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Abstract

Background: The COVID-19 pandemic has led to substantial health and financial burden worldwide, and
vaccines provide hope to reduce the burden of this pandemic. However, vaccinated people remain at risk for
SARS-CoV-2 infection. Genome-wide association studies (GWAS) may alow for the identification of
potential genetic factors involved in the development of COVID-19 breakthrough infections (BI), however
very few or no GWAS have been conducted for COVID-19 BI so far.

Methods: We conducted a GWAS and detailed bioinformatics analysis on COVID-19 Bl in a European
population based on the UK-Biobank (UKBB). We conducted a series of anayses at different levels,
including SNP-based, gene-based, pathway, and transcriptome-wide association analyses, to investigate
genetic factors associated with COVID-19 Bl and hospitalized infection. Polygenic risk score (PRS) and
Hoeffding's test were performed to reveal genetic relationships between Bl and other medical conditions.
Results: Two independent loci (LD-clumped at r’=0.01) reached genome-wide significance (p<5e-08),
including rs36170929 mapped to LOC102725191/VWDE, and rs28645263 mapped to RETREG1. Pathway
enrichment analysis highlighted pathways such as viral myocarditis, Rho-selective guanine exchange factor
AKAP13 signaling, and lipid metabolism. PRS analyses showed significant genetic overlap between
COVID-19 Bl and heart failure, HbA1c and type 1 diabetes. Genetic dependence was also observed between
COVID-19 BI and asthma, lung abnormalities, schizophrenia, and type 1 diabetes, based on the Hoeffding's
test.

Conclusions: This GWAS study revealed two significant loci that may be associated with COVID-19 B,
and a number of genes and pathways that may be involved in Bl. Genetic overlap with other diseases was
identified. Further studies are warranted to replicate the findings and elucidate the mechanisms involved.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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[ ntroduction

COVID-19 has resulted in substantial health and financial burden worldwide. According to the data
published by World Health Organization (WHO), over 700 million confirmed cases and 7 million deaths
have been reported worldwide as of 1 Jan 2024". Vaccines for COVID-19 are widely perceived to be the
most promising strategy to minimize severe disease, mortality, and the burden of this pandemic.

COVID-19 vaccination also reduces risks of infection and transmission, especialy prior to the emergence
of Omicron variants. In an English study of 151,821 contacts of 99,567 index patients in 2021, the rate of
transmission from people fully vaccinated with BNT162b2 (Pfizer-BioNTech) was 23% vs 49% for
transmission from unvaccinated people (adjusted odds ratio [aOR], 0.35 [95% CI, 0.26-0.48] for
transmission of Delta to unvaccinated contacts; aOR, 0.10 [95%CI, 0.08-0.13] for transmission of Deltato
fully vaccinated contacts)®.

Nevertheless, evidence shows that fully vaccinated people still remain at risk for SARS-CoV-2 infection.
For example, atotal of 10,262 SARS-CoV-2 vaccine breakthrough infections had been reported from 46 U.S.
states and territories from 1 Jan, 2021 to April 30, 20213, in the period shortly after the launch of vaccination.
It is intriguing to study why some individuals are susceptible to breakthrough infection (Bl) or severe
disease despite vaccination.®

Importantly, Bl is uncommon in the pre-Omicron period since the vaccine provides a high protection against
infection and severe disease®, as such, those who indeed develop Bl may have specific genetic and/or
clinical risk factors. For Omicron variants, vaccination in general provides much weaker protection against
infection and the protective effects wanes more quickly. For example, a recent study* of Omicron variants
showed that 100 days after immunization, vaccine effectiveness for infection was 26% and 35% for three
and four doses of the BioNTech BNT162b2 vaccine, and to 6% and 11% for three and four doses of the
CoronaVac inactivated vaccine. Other studies also found low to moderate protective effects and quick
waning in the Omicron era’. We therefore chose to focus on infection (and severe COVID-19) in the pre-
Omicron period; otherwise, we may be finding genetic variants associated with infections/severe disease in
general, instead of genetic factors specifically linked to immune responses to vaccination and BIl. Overall,
we believe that learning about Bl may provide important biological and clinical insights into the
pathophysiology of COVID-19 and the immunological mechanisms underlying vaccine responses.

