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ABSTRACT 
Ventilatory thresholds (VT1 and VT2) are critical in exercise prescription and athletic training, delineating the 

transitions from aerobic to anaerobic metabolism. More specifically, VT1 signifies the onset of lactate 

accumulation whilst VT2 signifies the onset of metabolic acidosis. Accurate determination of these 

thresholds is vital for optimizing training intensity. Fractal correlation properties of heart rate variability (HRV), 

particularly the short-term scaling exponent alpha 1 of Detrended Fluctuation Analysis (DFA-α1), have 

demonstrated potential for this purpose. This study validates the accuracy of commercial ventilatory 

threshold estimation algorithm (VT-algorithm) developed by Kubios. The VT-algorithm employs 

instantaneous heart rate (HR) relative to HR reserve and respiratory rate (RF), along with the DFA-α1. Sixty-

four physically active participants underwent an incremental cardiopulmonary exercise test (CPET) with inter-

beat interval (RR) measurements. DFA-α1 and the Kubios VT-algorithm were used to assess HR and oxygen 

uptake (VO2) at ventilatory thresholds. On average VO2 at true VT, DFA-α1, and VT-algorithm derived 

ventilatory thresholds were 1.74, 2.00 and 1.89 l/min (VT1) and 2.40, 2.41 and 2.40 l/min (VT2), respectively. 

Correspondingly, average HRs at the true VT, DFA-α1, and VT-algorithm thresholds were 141, 151 and 142 

bpm (VT1) and 169, 168 and 170 bpm (VT2), respectively. When compared to the true thresholds, Bland-

Altman error statistics (bias ± standard deviation of error) for the DFA-α1 thresholds were -0.26±0.41 l/min or 

-10±16 bpm at VT1 and 0.00±0.34 l/min or 1±10 bpm at VT2, whereas the VT-algorithm errors were -

0.15±0.28 l/min or -1±11 bpm at VT1 and 0.01±0.20 l/min or -1±7 bpm at VT2. HRV based VT determination 

algorithms accurately estimate ventilatory thresholds, offering insights into training zones, internal loading, 

and metabolic transitions during exercise without the need of laboratory equipment. The Kubios VT-

algorithm, which incorporates instantaneous HR and RF along with DFA-α1, provided higher accuracy for 

VO2 and HR values for both VT1 and VT2.  
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INTRODUCTION 

Ventilatory thresholds (VT1 and VT2) are often used in exercise prescription and athletic training to define 

training intensities and training zones.  Increased lactate accumulation causes metabolic acidosis which is 

subdued by body’s buffering systems (e.g. bicarbonate-CO2 buffering system). At VT2 body’s buffering 

systems cannot keep up with increasing metabolic acidosis, leading to a more significant reliance on 

anaerobic metabolism. (1) Ventilatory thresholds can be determined by the following two methods. Lactate 

measurements can be used to identify turning points in lactate production as lactate thresholds. Another 

approach to determine ventilatory thresholds is through cardiopulmonary exercise testing (CPET). Ventilatory 

thresholds can be determined from respiratory gases via CPET by addressing increases in minute ventilation 

and its relationship to oxygen uptake (VO2) and carbon dioxide production (VCO2). 

Heart rate variability (HRV) based ventilatory threshold detection methods have been under study for the 

past 25 years (2). As exercise intensity increases, the autonomic nervous system gradually shifts from 

parasympathetic to sympathetic dominance (3). Dimensionless HRV indexes based on fractal correlation 

properties, such as the short-term scaling exponent alpha 1 of Detrended Fluctuation Analysis (DFA-α1), 

have a broad dynamic range encompassing the low, moderate and high exercise intensity domains (4,5). 

DFA-α1 is derived from the fractal arrangement of heartbeat intervals over short time spans. Increasing 

sympathetic activity and parasympathetic withdrawal leads to changes in HRV, including DFA-α1 (6). At low 

intensity exercise (below VT1), DFA-α1 values typically range from 1.0 to 0.75, and thereby, VT1 is often 

identified when DFA-α1 reaches 0.75 (7). As exercise intensity continues to increase, DFA-α1 decreases 

further with a value of 0.5 representing VT2 (8). Beyond this, during the most intense exercise, DFA-α1 drops 

below 0.5.  The shift in DFA-α1 from 1.0 towards 0.5 indicates a transition in the correlation properties of 

HRV data, moving from a fractal behavior typically seen during rest to behavior resembling random white 

noise (9). 

