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Abstract:  

Abstract:  

Objectives: Based on clinical, biomarker and genetic data, autoimmune and autoinflammatory 

disorders (AIDs) can be classified as a disease continuum from pure autoinflammatory to pure 

autoimmune with mixed diseases in between. However, the genetic architecture of AIDs has 

not been systematically described. Here we investigate the polygenic continuum of AIDs using 

genome-wide association studies (GWAS) and statistical genetics methods. 

Methods: We mapped the genetic landscape of 15 AIDs using GWAS summary statistics and 

methods including genomic structural equation modelling (genomic SEM), linkage 

disequilibrium score regression, Local Analysis of [co]Variant Association, and Gaussian 

causal mixture modelling (MiXeR). We performed enrichment analyses of tissues and 

biological gene-sets using MAGMA.  

Results: Genomic SEM suggested a continuum structure with four underlying latent factors 

from autoimmune diseases at one end to autoinflammatory on the opposite end. Across AIDs, 

we observed a balanced mixture of negative and positive local correlations within the major 

histocompatibility complex, while outside this region they were predominantly positive. 

MiXeR analysis showed large genetic overlap in accordance with the continuum landscape. 

MAGMA analysis implicated genes associated with monogenic immune diseases in 

autoimmune (factor 1) and autoinflammatory diseases (factor 4). 
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Conclusions Our findings support a polygenic continuum across AIDs, with four genetic 

clusters. The "polygenic autoimmune" and "polygenic autoinflammatory" clusters reside on 

margins of this continuum. The identified genetic patterns across different AIDs can potentially 

guide drug selection, as patients within the same clusters may benefit from the same therapies. 

 

Keywords: immune, autoimmune, autoinflammatory diseases, genome-wide association 

studies, polygenicity, classification   
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Introduction 

During the last twenty years, autoimmune and autoinflammatory disorders (AIDs) have 

entered the frontline of the clinical field and pharmaceutical development in neurology and 

rheumatology [Mukai et al., 2023, Mueller et al., 2023]. Various new diseases have been 

described, including autoimmune encephalitis [Dalmau et al., 2018], myelin oligodendrocyte 

glycoprotein-associated diseases, monogenic autoinflammatory diseases (interferonopathies, 

adenosine deaminase 2 deficiency) and others [Canna et al., 2015, Di Donato et al., 2021, de 

Jesus et al., 2023]. The global rise in AIDs, as highlighted by epidemiological studies [Conrad 

et al., 2023, Miller et al, 2023], has sparked a need for urgent innovation in the development of 

curation approaches and treatment strategies.  

In addition, the release of new therapeutic options for neuromyelitis optica [Held et al., 

2021], myasthenia gravis [DeHart-McCoyle et al., 2022] and monogenic immune diseases 

[Perez et al., 2022] bring new attention of clinicians to immune disease conception, 

classification and genetics. The current understanding of AIDs relies on previous 

immunological concepts of autoinflammation and autoimmunity, which define 

autoinflammation as a dysregulated activation of innate immune cells, driven by an imbalance 

in the axis of pro-inflammatory cytokines, which leads to damage of host tissues without a 

break in immune tolerance [Savic et al., 2020, Szekanecz et al., 2021]. Conversely, 

autoimmunity is characterised by the loss of immune tolerance, the recognition of self-antigens 

and the activation of T cells and B cells, followed by the production of specific autoantibodies 

and the damage of multiple organs owing to a dysregulated adaptive immune response 

[McGonagle et al., 2006, Matzinger et al., 2022, Shirafkan et al, 2024]. Regarding the fact that 

AIDs is spread between different medical specialities (neurology, rheumatology, 

endocrinology, gastroenterology etc) the new methods and data driven approach can help with 

improving classification which is needed. 

The conceptualization of AIDs as a continuum began with proof of concept publications 

which suggested the classification of immunological diseases based on clinical and laboratory 

data [McGonagle et al. 2006 updated by Ben-Chetrit et al, 2018 and Savic et al, 2020], and 

described AIDs as a continuum with 5 main classes (monogenic autoinflammatory, polygenic 

autoinflammatory, mixed pattern, polygenic autoimmune, monogenic autoimmune diseases) 

highlighting the importance of genetic factors for the classification [See Fig 1.]. This 

classification has become commonplace in rheumatology, where SLE represents the prototype 

of systemic autoimmunity with production of multiple autoantibodies. There is still no 

consensus on the precise classification of some diseases such as rheumatoid arthritis (RA), 
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juvenile idiopathic arthritis (JIA) and ankylosing spondylitis (AS) [Mauro et al., 2021], since 

