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Summary 

Despite rapid advancements in clinical sequencing, over half of diagnostic evaluations still lack 

definitive results. RNA-seq has shown promise in research settings for bridging this gap by 

providing essential functional data for accurate interpretation of diagnostic sequencing results. 

However, despite advanced research pipelines, clinical translation of diagnostic RNA-seq has not 

yet been realized. We have developed and validated a clinical diagnostic RNA-seq test in a CLIA 

laboratory for individuals with suspected genetic disorders who have existing or concurrent 

comprehensive DNA diagnostic testing. This diagnostic RNA-seq test processes patient RNA 

samples from fibroblasts or blood and derives clinical interpretations based on the analytical 

detection of outliers in gene expressions and splicing patterns. The clinical validation involves 

150 samples, including benchmark, negative, and positive samples. We developed provisional 

expression and splicing benchmarks using short-read and long-read RNA-seq data from the 

HG002 lymphoblastoid sample produced by the Genome in a Bottle Consortium. Our validation 

data achieved analytical sensitivity and specificity higher than 99% against the benchmarks. For 

clinical validation, we first established reference ranges for each gene and junction based on 

expression distributions from our control data. We then evaluated the clinical performance of our 

outlier-based pipeline using positive samples with previously identified diagnostic findings from 

the Undiagnosed Diseases Network project. Our pipeline identified 19 of 20 positive findings in 

both fibroblast and blood samples and highlighted the limitations of the test. Our study provides 

a paradigm and necessary resources for independent laboratories to validate a clinical RNA-seq 

test.   
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Introduction 

The rapid advancements of sequencing technologies, such as clinical exome sequencing (ES) and 

whole genome sequencing (GS), have revolutionized the diagnosis of Mendelian disorders in the 

past decade 1,2. Meanwhile, the implementation of genome-wide NGS has led to the 

identification of numerous variants with unknown impacts on RNA and protein, which brings 

challenges to clinical interpretation 3. Recently, transcriptome RNA sequencing (RNA-seq) has 

emerged as a powerful adjunct to ES and GS in Mendelian disorder diagnostics 4. Owing to its 

ability to detect abnormal expression and splicing patterns, transcriptome sequencing can 

improve molecular diagnostic rates by 7.5% to 36% compared with DNA testing alone 5-8. 

Despite the development of advanced research pipelines by various groups, the clinical 

translation of diagnostic RNA-seq has not yet been realized. The field lacks the comprehensive 

implementation knowledge required for such a transition.  

Several guidelines have been established for the clinical validation of NGS-based DNA 

sequencing 9-13. While the principles and experiences from DNA NGS tests can guide RNA-seq 

validation, key differences add to the challenges of validating RNA-seq tests. Despite originating 

from the same type of sequencing read raw data, DNA-based NGS and RNA-seq diverge in their 

analytical endpoints. DNA sequencing typically focuses on detecting SNVs/INDELs or copy 

number variants (CNV), whereas RNA-seq aims to measure gene expression levels and splicing 

junction status. Therefore, efforts are needed to adapt the DNA-based validation framework to 

RNA-seq analytical endpoints. Benchmark data should be generated, preferably using publicly 

accessible resources, such as those from the Genome in a Bottle Consortium (GIAB) consortium 

from the National Institute of Standards and Technology (www.nist.gov/programs-
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projects/genome-bottle), to facilitate seamless adoption for diagnostic labs in implementing this 

validation.  

Both DNA- and RNA-based diagnostic tests are designed to identify rare genetic findings 

that explain the rare disease phenotype. The population distribution of DNA variants typically 

follows a zero-inflated bimodal distribution, where a significant number of observations occur at 

zero (i.e., reference genotype). This characteristic facilitates effective cross-platform data 

comparison, enabling the use of external large control databases, such as the gnomAD 14, thus 

reducing the burden on clinical labs to produce control data. In contrast, both gene expression 

and junction splicing data from RNA-seq exhibit a wide distribution in the “normal” population, 

increasing the challenge of distinguishing diagnostic outliers from background noise. Therefore, 

it is crucial for RNA-seq tests, especially in the clinical context, to generate control data using 

the same experimental and bioinformatics pipeline. Additionally, there is a strong need to 

establish reference ranges for all targets in the RNA-seq test, a component that is usually less 

extensively considered when validating DNA-based NGS tests.  

Tissue-specific expression of genes and transcripts presents another challenge for the 

design and clinical validation of the RNA-seq tests. According to GTEx, 37.4% and 48.3% of all 

coding genes are low-expressing (TPM < 1) in blood and fibroblast tissues, respectively, which 

are the most frequently used clinically accessible tissues 15,16. This expression heterogeneity 

suggests that most diagnostic RNA-seq validations should be designed in a tissue-dependent 

manner to address test performance and clinical limitations. 