The utilisation of DFA-α1 in assessing ventilatory thresholds has significant attention in the fields of exercise 

prescription and the evaluation of endurance exercise fatigue. However, DFA-α1 has limitations and potential 

pitfalls. The most influential factors affecting successful DFA-α1 measurement are device-related errors, 

such as low signal-to-noise ratio due to suboptimal electrode placement or low beat detection precision (10). 

Kubios HRV is a widely used software for evaluating HRV and accessing DFA-α1 (11). The software also 

includes a validated algorithm for correcting abnormal beat intervals, which improves the accuracy of HRV 

metrics including DFA-α1 (12). The accuracy of the DFA-α1-based ventilatory threshold estimates, compared 

to the thresholds determined from CPET, is often assessed through correlation of either heart rate (HR) or 

VO2 at the estimated and reference thresholds. Previous studies have reported varying correlations for HR, 

ranging from 0.66 to 0.87 for VT1 and 0.71 to 0.90 for VT2 (13–15) and for VO2 0.66 for VT1 and 0.74 for 

VT2 (13).   

The aim of this study was to validate the accuracy of the ventilatory threshold estimation algorithm available 

in the Kubios HRV Scientific software (Kubios Oy, Kuopio, Finland). This algorithm utilizes heart rate and 

HRV based estimate of respiratory rate along with DFA-α1 in the estimation of ventilatory thresholds. HR 

reserve has been associated with oxygen uptake reserve at ventilatory thresholds as shown by Gaskill et al. 

(16), and relationship between respiratory frequency (RF) and ventilatory thresholds were proposed by 

Cross et al. (17). Furthermore, a recent study from Rogers et al. showed that using DFA-α1 together with RF 

improves the accuracy of VT estimates when compared to DFA-α1 alone (18). Thus, we hypothesized that 

the accuracy of ventilatory threshold determination could be significantly improved by including these 

additional physiological measures, which are both known to correlate with exercise intensity and metabolic 

demand, in the determination of ventilatory thresholds.  

 

MATERIALS & METHODS  

Participants  

Sixty-four recreationally active voluntary men and women, whose subject demographics are presented in 

Table 1, participated in two different study protocols, both of which included identical exercise testing 

measurements. Prior to testing, participants were instructed to abstain from caffeine, alcohol, tobacco, and 

vigorous exercise for 24 hours and no infection symptoms for two weeks. The studies were conducted in 

compliance with the principles of the Declaration of Helsinki, and they were approved by the Ethics 
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Committee of the Northern Savo Hospital District in Kuopio, Finland (484/13.00.00/2017 and 

409/13.02.00/2019). Participants provided their written informed consent before participating in the study. 

 
Table 1a: MALE Participant characteristics  

N = 32 MEAN ± SD  Min  Max  

Age (years)  34.7 ± 6.4 23  48  

Height (cm)  179.5 ± 5.8 170  194  

Weight (kg)  80.3 ± 9.4 60.0  96.8  

VO2 max (l/min)  3.41 ± 0.60 2.28  4.41  

HR max (bpm)  186 ± 10 173  212  

    

Table 1b: FEMALE Participant characteristics  

N = 32  MEAN ± SD  Min  Max  

Age (years)  32.5 ± 8.7 20  50  

Height (cm)  167.8 ± 6.1 157  180  

Weight (kg)  69.1 ± 12.0 54.2  98.7  

VO2 max (l/min)  2.47 ± 0.39 1.69  3.32 

HR max (bpm)  185 ± 11 167 204 

Abbrevations: VO2max, maximal oxygen uptake; HRmax, maximum heart rate.  