they exhibit overlapping features of both autoimmunity and autoinflammation [Szekanecz et 

al., 2021]. In neurology some diseases are easier to place on the AIDs continuum (for example, 

myasthenia or anti-LGi1-positive autoimmune encephalitis are considered to be classical 

autoimmune diseases [Fichtner et al., 2020, Bink et al., 2017] but for the majority it remains 

unclear (for example, central nervous system vasculitis, acute encephalomyelitis, Höftberger 

et al., 2017, de Moraes et al., 2023]. Moreover, current efforts are based on clinical features 

and qualitative markers, leading to competing classifications due to different hierarchical 

structures of clinical terms and biomarkers [Grateu et al., 2013, Pathak et al., 2017].  

AIDs have a high degree of comorbidity within families [Harroud et al., 2023, Barkhane 

et al., 2022] and twins [Gerussi et al., 2022] suggesting shared genetic risk factors. 

Additionally, the co-existence of them in one individual suggests shared genetic underpinnings 

across different immune pathologies [Remalante-Rayco et al., 2023, Fominykh et al., 2017]. 

Genetic-based disease classification has been used in a study from Japan Biobank [Sakaue et 

al., 2021] and a cross-disorder genetic analysis of immune disease [Demela et al., 2023, Lincoln 

et al., 2024, Topaloudi et al., 2023]. Nevertheless, most of the available cross-disorder genetic 

studies have used only a few disorders, without clearly defined selection, and focusing on a 

shared component but not on the characterising of separate clusters. Only a limited number of 

studies have systematically evaluated the AIDs continuum. A great effort was made to use the 

AutoCore network for the integration of a set of 186 inborn errors of immunity [Bousfiha et 

al., 2020] with predominant autoimmunity or autoinflammation into a comprehensive map of 

human immune dysregulation [Guthrie et al., 2023]. In France, the TransImmunome project 

was started in 2015 to revisit the nosology of AIDs by combining clinical and biomarkers 

information [Lorenzon et al., 2018, Tchitchek et al., 2024]. State-of-art methods of statistical 

genetics provide an additional opportunity to address this heterogeneity between AIDs through 

classifying diseases into more homogeneous subgroups based on the underlying genes and 

pathways that drive disease.  

The main aims of our study are a) to evaluate the hypothesis of AIDs continuum based 

on GWAS data and b) to identify genetically driven clusters of closely related disorders and 

their shared genetic factors using publicly available large datasets and state-of-the art 

methodology. Bridging genetically driven classification with existing clinical knowledge may 

provide a better understanding of disease-specific molecular mechanisms, guiding further 

investigations of AIDs and facilitating identification of potential targets for drug repurposing. 
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The results can help to raise awareness of the distinct pathophysiology of AIDs, and to identify 

potential research directions in the field of immune-mediated disorders. 

 

Fig. 1. The immunological disease landscape. AIDs described as a continuum with 

five main classes (monogenic autoinflammatory, polygenic autoinflammatory, mixed pattern, 

polygenic autoimmune, monogenic autoimmune disorders) highlighting the importance of 

genetic factors for the classification. Methods of statistical genetics can work with polygenic 

disorders and can help to characterise this continuum from genetics perspectives using 

available GWAS data.   

 
2 Materials and methods  

2.1. Samples 

We curated a collection of well-powered publicly available GWAS summary statistics 

which belong to neurological, rheumatological, gastroenterological, and endocrine system 

AIDs resulting in data on 15 immune-linked diseases (Table 1). The cut-off for GWAS 

inclusion was August 2023. First, we have 26 immune-linked disorders in the list (Suppl.1, 

Table 1) with existing GWASs and applied criteria with N effective sample size greater than 

5000 [Bulik-Sullivan et al., 2015, Tylee et al., 2018] and excluded datasets with less than 

200,000 SNPs overlap with the linkage disequilibrium (LD) score regression reference panel 

[Zheng et al., 2017]. N effective was computed with the formula 4/(1/n cases + 1/n controls) 

or for internal meta-analysis (described below) as the sum of N effective for contributing 

cohorts. This resulted in seventeen diseases. However, we had to exclude ankylosing 
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spondylitis and narcolepsy because only ImmunoChip data was available which didn't provide 

genome-wide coverage. For SLE, JIA, PS and CeD we performed in-house meta-analyses 

using METAL from different publicly available datasets (FinnGen R9 release and available 

published GWAS, the source of data mentioned in Table 1 and Suppl. 1, Table 2) in order to 

increase power of current available GWASes. As well we can highlight the need for more 

powerful GWASes in immune-mediated neurological diseases because we can keep only two 

among neurological diseases. All GWAS data were limited to participants of European 

ancestry. After data harmonisation and pre-processing of the GWAS summary statistics with 

PythonConvert (https://github.com/precimed/python_convert/), we conducted cross-trait 

analyses using a variety of analytical tools as described below.  