Here, we report the clinical validation processes of a diagnostic RNA-seq test for the 

diagnosis of Mendelian disorders. We included publicly available benchmark samples, clinically 

positive samples, and negative control samples. We conducted optimization and familiarization 
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(O&F) and set up passing criteria for quality control. We set up a provisional RNA standard 

reference using data from the GIAB consortium and evaluated the analytical performance of our 

test. Additionally, we established transcriptome-wide reference ranges for all reportable targets. 

Finally, we assessed the clinical performance using positive samples with previously identified 

diagnostic findings from the Undiagnosed Diseases Network (UDN) project. 

Material and methods 

Ethics approval 

This study has been approved by the Institutional Review Board (IRB) at Baylor College of 

Medicine (H-42680). The study subjects were originally recruited through informed consent 

approved the IRB at the National Human Genome Research Institute (15HG0130) or BCM (H-

34433 and H-44172), and then de-identified for the current study. 

Collection of Validation sample 

A total of 130 samples were collected from 110 individuals, including 73 fibroblast samples, 55 

blood samples, and 2 lymphoblastoid/lymphocyte samples (Table 1). None of the individuals are 

related to each other.  

Positive samples from UDN were selected under the following criteria: 

1) A molecular diagnosis of a Mendelian disorder supported by DNA variant(s). 

2) DNA variant(s) predicted to result in RNA-level changes (altered expression or 

alternative splicing). 

4) Prior RNA-seq studies identified the predicted RNA-level changes. 

5) At least two independent experimental data sources support the result. 

Negative samples from the UDN were selected based on the following criteria: 
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1) No known molecular diagnosis of a Mendelian disorder. 

2) No recorded kinship to other negative or positive samples in the cohort. 

Sample processing and RNA extraction 

Fibroblast samples were cultured in high-glucose DMEM medium, supplemented with 10% fetal 

bovine serum (FBS), 1% non-essential amino acid (NEAA), and 1% penicillin-streptomycin (P-

S). Blood samples were stored in PAXgene tubes at -80 before RNA extraction. RNA was 

extracted from around 1x107 cells using the RNeasy mini kit (Qiagen) following the 

manufacturer’s instructions with the inclusion of an on-column genomic DNA removal step. The 

integrity and quality of the RNA were assessed using the Qubit 4 Fluorometer and the Qubit 

RNA HS Assay Kit (ThermoFisher). 

Library preparation and NGS 

RNA from fibroblast and lymphoblastoid/lymphocyte samples was processed using the Illumina 

Stranded mRNA prep kit. RNA from whole-blood samples was processed using the Illumina 

Stranded Total RNA Prep with Ribo-Zero Plus kit to remove human globin RNA and rRNA. 

Sequencing was conducted on the Illumina NovaSeqX platform, which produces pared-end short 

read data at 150bp. Each validation sample was sequenced on average to a target depth of 150 

million reads.  

Raw data processing and expression quantification of RNA-seq 

The raw data processing pipeline was adapted from the Genotype-Tissue Expression (GTEx) 

version 10 pipeline (https://github.com/broadinstitute/gtex-

pipeline/blob/master/rnaseq/README.md). Sequencing FASTQ data were aligned to the 

reference genome GRCh38 with STAR v2.7.8a_sentieon and SAMtools 1.15.1/HTSlibv1.10.2. 

Picard v2.23.3 was used to mark duplicates. Gene expressions were quantified using RNA-SeQC 
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v2.4.2 17. Isoform-level quantification was performed with RSEM v1.3.3 18. Transcripts were 

annotated with GENCODE v39. FastQC v0.11.9 provided quality control measurements. For 

identity verification, SNP/indels were called from the RNA sequencing data using the haplotyper 

from Sentieon DNAseq. The resultant variants were compared to those obtained from DNA 

sequencing data of the same individual to ensure identity matching. 

Reproducibility test 

Using a 3-1-1 validation framework, a reproducibility test was performed on HG002, K562, and 

BG1477. We conducted an intra-run with triplicate preparations of the same sample, followed by 

two inter-runs of the same sample, resulting in a total of five tests across three different batches 

prepared on three different days. The intra-run and inter-run batches were prepared by two 

different technicians using different Bio-Rad thermocyclers, pipettes, vorterxers, centrifuges and 

reagents. This comprehensive approach enabled us to measure resulting variations, affirming the 

assay's consistent and reliable performance. 