 

Exercise testing 

The subjects underwent an incremental cardiopulmonary exercise test (CPET) on an ergometer (Ergoselect 

100, Ergoline GmbH, Germany) in a temperature-controlled room. The exercise protocol began with a 

seated 5-minute rest period on the ergometer, after which the incremental protocol was initiated. For men, 

this protocol started at 35 W and increased 35 W every 3 minutes, while for women the start was 25 W and 

increase was set at 25 W. The test was performed to volitional maximal effort and was terminated if the 

participant could not maintain a cadence of over 60 rpm. Verbal encouragement was provided to help 

participants achieve maximal effort. Maximal effort was achieved if the participant reached over 95% of 

predicted HRmax, an over 1.1 respiratory exchange ratio (RER) was observed at peak exercise, or a plateau 

in oxygen uptake was observed. Heart rate and ECG channel were continuously measured during the 

exercise test using the Bittium Faros or ME6000 biomonitor (Bittium Ltd, Finland). Respiratory gases and 

ventilatory measurements were collected using the breath-by-breath method with the Cortex Metamax 3b 

portable spiroergometry device (Cortex Biophysik GmbH, Germany). Exercise protocol, along with HR, RF, 

DFA-α1, and VT-algorithm signals for a representative study participant are shown in Figure 1.   

 

VT Determination 

Ventilatory thresholds were analysed from the CPET data (later referred as true VT) using combination of 

criteria chosen by an experienced exercise physiology specialist (TE). To confirm the ventilatory threshold an 

independent researcher was involved.  For VT1 determination, a dual method approach was employed, 

involving an observed increase in VCO2/VO2 slope (the modified V-slope method) with a nadir or turning 

point in VE/VO2 equivalent curve, coinciding with an RER approaching 1.0, as described in (19). For VT2 

determination, the criteria included an increase in the VE/VCO2 slope, a deflection of PETCO2, and an RER 

value of 1.0 (20). There was a good agreement of ventilatory thresholds determined between two 

researchers. Mean differences for VT1 and VT2 were -0.004 l/min (±0.01) and 0.007 l/min (±0.01), 

respectively. The interclass correlation coefficients (ICC) for VT1 was 0.990 (CI 0.983-0.994) and for VT2 

0.995 (CI 0.992-0.997), showing excellent agreement between two researchers. 

 

DFA alpha 1  

ECG data was processed using Kubios HRV Scientific software version 4.0. The software automatically 

applied beat detection, noise detection, and beat correction to the ECG data. Nevertheless, visual inspection 

of the entire test recordings was performed to ensure the exclusion of any poor-quality (less than 5% 

correction in beats) data segments or arrhythmia episodes from the analysis. The very low frequency trend 

components were removed from the RR interval data using the smoothness priors method, with a smoothing 

parameter set to 500 (21). For the computation of the DFA-α1 parameter, a range of 4-16 beats was utilized 

to capture the fractal correlation of RR interval short-term DFA-α1. DFA- α1 was calculated within a moving 

window, with the window width set to 120 seconds and the window shifted in 5-second intervals.  Ventilatory 
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thresholds based on DFA-α1 were determined by plotting DFA-α1 against time, identifying the time points at 

which DFA-α1 crossed the values of 0.75 (VT1) or 0.5 (VT2), and finally extracting the HR and VO2 values at 

these time points (see Figure 1). One participant was excluded from the DFA-α1 analysis due to consistently 

high (> 0.5) DFA-α1 value and therefore not reaching VT2 by solely using DFA-α1 analysis.  

 

Figure 1: Illustration of the exercise protocol as well as heart rate, oxygen uptake, respiratory rate, DFA-α1, and VT-

algorithm signals for a representative study participant. True ventilatory thresholds are marked by vertical dashed lines, 

and the VT estimates obtained from the DFA-α1 (red) and VT-algorithm (blue) are marked with triangle markers.  

 
 

VT-algorithm 

In addition to the DFA-α1 approach, the ventilatory threshold estimation algorithm (VT-algorithm) available in 

the Kubios HRV Scientific software was employed to determine both ventilatory thresholds.  This algorithm 

relies on the instantaneous values of heart rate in relation to HR reserve, HRV based respiratory rate 

estimate (RF), and the fractal behaviour of HRV measured by DFA-α1. The HR reserve (HRR) was obtained 

by subtracting a fixed 60 bpm resting HR from the maximal HR achieved during the CPET. The RF was 

derived from beat-to-beat RR data within a 30-second moving window as described in (22). Ventilatory 

threshold estimates were determined by plotting the VT-algorithm output against time, identifying the points 

at which the VT-algorithm output crossed the values of 1 (VT1) or 2 (VT2), and then taking the HR and VO2 

values at these time points (see Figure 1).  