Table 1. Overview of the GWAS used in the study. 

  Diseases Abbreviation N cases N controls  N effective 

Source of GWAS  

(PMID/ GWAS catalog) 

1 Autoimmune thyroiditis AITD 30234 725172 114296 32581359  

2 Celiac disease CeD 6897 334824 22142 20190752, 34278373 

3 Crohn’s disease CD 12194 34915 36151 28067908 

4 Juvenile idiopathic arthritis JIA 4799 294231 15670 FinnGen, 33106285 

5 Multiple sclerosis MS 14802 26703 38093 31604244 

6 Myasthenia gravis  MG 1873 36370 7125 35074870 

7 Primary biliary cholangitis PBC 8021 16489 21584 34033851 

8 Primary sclerosing cholangitis PSC 2 871 12019 9270 27992413 

9 Primary Sjogren's syndrome SjS 3232 17481 10911 35896530 

10 Psoriasis (including PsA) PS 17255 693100 64320 

FinnGen, 34278373, 

24482804 

11 Rheumatoid arthritis RA 22350 74823 68838 GCST 90132223 

12 Systemic lupus erythematosus  SLE 5595 361571 15096 

FinnGen, 26502338, 

29848360 

13 Systemic sclerosis SS 9095 17584 23978 GCST 31672989 

14 Type 1 diabetes T1D 18 942 501 638 73011 34012112 

15 Ulcerative colitis UC 12366 34915 36527 28067908 

 

2.2 Analytical tools 

2.2.1 Genomic structural equation modelling (SEM)  

Genomic SEM [Grotzinger et al., 2019] models the multivariate genetic architecture 

across traits and may reveal latent factors underlying genetic correlations and clusters of 

correlated traits and determine how latent factors correlate with each other. We conducted 

exploratory and confirmatory factor analyses (EFA and CFA, respectively) of the 15 immune 

phenotypes. First, the multivariable extension of LD score regression (LDSC) employed in 

genomic SEM was used to derive a genetic covariance matrix (S) and sampling covariance 

matrix (V). Population prevalence was taken from the literature (Suppl.1, Table 3). Next, EFA 
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with promax rotation was conducted on the standardised S matrix using the R genomic SEM 

package (R version: R 4.3.2, https://github.com/GenomicSEM/, Suppl 1., Table 4). Results 

from the EFA were used to guide CFA for a one-, two-, three-, four- and five-factor model. 

CFA was performed using Genomic SEM, and correlated factors with standardised loadings > 

0.25 were retained for CFA. Model fit (Table 2 and Suppl. 1, Table 5) for each factor model 

was assessed using recommended fit indices: standardised root mean square residual (SRMR), 

model χ2 statistic, Akaike Information Criterion (AIC), and Comparative Fit Index (CFI). 

Model fit was considered acceptable for CFI values ≥ 0.90 and SRMR < 0.1 [for interpretation 

of model fit Grotzinger et al., 2019].  

2.2.2 Linkage disequilibrium score regression (LDSC) and Gaussian causal 

mixture modelling (MiXeR) 

For each phenotype, we estimated the SNP-heritability using LDSC and used LDSC 

for establishing the genome-wide genetic correlation (rg) [Bulik-Sullivan et al., 2015].  

We used MiXeR (univariate and bivariate, Frei et al., 2019, 

https://github.com/precimed/mixer) to estimate the number of variants influencing the trait and 

the number of variants shared between pairs of traits (trait-specific and shared polygenicity) as 

well as mean effect size across trait influencing variants (discoverability). For MiXeR analyses 

we excluded the MHC region as described by Frei et al. 2019 (MHC region, 26-34 Mb), due 

to the intricate LD structure. For assessment of model robustness, delta AIC >0 and visual 

evaluation of log-likelihood plots were used. Results are presented in heatmap (Fig. 3) showing 

the proportion of trait-specific and shared trait-influencing SNPs followed by the standard 

deviation across 20 independent runs, and log-likelihood plots and tables with parameters 

estimated by the MiXeR model (Suppl.1., Table 7 and 8). For the analysis of disease triplets, 

we used trivariate MiXeR [Shadrin at al., 2024, https://codeberg.org/intercm/mix3r] 

constituting a modification of bivariate MiXeR with the possibility to access overlap between 

3 phenotypes simultaneously.    