Several studies have been conducted on Bl of COVID-19. Sun et al.° identified that persons with immune
dysfunction had a substantially higher risk for COVID-19 BIl. Bergwerk et al.” conducted a study on Bl in
healthcare workers, and found that the occurrence of COVID-19 Bl was correlated with neutralizing
antibody titers during the peri-infection period and most Bl were mild or asymptomatic, although persistent
symptoms did occur. Kim et al.? presented a case series of vaccinated subjects who were later hospitalized
from COVID-19, and found 7 out of 10 patients did not show observed serological response to mRNA
vaccination.

However, most studies of COVID-19 BI did not study the influence of genetic factors, especialy at a
genome-wide level. Identifying genetic factors related to Bl may help researchers better understand the
mechanisms underlying poor responses to vaccination, shedding light on the pathogenesis of COVID-19.
Also, the identified genetic factors may be useful for guiding drug repurposing in the future®.

Here, we conducted a genome-wide association study (GWAS) for breakthrough infection (Bl) (COVID-19
Bl) based on the UK Biobank (UKBB). To the best of our knowledge, there are no published works on
GWAS of COVID-19 Bl yet. Thisis likely the first GWAS to investigate the genetic basis of COVID-19 BI
and severe infection (focusing on pre-Omicron variants), including a comparison of severe vs mild BI,
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coupled with detailed post-GWAS bioinformatics analyses. The workflow in our study was shown in Figure
1. Briefly, we defined different study cohorts according to the number of vaccine doses received and
whether the participants developed hospitalized or fatal Bl. Then we performed GWAS analysis based on
each scenario to identify the underlying genetic loci. Post-GWAS analysis was also conducted, including
gene-based, pathway enrichment, and transcriptome-wide association studies (TWAYS) analyses, as well as
polygenic risk score (PRS) association analysis with other related medical conditions.

Methods

Participants and Cohort Definition

Data source. All the individual-level data in our study were extracted from the UK Biobank (UKBB), a
large-scale prospective cohort comprising ~500,000 individuals. The age of individuals in the current study
varied from 50 to 89. Our current analysis was based on UKBB project number 28732,

COVID-19 infection status. COVID-19 infection data were downloaded from the UKBB data portal. (for
details, please refer to https://bi obank.ndph.ox.ac.uk/showcase/exinfo.cgi 2src=COVD19). Briefly, the latest
COVID-19 test results were downloaded from UKBB, with the last update on 21 Jul 2021. COVID-19
infection status was primarily defined based on test results. Besides, COVID-19 diagnosis was also made
based on ICD code UQ71 from hospital inpatient or mortality records, or code "Y2a3b" in TPP General
Practice clinical records.

Vaccination status. Vaccination status was extracted from the TPP and EMIS GP clinical records (TPP last
update 21 Jul 2021; EMIS last update 10 Aug 2021). Because the type of vaccine was missing in our
datasets for most of the individuals, we did not perform analysis by vaccine type. Known data indicated
participants received either BioNTech BNT162b2 or Oxford-AstraZeneca ChAdOx1 nCoV-19 vaccines (the
median length of follow-up for the vaccinated group was 54 days). We defined three groups based on
vaccination status: one dose, at least one dose, and two doses.

Inclusion and Exclusion criteria. Firstly, we included individuals with vaccination records under the TPP
and EMIS systems (sample size N=393,544). Individuals with a prior infection were excluded as previous
infections may also confer immunity. Afterwards, individuals with available imputed genotype data and
labeled as European ancestry (UKB data-field 22006) were included.

Phenotype definition. COVID-19 Bl was defined as an infection occurring 14 days after vaccination. If a
subject received one dose of vaccination before the date of infection, we define this scenario as ‘ one dose of
vaccine' . The same applies to other dosages of vaccination.

We defined three cohorts A, B and C based on different criteria (Table 1). Cohort A compared hospitalized
or fatal Bl to non-hospitalized Bl. Cohort B compared hospitalized or fatal Bl to individuals without
COVID-19 BI. Cohort C compared all Bl casesto individuals without BI.

