 e-02 2.42 e-02 

REACTOME_SEPARATION_OF_SISTER_CHROMATIDS 162 6.43 e-01 2.76 e+00 3.06 e-03 3.07 e-02 2.45 e-02 

KEGG_CELL_CYCLE 114 6.69 e-01 2.73 e+00 2.81 e-03 3.04 e-02 2.42 e-02 

REACTOME_ACTIVATION_OF_THE_PRE_REPLICATIVE_COMPLEX 31 8.42 e-01 2.69 e+00 2.40 e-03 3.04 e-02 2.42 e-02 

WP_CELL_CYCLE 111 6.63 e-01 2.69 e+00 2.82 e-03 3.04 e-02 2.42 e-02 

REACTOME_RESOLUTION_OF_SISTER_CHROMATID_COHESION 106 6.66 e-01 2.68 e+00 2.76 e-03 3.04 e-02 2.42 e-02 
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PID_IL12_2PATHWAY 60 5.41 e-01 1.95 e+00 2.54 e-03 3.04 e-02 2.42 e-02 

REACTOME_SIGNALING_BY_NOTCH 178 4.06 e-01 1.78 e+00 3.02 e-03 3.06 e-02 2.44 e-02 

REACTOME_MAPK6_MAPK4_SIGNALING 82 4.63 e-01 1.78 e+00 2.60 e-03 3.04 e-02 2.42 e-02 

REACTOME_HEDGEHOG_ON_STATE 74 4.23 e-01 1.60 e+00 2.53 e-03 3.04 e-02 2.42 e-02 

GSEA, Gene Set Enrichment Analysis.
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Table 5 Results of Cox Analysis 

Characteristics Total(N)  

Univariate analysis Multivariate analysis 

HR (95% CI) P value HR(95% CI) P value 

Age 520 1.005 (0.991-1.020) 0.475   

Gender 530     

MALE 247 Reference    

female 283 0.946 (0.712-1.256) 0.699   

NStage 529     

N0 345 Reference  Reference  

N1 96 2.372 (1.697-3.314) < 0.001 1.739 (1.009-2.997) 0.046 

N2&3 73 2.942 (2.025-4.275) < 0.001 1.301 (0.680-2.492) 0.427 

NX 15 1.207 (0.443-3.293) 0.713 0.773 (0.188-3.176) 0.721 

TStage 530     

T1 176 Reference  Reference  

T2 285 1.521 (1.073-2.157) 0.019 1.232 (0.858-1.769) 0.259 

T3&4 66 3.059 (1.949-4.802) < 0.001 1.798 (1.052-3.071) 0.032 

TX 3 4.897 (1.178-20.348) 0.029 3.412 (0.427-27.247) 0.247 

Stage 522     

I 292 Reference  Reference  

III&IV 107 3.558 (2.526-5.012) < 0.001 2.246 (1.136-4.443) 0.020 

II 123 2.410 (1.695-3.425) < 0.001 1.406 (0.788-2.509) 0.249 

PITPNC1 530 1.189 (1.020-1.387) 0.027 1.208 (1.032-1.414) 0.019 

B. HR, Hazard ratio, general HR > 1 indicates that the variable is a risk factor, and HR < 1 is a protective factor. 

Univariate p values < 0.1 were included in the analysis.  
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