2.2.3. Local Analysis of [co]Variant Association (LAVA) 

For local rg analyses, we used Local Analysis of [co]Variant Association (LAVA) 

version 1.3.8, following the protocol with the LD reference panel based on 1000 Genomes 

phase 3 genotype data for European samples, and the partition of the genome into 2495 regions 

with an average size of 1 Mb as described elsewhere [Werme J et al, 2022]. We applied 

Bonferroni correction to account for multiple comparisons within each pairwise analysis. The 

statistical tests conducted were all two-sided. Then we identified ten regions with the greatest 

number of significant local genetic correlations across immune traits and created network plots 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.08.24311518doi: medRxiv preprint 

https://github.com/GenomicSEM/
https://github.com/precimed/mixer
https://codeberg.org/intercm/mix3r
https://doi.org/10.1101/2024.08.08.24311518
http://creativecommons.org/licenses/by-nc-nd/4.0/


displaying these associations. Only regions revealing significant estimated SNP heritability 

(p<0.05/2495) in both diseases were used to estimate local genetic correlations between the 

traits. Also, we described significantly correlated loci in the MHC region (26-34 Mb) across 

all phenotypes.  

2.2.4. Functional Annotation 

We followed the FUMA protocol for the identification of genomic loci and genes, as 

well as performing MAGMA analysis [Watanabe et al., 2017, de Leeuw et al, 2015]. We 

applied MAGMA to summary statistics to test for enrichment of GWAS signals in 54 tissues. 

The 54 gene sets were defined by gene-expression levels from 54 GTEx tissues [GTEx 

Consortium, 2015]. We also analysed genes revealed by MAGMA in each of the 15 diseases 

and common for all phenotypes, as well as unique genes for diseases assigned to marginal 

latent factors obtained in genomic SEM analysis. Additionally, unique gene sets were detected 

for each factor (we applied Bonferroni correction for each trait and then again for 15 

comparisons). We used Cytoscape version 3.9.1 [Shannon P et al 2003] for pathway analysis. 

3. Results:   

3.1. Genomic SEM 

To investigate whether there is a common genetic factor underlying the 15 AIDs, we 

first estimated genetic correlations using the multivariate LDSC implementation in genomic 

SEM. Factor is a united genetic entity underlying the set of disorders and combines it to the 

cluster. Next, we uncovered latent factors which represent shared variance components across 

diseases, we modelled the genetic variance-covariance matrices across traits using genomic 

SEM (Fig. 2.). The model with four latent factors provides the best fit among all tested models 

presented in Table 2. Unfortunately, we were unable to include T1D and MS into the four-

factor model as the EFA revealed that both traits had multiple, below threshold loadings across 

the factors (see 4 factor EFA in Suppl. 1., Table 4), leading to a decreased CFA model fit. 

Factor 1 consists of rheumatic diseases with autoimmune origin (SjS, SLE, SS). Factor 

2 consists of MG and CeD which are confirmed to be autoimmune according to the current 

autoimmune concept, but MG also shared part of genetics with Factor 3, which belongs to 

mixer pathology. Factor 3 consists of AITD, JIA, PS which are considered as autoimmune, 

autoinflammatory or mixed according to different classifications. Factor 4 consists of diseases 

with gastrointestinal tract with autoinflammatory origin (CD, UC and PSC). Several diseases 

cross-loaded on two factors, such as RA (equally belongs to F1 and F2), PBC (F1 and F3) and 

MG (F2 and F3). Loadings of T1D and MS were below the selected cutoff for the minimal 

loading (0.25) and therefore don’t belong to any of these factors. 
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Fig. 2. Four groups of immune-mediated diseases identified in genomic SEM analysis.  

Genomic SEM model with four latent factors representing four diseases clusters. Green 

represents factor 1 (F1, “autoimmune”), orange factor 2 (F2, “autoimmune-mixed”), blue factor 

3 (F3, “mixed pattern”), purple factor 4 (F4, “autoinflammatory”), and diseases cross-load on 

two factors are shown in its own colour. The arrows connecting the latent variables with 

diseases are shown “factor loadings” obtained from confirmatory factor analysis. The rounded 

and dashed arrows on the indicators (traits) are residual variances in the genetic indicators not 

explained by the common factor. The dashed arrows connecting factors are covariances and 

give an idea about the factors’ mutual associations. 