Genotyping and Quality Controls

Genotyping and data imputation were performed by the UKBB using Applied Biosystems UK BIiLEVE
Axiom Array (~50,000 participants) and Applied Biosystems UK Biobank Axiom Array (~I 450,000
participants)™:. Marker positions were aligned to the GRCh37 reference genome.
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In the first step, quality control (QC) of imputed genotyping data was performed by PLINK 1.9 to include a
relatively small set of SNPs for computing the genetic relationship matrix (GRM). Briefly, we excluded
SNPs with minor alele frequency (MAF) below 1%, minor alele count (MAC) below 100, genotype
missingness above 10%, and Hardy-Weinberg equilibrium p-value less than 1e-10, and samples with more
than 10% missingness. In total, 485,623 common variants with MAF > 0.01 and 488,371 individuals
remained after the QC. These variants were used to compute the sparse genetic relationship matrix (GRM).
Imputation was carried out by the UKBB (resulting in ~96M genotypes)'***. Details are provided elsewhere
(https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/impute_ukb_v1.pdf).

The imputed data were filtered with standard QC criteria, e.g., MAC > 10%, HWE test P 2 1e-10,

genotyping rate = 0.9, and imputation info score = 0.3. The resulting set of imputed variants (ranging from
5,638,489 to 12,275,176 across cohorts) was used in the final GWAS analyses (Table S21).

Genome-wide association study

GWAS was performed using a generalized linear mixed model (GLMM)-based method to test for
association between imputed SNP dosages and Bl phenotypes in cohort A, B and C. We employed
fastGWA-GLMM® to perform the GWAS analysis. This tool calculated a sparse genomic relationship
matrix to evaluate pedigree-relatedness among individuals. In addition, fastGWA-GLMM can handle
imbalanced data (for example when cases are rare compared to controls). We fitted age, sex, age*age,
age* sex, and the top 10 genetic principal components provided by UKBB (data-field 22009) as covariates.

SNP-based Analysis

L D-clumping was further performed using PLINK 1.9 (r*=0.5, distance = 250kb) to identify the independent
loci. The European samples in Phase 3 1000 Genomes were used as the LD reference (GRCh37)°. SNP-to-
Gene mapping was performed by the Bioconductor'’ package ‘biomaRt'*® (version 2.48.2) on R-4.0.3. In
addition, the OpenTargets Genetics portal™ was employed to prioritize the most relevant genes for each
variant as a supplementary analysis.

Gene-set and pathway analyses

Gene-based test with fastBAT. Gene-based test was performed using fastBAT?, with 1000 Genomes
European ancestry samples as the LD reference™.

Multiple testing controlled by FDR. False discovery rate (FDR) was used to control for multiple testing.
The Benjamini—Hochberg procedure (BH) adjusted P-value were used®. We set a FDR threshold of 0.05 to
declare significance, while FDR<0.1 is considered an ‘ suggestive’ association.

Pathway and Gene Ontology (GO) enrichment analyses with GAUSS?. Enrichment analysis of
biological pathways was performed by Gene set analysis Association Using Sparse Signals (GAUSS)%.

Two collections of gene-sets (C2 and C5) were used, obtained from the Molecular Signature Database
(MsigDB v6.2)*. C2 refers to a collection of curated pathways, including many canonical pathways such as
KEGG, BioCarta, etc. C5 is another collection containing gene-ontology (GO) gene-sets. GAUSS identifies
a subset of genes (called the core subset) within the gene set, which produces the maximum signal of
association.
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The corresponding p-value and core subset (CS) of genes for each outcome-pathway combination were
computed via a composition of copula-based simulation and generalized pareto distribution (GPD)®. BH
procedure for FDR control was used to correct for multiple testing.

Transcriptome-wide association studies (TWAS) and Meta-TWAS

TWAS provides a novel approach for gene-trait association studies. TWAS utilizes known genetic variants
(eQTLs) associated with transcript abundance to infer gene expression from GWAS data, thereby exploring
associations between genetically regulated gene expression and complex traits. Here we performed TWAS
for 48 tissues (see Table S17.1), including whole blood and lung tissues in GTEx v8 using the program S-
PrediXcan®® FDR was used to correct multiple testing. We also performed a ‘metaTWAS using S
Multixcan, integrates the results across different tissues to enhance statistical power?’.