 

Statistical analysis  

Descriptive and analytical statistics were performed using IBM SPSS Statistics 27. The agreement of 

threshold values was assessed via linear regression, Pearson’s r correlation coefficient, standard error of 

estimate (SEE) and Bland-Altman plots with limits of agreement (23). The Pearson’s r correlations were 

interpret as follows: 0.3 < r < 0.5 moderate, 0.5 ≤ r < 0.7 high, 0.7 ≤ r < 0.9 very high and r ≥ 0.9 almost 

perfect (24). Paired t-testing was used for the comparison of true VTs vs. DFA-α1 estimate and VT-algorithm. 

For all tests, the statistical significance was accepted as p < 0.05. The interpretation of effect sizes is based 

on Cohen’s thresholds for small effects (d < 0.5), moderate effects (d ≥ 0.5) and large effects (d > 0.8)(25). 

Additionally, ICC was calculated to assess the inter-researcher agreement in VT determination. 
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RESULTS  

The main characteristics of the study participants are shown in Table 1 (a and b).  The statistical comparison 

between the true ventilatory thresholds and the ventilatory thresholds obtained from DFA-α1 and VT-

algorithm is presented comprehensively in Table 2. Furthermore, the Bland-Altman plots illustrating the bias 

and error of the VT estimates regarding HR and VO2 are provided in Figures 2 and 3, respectively. 

Regarding HR at VT1, DFA-α1 exhibited a moderate correlation (r=0.44, standard error of estimation, SEE 

13.18), but the mean HR value was significantly over-estimated when compared to the HR at the true VT1 

(151 vs. 141 bpm, p<0.001, d=0.55).  In contrast, the VT-algorithm demonstrated a high correlation (r=0.62, 

SEE 11.37), and the mean HR value was like the HR at the true VT1 (142 vs. 141 bpm, p=0.93, d=0.01). For 

HR at VT2, DFA-α1 showed a high correlation (r=0.66, SEE 9.40), and VT-algorithm had a very high 

correlation (r=0.82, SEE 6.20). The mean HRs at the estimated VT2 were like the HR at the true VT2 for 

both DFA-α1 (168 vs. 169 bpm, p=0.60, d=0.07) and VT-algorithm (170 vs. 169 bpm, p=0.58, d=0.07). The 

bias and standard deviation of the error for DFA-α1, obtained from the Bland-Altman analysis, were 10±18 

bpm at VT1 and 1±10 bpm at VT2. For VT-algorithm, the errors were 1±11 bpm at VT1 and 1±7 bpm at VT2. 

 
Table 2: Comparison between true ventilatory thresholds (True VT) and ventilatory thresholds obtained 

by Detrend Fluctuation Analysis (DFA-α1) and Ventilatory threshold detection algorithm (VT-algorithm).  

  True VT value  

MEAN ± SD  

DFA-α1 estimate  

 MEAN ± SD 

VT-algorithm  

MEAN ± SD 

VT1 HR (bpm)    144 ± 14  151 ± 19   142 ± 8  

VT1 HR error     -10 ± 18*      -1 ± 11  

VT1 HR r    0.44**    0.62**  

    

VT2 HR (bpm)    169 ± 12  168 ± 13†  170 ± 9  

VT2 HR error        1 ± 10     -1 ± 7  

VT2 HR r    0.66**  0.82**  

    

VT1 VO2 (l/min)    1.74 ± 0.41    2.00 ± 0.55   1.89 ± 0.48  

VT1 VO2 error     -0.26 ± 0.41*  -0.15 ± 0.28*  

VT1 VO2 r     0.67**   0.81**  

    

VT2 VO2 (l/min)    2.40 ± 0.56    2.41 ± 0.57†   2.40 ± 0.55  

VT2 VO2 error     -0.00 ± 0.34   0.01 ± 0.20  

VT2 VO2 r      0.82**   0.93** 

    