Gene expression reproducibility was calculated by performing pair-wise Pearson 

correlation of gene read counts. Only genes with adequate expression (TPM > 5) were included. 

Splice junction detection reproducibility was calculated by pair-wise Pearson correlation of 

junction reads. Only canonical junctions in genes with adequate expression (TPM > 5) were 

included. 

RNA-seq Benchmark data 

GM24385 is a human lymphoblastoid cell line derived from a female donor HG002, widely used 

for benchmarking and validating DNA-based genomic analyses due to its easy accessibility and 

extensive characterization 19-23. However, a ‘gold standard’ benchmark has not yet been 

established at the transcriptome level. Therefore, we sought to create a provisional benchmark by 
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aggregating sequencing data generated independently from renowned groups from the GIAB 

team. The analysis incorporated data from different institutions, produced in multiple runs using 

both short- and long-read sequencing technologies. We obtained sequencing data that are 

released by the GIAB team24.  

For short-read data, four sequence datasets from two groups were used: 

1) UNC Data: A triplicate set of Illumina short-read RNA-seq data from The University of 

North Carolina (UNC). This data was generated on three HG002 cell lines as part of the 

NIST-GIAB RNAseq pilot sequencing project (https://ftp-

trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data_RNAseq/AshkenazimTrio/HG002_

NA24385_son/UNC_Illumina/). 

2) Google Data: Another set of Illumina short-read RNA-seq data provided by Google, with 

sequencing contracted out to Novogene as part of the NIST-GIAB RNA-seq pilot 

sequencing project (https://ftp-

trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data_RNAseq/AshkenazimTrio/HG002_

NA24385_son/Google_Illumina/).  

Short-read benchmark data were processed using the same pipeline mentioned above. We 

first averaged the TPM of protein-coding genes within the three UNC datasets and then further 

averaged the result with the Google sample to create a standard mean TPM matrix. Genes with 

mean TPM ≥ 5 were selected as the positive expression set, while genes with mean TPM = 0 as 

the negative expression set. This expression benchmark included 8991 positive genes and 1296 

negative genes. To validate our in-house data, a gene was defined as detected if the read count 

was ≥ 50, and undetected if the read count was < 50. Sensitivity (positive rate of genes in the 
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positive expression set) and specificity (negative rate of genes in the negative expression set) 

were used to evaluate the performance of gene expression quantification. 

For long-read data, two sequence datasets from two groups were used: 

1) PacBio Data: PacBio long-read RNA-seq data produced from the Sequel® Revio system 

by PacBio, using the Kinnex full-length RNA protocol 

(https://downloads.pacbcloud.com/public/dataset/Kinnex-full-length-RNA/DATA-Revio-

HG002-1/).  

2) Baylor Data: PacBio long-read RNA-seq data produced by Baylor College of Medicine, 

with sequencing contracted out to Novogene as part of the NIST-GIAB RNA-seq pilot 

sequencing project (https://ftp-

trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data_RNAseq/AshkenazimTrio/HG002_

NA24385_son/). Iso-Seq SMRT® libraries were constructed and sequenced using the 

PacBio Sequel Systems. 

The Iso-Seq workflow (v4.0.0, https://isoseq.how/) was used for data processing. Reads 

were first mapped to hg38 using pbmm2 v1.13.1. Mapped reads were then collapsed into unique 

isoforms using isoseq v4.0.0, and classified and filtered using pigeon v1.1.0.  

A provisional benchmark for splicing junctions was constructed by intersecting junctions 

passing quality control from each source. The consensus list was filtered for canonical junctions 

represented in GENCODE v39. To avoid detection noises from genes with insufficient 

expression in the LCL sample, only junctions mapped to genes with an adequate expression 

(TPM ≥ 5 according to GIAB short-read data) were used as the positive splicing set. Canonical 

junctions in genes from the negative expression set were used as the negative splicing set. This 

splicing benchmark included 38110 positive junctions and 4195 negative junctions. To validate 
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our in-house data, a junction was defined as detected if the junction read count was ≥ 5, and 

undetected if the junction read count was < 5. Sensitivity (positive rate of junctions in the 

positive set) and specificity (negative rate of junctions in the negative set) were used to evaluate 

the performance of splicing junction detection. 

Reference ranges, outlier analysis, and clinical performance evaluation 

We established a reference panel consisting 73 fibroblast samples and 55 blood samples from the 

validation cohort. Outlier analyses were performed independently for fibroblast samples and 

blood samples.  