 

Table 2. genomic SEM model performance criteria: AIC — Akaike Information Criterion, CFI 

— Comparative Fit Index, SRMR — standardised root mean square residual, χ2 — model chi-

square, reflecting index of exact fit to observed data df and pχ2 — degrees of freedom and p-

value for the model χ2.  
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N factors χ2 
df pχ2 AIC CFI SRMR 

1 1321.83 90 4.56E-218 1381.83 0.658 0.124 

2 1073.7 88 3.08E-169 1137.69 0.727 0.111 

3 779.35 87 9.09E-112 845.35 0.808 0.094 

4 215.59 56 1.42E-20 285.59 0.919 0.077 

5 238.37 54 5.25E-25 312.37 0.907 0.083 

 

3.2. LDSC and MiXeR 

We ran LDSC analysis to quantify SNP-heritability, observed scale (Fig. 3, and Suppl. 

2, Fig. 1), and univariate and bivariate MiXeR for all phenotypes to characterise polygenicity 

and overlap between diseases. Univariate MiXeR models exhibited good model fit (Suppl 1., 

Table 7).  As shown below, CD, SLE and PBC have a higher SNP-heritability compared to 

others (more than 0.45). CeD and SjS have the lowest polygenicity, and RA and AITD have 

the highest polygenicity (Fig. 3). Bivariate analysis with several diseases, including CeD, SjS 

and PSC as well as pairs of diseases including SLE-SS and RA-SS didn’t fulfil model 

robustness criteria and therefore are not presented. Bivariate results, for those diseases with 

acceptable model fit, are presented in Suppl. 2, Fig. 2, and Suppl. 1, Table 8. We ran trivariate 

MiXeR for F1 and F4 clusters to show that diseases from the same factor have more overlap 

compared to another factor, which revealed SLE/SS has less overlap with UC compared with 

RA from the same factor (Fig. 4).  
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Fig.3. Genetic architecture characteristics. Left part: single-nucleotide polymorphism-based 

heritability, observed scale, for 15 immune-mediated diseases according to linkage 

disequilibrium score regression. Right part: the polygenicity value multiplied by 1000 

according to Gaussian causal mixture modelling. The colour of dots corresponds to colour in 

genomic SEM figure (green factor 1, orange factor 2, blue factor 3, purple factor 4 and own 

colour for mixed diseases).   
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Fig.4. Trivariate Gaussian causal mixture modelling. The illustrations of overlap inside 

“autoimmune” factor 1 (Systemic Sclerosis, Systemic Lupus Erythematosus and Rheumatoid 

Arthritis), and between “autoimmune” factor 1 (Systemic Sclerosis, Systemic Lupus 

Erythematosus) and “autoinflammatory” factor 4 (Ulcerative Colitis). For each triad of 

phenotypes, for every area of the diagram, its percentage is shown with respect to the combined 

total area of three phenotypes (rounded to the closest integer). The colour of circles corresponds 

to colour in genomic SEM figure (green F1, purple F4 and beige for the Rheumatoid Arthritis).   

 

3.3. LAVA across immune-related diseases 

Local genetic correlation analyses complemented global genetic correlation between 

the immune-related phenotypes. This step allowed us to show in which immune disorders 

genetic correlations are restricted to specific genomic regions, and to identify the shared genetic 

factors located within these genomic regions.  

We identified significant regional correlations between immune diseases and genomic 

loci, including loci that contain genes known to be implicated in immune processes. SLE, JIA 

and MG were excluded due to the methods failing to converge. During assessment of the 

pattern of intercorrelations (Suppl. 2, Fig 3) we revealed that all diseases are highly correlated. 

We confirmed that the local correlation and heritability were prominent in the MHC region, 

where strong genetic risk was shown. Among 20 regions with top significant local genetic 

correlation (see Suppl. 3, Figures and Tables) ten were in the MHC region (26-34 Mb) with the 

top 1 being in HLA DRB1 gene, top 2 in HLA DQB1 and the top 4-5 in MHC region with 

different genes. The pattern of local genetic correlation in the MHC region (Fig. 5) involved a 

mixture of concordant and discordant effects across the diseases. For example, in loci on chr 6 

[32539568 - 32586784] UC was negatively correlated with PBC, PSC, PS, AITD and RA but 

positively correlated with MS. In comparison, fewer diseases displayed significant correlations 

in loci outside the MHC, but the correlations were generally strongly positive between the 

diseases [for example, chr 2: 191051955 - 193033982].  
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Fig. 5. LAVA characteristics for MHC locus. Correlation matrix of positive and negative 

significant correlation, number of loci within MHC (upper triangular part), with loci outside 

MHC (bottom triangular part). Numbers in cells show the number of regions with significant 

heritability in both traits (Boferroni corrected), where the correlation was assessed. Colour 

indicates the direction of effect (Aquamarine - positive; green - negative) for mean across all 

correlation values (rgs) within the regions with significant h2 for each phenotype. 