† One subject excluded, DFA-α1 was higher than 0.5 during whole recording  

* Mean value statistically different to the value at the true threshold (t-test, p<0.05)  

** Statistically significant correlation (p<0.001)  

Abbrevations: VT1, first ventilatory threshold; VT2, second ventilatory threshold; HR, heart rate; VO2, oxygen consumption; r, 

Pearson correlation value 

 
Regarding VO2 at VT1, DFA-α1 exhibited a high correlation (r=0.67, SEE 0.31) and VT-algorithm a very high 

correlation (r=0.81, SEE 0.26), while the mean VO2 values for both DFA-α1 (2.00 vs. 1.74 l/min, p<0.001, 

d=0.80) and VT-algorithm (1.89 vs. 1.74 l/min, p<0.01, d=0.40) were significantly different to the VO2 value 

at the true threshold. For VO2 at VT2, DFA-α1 demonstrated a very high (r=0.82, SEE 0.26) and VT-

algorithm almost perfect (r=0.93, SEE 0.21) correlation, with no significant differences in the mean VO2 

values determined by DFA-α1 (2.41 vs. 2.40 l/min, p=0.57, d=0.07) and VT-algorithm (2.40 vs. 2.40 l/min, 

p=0.59, d=0.07) when compared to the true value. Bland-Altman error statistics regarding the VO2 values at 

the thresholds for DFA-α1 were 0.26±41 l/min at VT1 and 0.00±0.34 l/min at VT2. For VT-algorithm, the 

errors were 0.15±0.28 l/min at VT1 and 0.01±0.20 l/min at VT2. 

In terms of the distinctions between DFA-α1 and the VT-algorithm, both threshold estimates yielded similar 

results at VT2 for HR (t-test, p=0.268, d=0.14) and for VO2 (p=0.209, d=0.16). However, at VT1, significant 

differences were observed in both HR (p<0.001, d=0.59) and VO2 (p<0.001, d=0.59) between DFA-α1 and 

the VT-algorithm.  
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Figure 2: Bland-Altman analysis of HR bias and standard deviation of error (± SD) at the thresholds estimated through 

DFA-α1 (A) and VT-algorithm (B) compared to the true thresholds.  

 

 

DISCUSSION  

The main purpose of this study was to validate a commercially available algorithm for accurate HRV based 

threshold detection. The Kubios VT-algorithm utilizes instantaneous heart rate in relation to HR reserve as 

well as instantaneous respiratory rate, in addition to DFA-α1, in the detection of ventilatory thresholds. We 

observed that due to these additional physiological inputs, the VT-algorithm was able to enhance the 

detection of both ventilatory thresholds when compared to the DFA-α1 approach. 

The DFA-α1 algorithm, introduced by Rogers and his colleagues (7,8) has demonstrated its superiority over 

other methods for detecting ventilatory thresholds using HRV parameters. Similarly, as DFA-α1 algorithm 

also the VT-algorithm only requires an HRV recording, since both HR reserve and RF are extracted from the 

HRV data. Rogers and his coworkers (10,29) investigated DFA-α1 algorithms in runners via treadmill to 

evaluate ventilatory thresholds during exercise. Prediction of ventilatory threshold HR using DFA-α1 analysis 

showed promise, with VT1 HR having correlation of 0.78 and bias of 4 beats/min (error SD: ±10 beats/min) 

while VT2 correlation 0.93 and a bias of 2 beats/min (±5 beats/min). Especially for VT1 Mateo-March et al. 

(15) found high levels of validity and agreement on elite cyclists lactate thresholds. In our study, we observed 

notably lower correlations among DFA-α1 threshold HR values compared to prior findings. Moreover, sole 

DFA-α1 seems to overestimate VT1 HR by 10 beats/min and accuracy was diminished as the standard 

deviation of error was ±18 beats/min, though VT2 HR accuracy remained consistent with previous studies 

(Figure 2 A) showing a minor underestimation by 0.7 beats/min (±10 beats/min). Schaffarczyk et al. (13) 

reported a possible effect of sex on DFA-α1 derived VT1. However, we found no statistical differences 

between males and females on DFA-α1 threshold detection. This suggests that with a larger and perhaps 

also more heterogenous dataset, sole reliance on DFA-α1 for VT1 detection may result in reduced accuracy 

as also demonstrated by Fleitas-Paniagua and his colleagues (28). It is also notable that exercise modality 

could have an influence in the differences compared to the work of Rogers and his coworkers (10,29). 
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Figure 3: Bland-Altman analysis of VO2 bias and standard deviation of error (± SD)  at the thresholds estimated through 

DFA-α1 (A) and VT-algorithm (B) compared to the true thresholds.  
 