The expression outlier pipeline was adapted from Outrider v1.17.2 25. A negative 

binomial distribution was modeled based on the raw counts of the gene across all samples using 

the R package MASS v7.3-60.0.1. Expression outliers were identified by comparing the 

expression value of each gene in each sample against this distribution. The range of expression 

folds corresponding to a P-value < 0.05 was defined as the reference range of a gene.  

The splicing outlier pipeline was adapted from FRASER v1.99.1 26. We modeled the 

percent spliced-in (PSI) value of each junction across the reference panel into a beta-binomial 

distribution using the R package VGAM v1.1-9. Splicing outliers were identified by comparing 

the PSI of each junction in each sample against this distribution. The range of PSI corresponding 

to a P-value < 0.05 was defined as the reference range of a junction. 

For clinical performance, we evaluated the concordance of the outlier results with the 

known expression or splicing abnormalities in the positive samples. For expression 

abnormalities, the direction of change (up or down-regulation) and P-value from Outrider were 

used to determine whether the expected expression abnormality was detected. For splicing 

abnormalities, a splice-altering variant may result in changes in splicing conditions at multiple 
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loci within a gene. For example, a DNA variant causing exon skipping leads to alteration of two 

splice conditions: a reduction of PSI for the intron proceeding and the intron following the 

skipped exon. In our clinical validation, positive detection of splicing abnormality was defined as 

having at least one of the expected PSI changes flagged by the pipeline. Sensitivity analysis was 

performed by using different P-value cutoffs to filter the outlier results. At each P-value cutoff, 

the number of outliers and the number of positive cases were calculated. 

Results 

Design of a clinical transcriptome sequencing test and scope of the clinical validation 

We developed a clinical RNA-seq test for the diagnosis of Mendelian disorders. This test is 

recommended for individuals with suspected genetic disorders who are undergoing or have 

completed a comprehensive DNA analysis, such as large panel testing, ES, or GS. Acceptable 

sample types include blood or cultured fibroblast samples, or total RNA extracted from these two 

sample types.  

The test workflow is depicted in Figure 1. For fibroblast samples, a poly-A enrichment 

library is prepared, while for blood samples, a ribo depletion library is used. RNA-seq is 

performed on the Illumina platform, targeting a depth of 150 million reads. The raw data is 

processed using an in-house analytic pipeline adapted from the GTEx version 10.  

An outlier-based pipeline is used to identify abnormal expression and splicing events, 

using fixed reference data for blood (n=55) and fibroblast (n=73) samples. The abnormal 

expression and splicing events are interpreted in combination with DNA variants and patient 

phenotypes by American Board of Medical Genetics and Genomics (ABMGG)-certified 

professionals (Figure S1). The interpretation results and clinical recommendations are reported 

within a turnaround time of eight weeks. 
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The validation workflow incorporates an essential preliminary step of optimization and 

familiarization (O&F), followed by the formal validation. The formal validation phase involves 

selecting validation samples, formulating quality control (QC) metrics, testing reproducibility, 

evaluating analytical performance, establishing reference ranges, and assessing clinical 

performance.  

Cohort sample selection 

A total of 130 samples from 110 individuals were included in the validation workflow, including 

73 fibroblast samples, 55 blood samples, and 2 lymphoblastoid/lymphocyte samples (Table 1). 

None of the individuals within each sample cohort are related to each other. 

All 73 fibroblast samples were obtained from the Undiagnosed Diseases Network (UDN), 

comprising 20 positive samples with a molecular diagnosis and 43 ‘negative’ samples from 

apparently healthy siblings or parents of unrelated participant families. Ten of the negative 

samples were utilized for optimization and familiarization (O&F). Among the 55 blood samples, 

54 were sourced from the UDN and one from a healthy volunteer (BG1477). The UDN blood 

samples included 20 positive samples and 34 ‘negative’ samples from apparently healthy siblings 

or parents of unrelated participant families, with 10 negative samples designated for O&F. The 

blood sample from BG1477 was used for reproducibility testing.  

The two lymphoblastoid/lymphocyte samples, GM24385 and K562, were procured from 

the Coriell Institute. GM24385 (HG002) is a standard reference sample from the GIAB project 

and was used for both reproducibility testing and analytical validation. K562, derived from the 

bone marrow of a patient with chronic myeloid leukemia, was used for reproducibility testing. 