 

3.4. Functional Annotation 

3.4.1. MAGMA shared gene results:   

MAGMA analysis for all 15 summary statistics revealed whole blood and spleen to be 

the most common tissues for all diseases except PSC, SjS and MG, and spleen for CeD. Also, 

Small Intestine Terminal Ileum, Cells_EBV-transformed_lymphocytes, and Lung participated 

in 11, 8 and 7 diseases respectively (Suppl. 2, Fig.5). We did not detect specific grouping of 

tissues by factor.  

We assessed the most frequently associated genes across traits, which for 11 diseases 

were (Suppl. 2, Fig 4.): GABBR1 (gamma-aminobutyric acid type B receptor subunit 1), 

ZKSCAN3 (Zinc Finger With KRAB And SCAN Domains 3), PGBD1 (PiggyBac Transposable 

Element Derived 1) and for 10 diseases: ZSCAN31 (Zinc Finger And SCAN Domain 
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Containing 31), SCAND3 (SCAN Domain Containing 3) and  ZSCAN23 (Zinc Finger And 

SCAN Domain Containing 23). We also revealed genes only included in factor 1 or factor 4 

(the most margin groups of autoimmune and autoinflammatory phenotypes, Suppl. 1, Table 9). 

In factor 1, 22 genes were unique and in factor 4, 159 genes were unique with some of them 

involved in monogenic immune/autoinflammatory diseases (see Fig. 6. below, Suppl. 2., Fig 

6. and Discussion section)  

Fig. 6. Genes uniquely involved in “autoimmune” factor 1. We marked genes linked to 

monogenic immune diseases with light blue circles. Lines between genes show the involvement 

in molecular networks (the stringApp for Cytoscape) 

Subsequently, we assessed gene sets and revealed the uniqueness of each factor. There 

were no gene sets specific for factor 2 because factor 2 diseases share common genes with 

other factors. For factor 1, 9 unique gene sets were revealed (N02-mediated IL12 pathways, 

PID_TCR_pathway, as well leukocytes and lymphocytes signalling), for factor 3 – 16 unique 
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gene sets, for factor 4 – 41, and for out-models MS and T1D – 19 gene sets (Suppl. 1., Table 

10 and discussion section).  

Discussion:  

In this study of the genetic architecture of diseases on the AIDs continuum, we observe 

a striking convergence of findings across different statistical genetics methods, which indicate 

clustering along the AIDs continuum. Here we present novel evidence to support the recent 

call [AutoCore network paper, Bousfiha et al., 2020, Guthrie et al., 2023 and TransImmunome 

project [Lorenzon et al., 2018, Tchitchek et al., 2024] for a paradigm of AIDs nosology to 

incorporate genetics of polygenic diseases.  

We found that by using the state-of-the-art statistical approaches, it is possible to reveal 

four clusters across the AIDs continuum based on GWAS data, with diseases belonging to 

factor 1 (autoimmune) and diseases belonging to factor 4 (autoinflammatory). The extreme 

positions for factor 1 and factor 4 diseases were further supported by trivariate MiXeR analysis. 

Significant overlap was observed within factor 1 diseases (SS, SLE, and RA), while there was 

a smaller overlap between factor 1 diseases (SLE, SS) and the factor 4 diseases (UC).   

The classification of certain diseases such as CD, UC, and PSC is consistent with a 

previous study by Demela et al., 2023, and remains in the same cluster. Demela’s study also 

utilises genomic SEM to demonstrate pathway convergence. While they suggest this factor 

corresponds to gastric disorders, we show that other gastroenterological phenotypes (PBC and 

CeD), cluster with different diseases (F1+3 and F3, respectively). Therefore, this grouping may 

not solely be due to involvement of the gastroenterological tract but may suggest grouping 

based on autoinflammatory pathogenesis. Topaloudi A. et al. [Topaloudi A. et al., 2023] also 

revealed four factors structure in line with a recent preprint [Breunig et al., 2024]. According 

to Topaloudi paper MS was in the same group as PSC and this connection in our paper was 

shown in LDSC and LAVA, as well as MG was in the same group as RA, and we were able to 

show that they share part of factor 2. Based on our findings and previous literature [Demela et 

al., 2023, Topaloudi et al. 2023, Williams et al., 2023] it appears that the factor structure in the 

genomic SEM model depends on 1) the initial set of disorders and 2) GWAS power. By 

including more diseases in our analyses compared to the previous studies, we were able to 

differentiate more factors within the autoimmune spectrum. This insight can enhance the 

classification of AIDs.  