By incorporating knowledge of HR reserve and RF, the VT-algorithm appears to enhance the accuracy of 

threshold detection for both ventilatory thresholds compared to exclusive DFA-α1 analysis (Figure 2 and 3). 

The role of respiratory frequency in VT detection was investigated in a recent study by Rogers and his 

colleagues (18). They found that combining DFA-α1 and RF measures improved the correlation for threshold 

HR detection and reduced bias in HR values corresponding to both ventilatory thresholds and is in line with 

our results.As age-related HRmax tends to underestimate true HRmax (30) we also conducted separate 

analyses using age-related HRmax estimates for HRR and found no statistical difference between sole DFA-

α1 and the VT-algorithm in threshold detection. Furhermore, since resting HR was not available for all study 

participants, a semi-ideal HRR was adopted. Despite the limitation of using a fixed resting HR in the 

computation of HRR, the VT-algorithm appears to enhance correlations and reduce bias, achieving at least 

moderate agreement with the actual measured ventilatory thresholds. However, there is an observable bias 

where threshold HR is overestimated at lower HR values and underestimated at higher HR values, especially 

seen for VT1. Whether this bias would be reduced by utilizing true HRR of not, should be studied more 

extensively in the future. Nonetheless, the VT-algorithm notably enhances precision in VT detection, 

especially concerning VT1. Both methods offer non-invasive, user-friendly analysis tools for accessing 

ventilatory thresholds. Rogers and his colleagues (26) validated DFA-α1 on cardiac patients, indicating 

strong agreement with threshold HR values.  

Approximation of threshold VO2 seems to be overestimated by both DFA-α1 and VT-algorithm compared to 

gas exchange thresholds in VT1. However, VO2 approximation on VT2 is accurate for both DFA-α1 and VT-

algorithm. These results are in pair with results by Rogers and Schaffarczyk whilst they studied VO2 relative 

to body mass (13,26).  Consequently, both methods provide an accurate surrogate to threshold VO2 to 

identify exercise intensity domains and thus could be used for exercise prescription and assessing intensity 

distribution.  
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Despite the advantages of HRV-based VT detection, there are no studies employing these methods in 

exercise interventions. Exercise interventions typically rely on HR or VO2 values obtained from various 

exercise tests (e.g., CPET and the 6-minute walk test) (31,32). These tests often require expertise and 

access to costly laboratory equipment for lactate and VO2 measurements. Knowledge of ventilatory 

thresholds is essential for monitoring exercise intensity distribution and training load (33). The VT-algorithm 

displays nearly excellent correlation and accuracy with VO2 threshold values and, therefore, could be a 

valuable tool for exercise testing, exercise intensity monitoring, and training load assessment. Nowadays 

DFA-α1 may be used in real time monitoring (7). However, currently, the VT-algorithm is available only for 

post-session analysis.  

 

CONCLUSION  

The Kubios VT-algorithm, which incorporates instantaneous HR and RF alongside DFA-α1, provides an 

accurate method for assessing an individual’s ventilatory thresholds. Both DFA-α1 and VT-algorithm provide 

an accurate estimation of different exercise intensity zones in terms of VO2. Although both methods 

overestimate HR in VT1 and underestimate it in VT2 the errors are lesser while using VT-algorithm 

compared to DFA-α1. Utilizing post-session beat-to-beat RR interval data, it provides a user-friendly and 

non-invasive tool for ventilatory threshold estimation. The VT-algorithm can be readily implemented in both 

laboratory and field settings, making it valuable for exercise testing, exercise intensity monitoring, and 

training load assessment. 
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