Quality controls 
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Prior to the formal validation, an O&F procedure was conducted. This involved calibrating 

equipment, testing reagents, establishing protocols, and formulating QC standards. Using O&F 

samples, we assessed the quality spectrum of RNA and NGS libraries (Figure 2A), and 

determined QC standards for the clinical test (Figure 1). The RNA sequencing yield was 

empirically targeted at 150 million reads (Figure 1). Following raw data analysis, QC standards 

for the RNA-seq results were implemented based on statistics from the O&F data (Figure 1, 

Figure 2B). Identity matching was conducted for every sample as a QC procedure to prevent 

sample swap by comparing the concordance of SNPs identified from RNA-seq data with variant 

calls from existing DNA sequencing data.  

Reproducibility test 

The reproducibility analysis was conducted to evaluate the consistency of results across repeat 

runs. The setup included five replicates: one triplicate in a batch and two individual runs in two 

other batches, enabling intra- and inter-batch reproducibility evaluation. We decided to calculate 

reproducibility using two fundamental measurements from RNA-seq results: gene expression 

levels and splicing status at exon-intron junction sites. Three distinct samples were included in 

this analysis: GM24385 (a lymphoblastoid cell line from HG002), K562 (a lymphoblast cell 

line), and BG1477 (a blood sample).  

The expression-level correlation between each pair of replicates was calculated using the 

read count of coding genes. The splicing-level correlation between each pair of replicates was 

calculated using the read counts at GENCODE canonical junctions in genes. Genes with low 

expression levels (TPM < 5) were excluded from both correlation analyses. For all three samples, 

high reproducibility was achieved, with intra-batch correlations (Pearson coefficient) above 0.99 

and inter-batch correlations (Pearson coefficient) above 0.98 (Figure 2C, Figure S2, Figure S3).  
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Validation of analytical performance 

The validation of a diagnostic test’s analytical performance typically involves assessing the 

detection of fundamental analytical elements. As an analogy, DNA-based NGS often measures 

the accuracy of base calling using gold standard samples. In the context of RNA-seq, we posit 

that the detection of gene expression levels and splicing status at exon-intron junctions should be 

extensively characterized.  

We used GM24385, the lymphoblastoid cell line from the GIAB reference individual 

HG002 for our evaluation. We established expression and splice junction benchmarks for 

GM24385 using publicly available RNA-seq data. The expression benchmark was constructed 

using four short-read RNA-seq datasets from two independent laboratories. We calculated the 

mean TPM for each protein-coding gene between two laboratories and selected 8552 positive 

genes (TPM ≥ 5) and 1320 negative genes (TPM=0) (Data S1). The splicing benchmark was 

constructed using two long-read RNA-seq datasets from two independent laboratories. Positive 

junctions were defined as canonical junctions in the aforementioned positive gene set detected in 

both long-read datasets. Negative junctions were defined as canonical junctions in the negative 

gene set that were not detected in either long-read dataset. Based on these criteria, we identified 

38110 positive junctions and 4195 negative junctions (Data S2). The positive and negative 

genes/junctions were then used as a reference to calculate the sensitivity and specificity of our 

test.  

At the expression level, the five GM24385 replicates yielded a sensitivity ranging from 

99.9% to 99.93% and a specificity of 100%. Most false negative (FN) genes exhibited apparent 

discrepancies in expression levels between the two benchmark resources, suggesting an impact 

of laboratory context on RNA-seq results (Data S3). This finding underscores the importance of 
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including data from multiple sources and warrants further investigation. At the splicing level, the 

sensitivity ranged from 99.64% to 99.78%, and the specificity ranged from 99.79% to 99.9%. 

Notably, none of the FN junctions overlapped with the expression-level FN genes, suggesting 

that FN junctions were driven by alternative splicing patterns rather than inadequate gene 

expression. This observation was confirmed by manual inspection (Data S4, Figure S4). In 

contrast, false positive (FP) junctions were mostly attributed to mapping issues (Data S4, Figure 

S5). Overall, the analytical performance of our test exceeded the preset cutoff of 99% for both 

sensitivity and specificity at the expression and junction levels. 

Establishing transcriptome-wide reference ranges  

The detection of outliers relies on the definition of a reference range, which is the range of values 

for given targets expected in a healthy population. For this transcriptome test, we first aimed to 

define the scope of genes sufficiently interrogated by the assay for outlier analysis and then 

establish reference ranges for every gene within this scope. Data from a reference panel of 73 

fibroblast samples and 55 blood samples from the validation cohort were used to establish the 

reportable targets and the reference ranges.  