In the Transimmunome project [Tchitchek et al., 2024] five factors were revealed, but 

with inclusion of diseases with monogenic inheritance (Familial Mediterranean Fever) or 
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diseases without powerful GWAS (idiopathic inflammatory myopathies). Additionally, our 

factor 3 consists of diseases which were not studied in their project. Tchitchek et al. revealed 

the belonging of CD and UC to the same factor which supports our findings on biomarkers 

level. According to Tchitchek’s classification, RA and T1D were in the same group, and we 

shown the significant overlap in MiXeR (rg 0.33, shared fraction 38%) and had strong local 

positive correlations in some loci as indicated by LAVA disregarding the fact that T1D is out 

of model in our study.  

Also, in our study RA and SLE belong in factor one and RA in both factor 1 and 2, 

indicating that RA has a different genetic background compared to SLE. SLE is regarded as a 

classical autoimmune disease with autoantibody production, whereas RA has both autoimmune 

(classical seropositive RA) and mixed/autoinflammatory features (seronegative subtypes, 

Szekanecz et al., 2021). A notable observation is the grouping of MG together with CeD, which 

can help to reveal background for co-incidence of both diseases in case-reports without 

confirmed evidence at the population level [Thawani et al., 2018].  If we focus on MS, which 

were out of our genomic SEM model, but it was shown that MS has a high correlation and 

overlap with factor 4 diseases and PBC by other methods. That was previously shown [Kim et 

al., 2022] and support the fact that MS has common genetic background not only with 

autoimmune but also with autoinflammatory clusters.   

LAVA analysis showed a mixed pattern (positive and negative) of correlations inside 

the MHC region in AIDs, but in loci outside MHC correlations were mostly positive. The same 

pattern for mixed correlation in the main MHC hotspot [chr6: 32539568 - 32586784] was 

shown for AIDs in the original LAVA paper [Werme et al., 2022]. Most MHC loci with 

significant local correlation belong to the MHC II subgroup. On the contrary PS which belongs 

to MHC-1-opathy according to EULAR classification [Kuiper et al., 2023, Matzaraki et al., 

2017] in most of the cases has a negative correlation with other diseases in top-MHC loci. The 

MHC findings could be limited by non-specialized genotyping chips in GWAS and resolution 

of the MHC region, as well as limitations of the LAVA method due to LD structure and GWAS 

power.  

The most frequent genes across diseases were involved in cell signalling and interaction 

and can be common for all types of immune disorders, consistent with Lincoln et al. (2024). 

Then we assessed the unique genes in marginal “autoimmune” and “autoinflammatory factors”. 

In “autoimmune” factor, 22 genes were unique, among them neutrophil cytosolic factor 2, 

which is associated with autosomal recessive chronic granulomatous disease 2 with neutrophils 

lacking superoxide-generating act [Nunoi et al., 1998]. Mutation in Interferon Regulatory 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.08.24311518doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.08.24311518
http://creativecommons.org/licenses/by-nc-nd/4.0/


Factor 7 was described as a cause of immunodeficiency-39 in a child [Ciancanelli, M. J. et al, 

2015] and as a gene which is linked to intrinsic and innate immunity according to the 

classification of inborn errors of immunity [Tangye et al., 2022]. Mutation in IKZF3 was 

described in Immunodeficiency-84, which is an autosomal dominant primary immunologic 

disease associated with low levels of B cells and impaired early B-cell development 

[Yamashita, M. et al., 2021]. For “autoinflammatory” factor 4, 159 genes were unique, but less 

percentage participated in the immunological process [Suppl. 2., Fig. 6]. For example, the 

NOD2 gene plays a role in Blau syndrome, a rare autosomal dominant autoinflammatory 

syndrome classified as an autoinflammatory phenotype according to Tangye et al., 2022.These 

findings are in line with AutoCore's idea that monogenic AIDs may represent genetically 

determined, more severe forms of more common polygenic AIDs. That also enables the transfer 

of knowledge between rare and complex diseases [Guthrie et al., 2023].  

In the assessment of gene sets, we identified the involvement of Interleukin 12 (IL12) 

and IL23 gene sets in factor 4 diseases. A monoclonal antibody which targets IL12/IL23 

(ustekinumab) is approved for the treatment of UC and CD as well as PS [Aggeletopoulou et 

al., 2018, Koutruba et al., 2010]. Also, IL3, IL4, IL18, IL27, T-helper and IFN gene sets 

involved in “autoinflammatory” factor 4 provide valuable insights that can inform the potential 

application of drugs that targets these interleukins and related pathways.  