Among all 19216 coding genes, 11962 (62.2%) from blood and 12614 (65.6%) from the 

fibroblast are deemed reportable (Data S6 and S7), with a minimum of 50 sequencing reads from 

the average of all samples. When breaking down the gene list into disease-specific subsets, blood 

RNA-seq demonstrated gene coverage ranging from 56.8% to 85.4%, whereas fibroblast RNA-

seq ranged from 67.3% to 86.7% (Figure 3A). Consistent with previous reports 6,27, fibroblast 

demonstrated higher gene coverage compared to blood for all disease-specific panels except for 

immunodeficiency.  
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To establish expression reference ranges, we modeled the read count of each gene across 

the reference panel into a negative binomial distribution. The upper and lower boundaries of the 

range of expression fold changes corresponding to a P-value < 0.05 were defined as the reference 

range of a gene (Data S6 and S7, Figure 3B). The distribution of expression fold changes for all 

reportable genes showed mode values of 0.83 to 1.17 for blood and 0.85 to 1.16 for fibroblasts. 

This analysis suggests that the primary difference in gene expression levels between blood and 

fibroblast lies in the number of reportable genes, rather than the distribution of reference ranges 

among those reportable genes.  

To establish splicing reference ranges, we modeled the percent spliced in (PSI) of each 

junction across the reference data using a beta-binomial distribution. The range of deltaPSI 

corresponding to a P-value < 0.05 was defined as the reference range of a junction (Data S8 and 

S9, Figure 3C). As an example, the splicing reference ranges for all splice junctions in PRUNE1 

are shown in Figure 3D/E.  

After excluding canonical introns with fewer than three junctions in more than 20% of 

samples, 119403 and 105114 canonical introns remain for splicing reference range analysis in 

fibroblast and blood, respectively. The splicing reference range pattern differs dramatically 

between the two sample types. The distribution of fibroblast junction PSI shows a narrow 

reference range (equivalent to a wide outlier detection range) with mode values at -0.003 to 

0.0002, compared to the mode reference range of -0.13 to 0.1 for blood. This difference is at 

least partially attributed to the distinct library preparation methods used. The polyA enrichment 

protocol for fibroblast boosts the proportion of canonical splicing in mature mRNA, leading to 

lower variation in PSI. In contrast, the ribo-depletion protocol for blood preserves unspliced pre-

mRNA, resulting in higher PSI variation.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 17, 2024. ; https://doi.org/10.1101/2024.08.15.24312057doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.15.24312057


Validation of clinical performance 

Clinical performance is defined as the detection rate of clinical deliverables in an evaluation. For 

our clinical transcriptome analysis, we considered outliers for gene expression level or splice 

junction PSI corresponding to diagnostic DNA variants as the two key components that 

constitute the clinical deliverable. We calculated standalone detection rates for each of the two 

outlier types. Additionally, we determined patient-level detection rates by requiring the detection 

of only one outlier type when both expression and splicing outliers are expected in a single 

patient. This approach is justified because, when two outlier types are predicted from one event, 

it typically involves cryptic splicing that leads to nonsense-mediated decay, resulting in reduced 

expression levels. The intensity of residual cryptic splicing and the degree of gene expression 

reduction tend to counterbalance each other.  

Positive clinical samples from the UDN, comprising 20 blood samples and 20 fibroblast 

samples from 23 individuals, were selected for the evaluation. These patients carry diagnostic 

variants encompassing a wide range of variant types, including putative loss-of-function variants, 

splicing variants, and deletions. The resultant RNA changes span a full spectrum including 

aberrant expression at the gene level, and aberrant splicing in the form of cryptic splice sites, 

exon skipping, cryptic exons, and fusion genes. To ensure the authenticity of these positive 

findings, all samples required at least two independent sets of experimental data affirming the 

diagnostic finding. The DNA variants, expected RNA findings, and descriptions of the 

supportive evidence are listed in Data S5. In some individuals, both expression and splicing 

abnormalities were expected, while in others, only one type of abnormality was anticipated. For 

our clinical validation, at least one type of abnormality was required to be detected in at least 
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95% of patients, meaning no more than one false negative was allowed for each sample type 

(Figure 1). 

For fibroblast samples, outlier analyses identified an average of 1060 expression outliers 

and 3910 splicing outliers per sample with P values < 0.05. In blood samples, more outliers were 

detected, with 1182 expression outliers and 6920 splicing outliers. We identified 12 out of 13 

expected expression abnormalities and 16 out of 17 splicing abnormalities in fibroblast samples 

(Data S5, Data S10, Figure 4A). For combined sample-level findings, 19 out of 20 fibroblast 

samples showed at least one outlier abnormality. In blood samples, we identified 10 of 12 

expected expression abnormalities and 15 of 17 splicing abnormalities, leading to a combined 

detection rate of 19 out of 20 samples (Data S5, Data S11, Figure 4B). Both sample types 

achieved a sample-level detection rate of 95% (19 out of 20), meeting the preset requirement 

(Figure 1). The missing molecular diagnoses were attributed to two main factors: high 

background noise obscuring the low-impact positive findings (low expression of AP4M1 in 

blood, Figure S6; low reduction of PPP3CA expression in fibroblast, Data S10), and the 

apparently variable efficiencies of nonsense-mediated mRNA decay (low NMD for AP4M1 

expression in blood, Figure S6 ). 

We then investigated how adjusting P-value cutoffs affects the number of outliers to 

review (reflecting positive predictive value) and the number of positive molecular diagnoses 

identified (reflecting sensitivity). Our findings indicate that fibroblast data are more robust 

against stringent P-value cutoffs. In fibroblast samples, most positive findings remain detectable 

even when cutoff stringencies are raised to retain approximately 100 reviewable expression or 

splicing outliers (Figure S7). In contrast, applying the same filtering criteria to blood samples 

results in the loss of more than half of the positive findings (Figure S7). It is crucial for clinical 
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laboratories to balance clinical sensitivity with the interpretation workload and make informed 

decisions regarding filtration cutoffs for reviewable data. 

Discussion 

Here, we report the development and clinical validation of an RNA-seq test for the diagnosis of 

Mendelian disorders. We demonstrate that a clinical workflow can be established to achieve high 

clinical sensitivity and specificity. Additionally, we also provide essential resources and 

considerations for conducting clinical validation, along with metrics necessary to define test 

limitations in the validation and to monitor quality performance during production post-

validation.  

Detection of abnormal expression and splicing depends on the reference range of the 

target in the tested tissue, which is influenced by both the abundance and variability of the target 

gene expression. The commonly used metric for expression level, TPM, falls short in precisely 

estimating the clinical reference range. For example, compared to TRIP11, PPP3CA has a higher 

TPM in fibroblasts (31.78 versus 20.02) but a less sensitive assay reference range (0.72-1.26 

versus 0.81-1.21). The wide reference range of 0.72-1.26 predicts that the expected positive 

finding with an expected fold change at 0.81 falls within the interval of background noise, 

resulting in false-negative detection. Interestingly, PPP3CA has a more sensitive reference range 

in our blood assay (0.85-1.16), enabling the detection of this challenging expression reduction in 

blood. A similar trend of a more sensitive reference range in blood compared to fibroblasts is 

observed for many other genes (Data S6 and S7, Figure 3A). In the case of the DNM1 variant, 

although gene-level expression is adequate, reference range analysis reveals insufficient 

sequencing coverage at the junction region for the expected abnormal splicing, which explains 

the false-negative result for the splice junction.  
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The rate of NMD is a factor that can also influence diagnostic performance. When it 

occurs at high efficiency, NMD degrades abnormal junctions, making it easier to detect 

expression outliers, but harder to detect splicing outliers. This explains the FN aberrant splicing 

detection of the MIPEP junction in fibroblast and the DNM1 junction in blood. When NMD 

occurs at low efficiency, expression outliers may become too modest to be detected. Our RNA-

seq results revealed different fold changes for expression reduction of AP4M1 between 

fibroblasts and blood, suggesting that NMD is incomplete in the blood, contributing to false-

negative expression results in blood (Figure S6). The low expression level at the junction site in 

blood contributed to the false negative detection of aberrant splicing. Further understanding of 

tissue-specific NMD rates will guide future design and interpretation of the RNA-seq tests.  

The diagnostic capability of RNA-seq tests is influenced by several technical factors, 

including but not limited to, sample collection methods, cell culture techniques, cDNA synthesis, 

library preparation, sequencing read length, sequencing depth, bioinformatics pipelines, and the 

configuration of control datasets (Table 3). Although many of these variables were not 

specifically examined in the current study, they warrant careful consideration and standardization 

during the clinical implementation of RNA-seq.  

Preanalytical variables can be introduced at various stages, such as during sample 

collection, handling, and cell culture. The use of blood collection tubes, for example, can affect 

RNA integrity, yield, and gene expression profiles, potentially reducing the consistency of gene 

expression data across different runs 28,29. Similarly, variations in skin biopsy collection, such as 

differences in the collection site, can lead to discrepancies in gene expression 30. Additionally, 

different culturing techniques and the intrinsic characteristics of the cultured cells, such as 

passage number and metabolomic status, can also influence gene expression.  
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While it is essential for clinical labs to standardize protocols to control these variables, 

these challenges suggest that developing a gold standard for gene expression benchmarks based 

on precise read count values may not be feasible due to the high level of noise introduced by lab-

specific practices in cell line strains, RNA extraction, and library preparation. To address this 

issue, we tentatively defined the gene expression benchmark using a binary classification of 

expressed or unexpressed genes. This approach allowed us to derive positive and negative gene 

sets from the short-read data of the reference sample GM24385 from GIAB for benchmarking. 