For factor 1, N02-mediated IL12 pathways in NK cells were involved as well as the 

IL12 pathway, and that was shown before to be associated with SLE genetic risk [Larosa M et 

al., 2019]. Also, TCR signalling in naïve CD4+ T cells and leukocyte-associated pathways 

participated in “autoimmune” factor 1. These pathways can also be important for SjS and SS 

where fewer studies about the involvement of IL pathways exist due to the lack of powerful 

data [Shi et al., 2024]. 

In factor 3 diseases a lot of pathways were involved linked to T-cells, B-cells and JAK 

pathways as well as IL17. Involvement of IL17 in JIA pathogenesis was recently shown in 

different studies [Paroli et al., 2022] as well secukinumab, Il17 blocker, was approved for 

treating of 2 of 7 JIA subtypes (juvenile psoriatic arthritis and enthesitis-related arthritis) as 

well as for PS treatment. Also, for MS and T1D which were out of any factors in genomic 

SEM, different IL2, IL6 and T-cell pathways were important.  

The accumulated evidence from this study and previous findings can help inform 

immunotherapy for AIDs. Already designed drugs which suppress major pro-inflammatory 

signalling pathways as IL-17, JAK inhibitors have tremendous success compared to traditional 

systemic therapies. Unfortunately, there are still unaddressed medical requirements in terms of 
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both long-term safety and overall effectiveness, as a considerable number of patients do not 

attain disease remission. Enhanced understanding of the genetically informed mechanisms and 

diversity within AIDs would create opportunities to address these challenges, resulting in a 

more personalised and efficient treatment approach. 

A limitation of our study is that it only focussed on GWAS performed on populations 

of European ancestry. This is because genomic SEM and LD score regression require the 

samples to be drawn from the same ancestry, as well lack of powerful GWAS for non- 

European ancestry for most of the diseases. The second limitation was that we could use only 

powerful GWASes for polygenic disease for statistical methods available and had to ignore 

small GWASes as well as data freeze performed before analysis (August 2023). Also, cohort 

sample size and SNP-sets are drivers of the limited resolution of genetic mapping and the 

ability to detect robust disease associations [Uffelmann et al. 2021]. An additional limitation 

was to focus only on genetics but not on the deep immunophenotyping via cells/immune 

molecules due to the lack of powerful data for these phenotypes. Our findings about genetic 

clusters and overlap does not necessarily disqualify the current clinical system but bring 

attention to distribution of genetic factors. As well data on infections, vaccine regimen and the 

treatment with anti-inflammatory drugs lack in used GWAS and that is a common limitation 

of studies performed on summary statistics data.  

To summarise, the revealing of four-factors-clustering can help to define the disease 

groups for which it is possible to use the same therapies. Furthermore, our results can be 

instrumental in assembling cluster-guided multi-parametric analyses that include genetics and 

omics data and enable deep phenotyping of patients leading to personalised drug selection. The 

current study sheds light on the autoimmune-autoinflammatory continuum from a genetic 

perspective and can inform future studies in this field. 
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Abbreviations: 

AD — autoimmune diseases  

AIC — Akaike Information Criterion 

AIDs — autoimmune and autoinflammatory disorders  

AIF —   autoinflammatory disorders  

AITD — autoimmune thyroiditis 

EFA — exploratory and confirmatory factor analysis 

CeD — celiac disease 

CD — Crohn’s disease 

CFA — confirmatory factor analysis  

CFI — Comparative Fit Index  

CNS — central nervous system  

Genomic SEM — genomic structural equation modelling 

IL — interleukin  

JAK — Janus kinase 

JIA — juvenile idiopathic arthritis 

LAVA — Local Analysis of [co]Variant Association  

LD — linkage disequilibrium  

LDSC — linkage disequilibrium score regression 

MHC — major histocompatibility complex  

MS — multiple sclerosis 

MiXeR — Gaussian causal mixture modelling  

MG — myasthenia gravis 

PBC — primary biliary cholangitis 

PS — psoriasis 

PSC — primary sclerosing cholangitis 

RA — rheumatoid arthritis 
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SjS — primary Sjogren's syndrome 

SLE — systemic lupus erythematosus  

SRMR — standardised root mean square residual  

SS — systemic sclerosis 

T1D — type 1 diabetes 

UC — ulcerative colitis 
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