Although this method provides a lower-resolution characterization of expression levels, it 

enables inter-laboratory performance comparisons. As a complementary assessment, precise read 

count values were utilized in the reproducibility evaluation, allowing clinical labs to ensure 

consistent experimental and analytical procedures across replicates without relying solely on 

benchmark data.  

Post-analytical variables can arise from sequencing experiments and data analysis 

procedures. Bias related to base composition, transcript strandedness, and coding versus 

noncoding characteristics can be introduced during cDNA synthesis and library preparation 31,32. 

Additionally, sequencing factors such as read length and sequencing depth play crucial roles in 

influencing test performance. Although we did not validate long-read sequencing, we utilized 

long-read RNA-seq data from GM24385 to construct the junction-level benchmark due to its 

ability to capture full-length transcripts 33. The extended read length facilitates accurate 

identification and quantification of splice junctions, enabling the detection of complex alternative 

splicing events that resulted in FN junctions during validation (Data S4, Figure S4).  

Regarding sequencing depth, we opted for a higher overall throughput (~150 million 

reads per sample) compared to previous RNA-seq diagnostic studies 5-7. This decision was 
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prompted by our separate investigation, which highlighted the benefits of conducting RNA-seq 

at higher depth [Zhao et al., manuscript in preparation]. We found that more genes and isoforms 

can be detected at higher depths, and the number keeps increasing even at a depth of 1 billion 

reads. The rate of positive findings increases with sequencing depth, suggesting a higher clinical 

sensitivity at higher depth. The number of total outliers detected also increases with sequencing 

depth, suggesting a decreasing specificity. 

In data analysis, it has been shown that decisions related to the bioinformatics pipeline, 

such as the choice of reference genome build version, impact the clinical performance of RNA-

seq 34. Importantly, the robustness of outlier analysis depends on the sample size and 

homogeneity of the control cohort. Further research is needed to determine an optimum control 

sample size and to prioritize critical factors for homogeneity, such as gender and age.  

In conclusion, our study provides a paradigm and necessary resources for independent 

laboratories to validate a clinical RNA-seq test. 
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Figure legends 

Figure 1. The workflow of clinical RNA-seq  

 

The procedures of clinical RNA-seq is shown along with the passing criteria set for the 

validation of the test. 
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Figure 2. Quality control and reproducibility tests for pre-analytical sample, post-analytical 

library, and RNA-seq data 

 

(A) RNA and library quality control metrics for obtained from Optimization and Familiarization 

(O&F, red) and other validation (blue) runs. (B) RNA-seq data quality control metrics of O&F 

(red) and other validation runs (blue). (C) Reproducibility tests for gene expression and splicing 

(D) metrics for GM24385. Intra-batch comparisons are boxed in blue dotted lines, whereas inter-

batch comparisons are boxed in red.  
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Figure 3. Characterization of transcriptome-wide expression profiles and reference ranges 

 

(A) The gene expression profiles were based on the mean expression value of our fibroblast and 

blood reference cohorts. The proportions of genes with read counts ≥ 50 among all coding genes 

(n=19216) and are shown across various disease-specific gene panels. The distribution of 

transcriptome-wide reference ranges for gene expressions are plotted (B) and those for splicing 

are plotted in (C). The fold change/delta PSI values for the lower and the higher boundaries for 

each gene/junction are depicted on the graph. The range in between the lower and higher 

boundaries represent the reference range, while the ranges outside show the extent of abnormal 
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changes that can be detected. Genes and junctions with low expressions are excluded from this 

analysis, resulting in the following number of targets in each assay: expression in blood n = 

11962; expression in fibroblast n = 12614; splicing in Blood n = 105114; splicing in fibroblast 

n= 119403. The splicing reference ranges of PRUNE1 is illustrated as an example based on our 

fibroblast (D) and blood (E) tests. 
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Figure 4. Clinical performance validation 

 

Clinical performance in fibroblast samples (A) and blood samples (B). We evaluated whether 

each expression/splicing change was detected by our clinical pipeline. ‘Not applicable’ indicates 

that the expression/splicing change in this gene is not expected. 
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Data and code availability 

Raw RNA-seq data from the validation cohort have been deposited in the NCBI Sequence Read 

Archive (SRA) under accession number PRJNA1124992. 
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