Phenome Wide Association Studies

Phenome-wide association study (PheWAS) was performed to study the associations between SNPs and a
large number of different phenotypes. We performed PheWAS via the OpenTargets Genetics portal™ with
summary statistics from the UK Biobank, FinnGen, and GWAS Catalog.

Evaluating genetic overlap of COVID-19 breakthrough infectionswith other medical conditions

Polygenicrisk score analysis

In order to explore genetic overlap of COVID-19 Bl with other conditions, we performed polygenic risk
scores (PRS) analyses based on summary statistics using ‘PRsice’ 2. The summary statistics GWAS data
were obtained from FinnGen® and included a variety of medical conditions such as asthma, heart failure,
cardiovascular diseases, obesity, diabetes, etc. (Table S18). Here we employed FinnGen maily to ensure no
overlap with our UKBB samples. Different p-value thresholds (from 5e-8 to 0.01) were explored to filter the
SNPs in PRS analysis. LD-clumping was performed at r>=0.05 within a distance of 250kb by PLINK 1.9.
Harmonization of different sets of summary statistics was performed with ‘TwoSampleMR’ (version
0.4.26)%.

Genetic dependence between Bl and other disordersusing full GWAS summary statistics

Inspired by a recent study™', we also employed the Hoeffding’s test* to evaluate genetic dependence across
COVID-19 Bl and other diseases. As demonstrated in the aforementioned study®, Hoeffding's test of
independence presents a viable alternative to LD score regression, particularly when dealing with small or
moderate (effective) sample sizes, while maintaining adequate control of type | errors. (In this study, since
the number of casesisin general limited, the effective sample size might be too small for areliable LD score
regression analysis.) In brief, Hoeffding's test is a well-established non-parametric method that examines the
marginal and joint distributions of two input variables (say X and Y) * and determines whether the
distributions are independent. Thistest relies on the ranks of X and Y, avoiding parametric assumptions.

Our testing procedure closely mirrored that described in the reference® and our recent study®. We
performed clumping using PLINK (v1.9), setting the physical distance threshold at 10,000 kb and the r?
threshold at 0.2. We tested genetic dependence of COVID-19 Bl with a range of other medical conditions,
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such as disorders of the respiratory, cardiovascular, endocrine and neurological systems (please refer to
Table S18 for a comprehensive list). We utilized the R package independence’ * to conduct the analysis.

Results

Results from SNP-Based Analysis

Results from GWAS. We performed GWAS analysis on 9 scenarios (Table 2). We identified two loci that
were significantly associated with COVID-19 Bl at the genome-wide level (p<5e-8), for ‘at least one dose of
vaccine and ‘two doses of vaccine€ of cohort C (i.e,, models C2 and C3, Table 3-4). The loci were
rs36170929 on chromosome 7 (effect allele = G, effect size = 0.21, SE=0.038, allele frequency of G = 0.64,
P=4.39e-8), and rs28645263 on chromosome 5 (effect allele = C, effect size = 0.35, SE=0.06, dlele
frequency of G = 0.42, P=9.46e-9).

Manhattan plots for GWAS of ‘at least one dose of vaccine and ‘two doses of vaccine' are shown in
Figures S1-2. Tables 3 and 4 show the top 10 SNPs found in models C2 and C3 for cohort C, respectively.
All SNPs with p<le-5inthe 9 scenarios are listed in Tables S1-9.

Significant SNPs mapped to genes. The rs36170929 locus maps to LOC102725191, an uncharacterized
protein-coding gene. Based on the OpenTargets Genetics database, the top gene mapped to this SNP is
VWDE (Von Willebrand Factor D And EGF Domains; distance to this gene = 97.62 kb), as rs36170929 is an
eQTL for VWDE. The rs28645263 locus maps to RETREG1 (Reticulophagy Regulator 1).

For the top 10 independent SNPs associated with COVID-19 Bl in Tables 3-4, the most probable disease-
associated genes corresponding to these SNPs were further prioritized by the OverallV2G (Variant-to-Gene)
score from OpenTargets Genetics (Table S10). Additional assigned genes using OpenTargets Genetics for
SNPs with GWAS p-value < 1e-4 are listed in Table S11.

Region plots of significant SNPs. Region plots of rs36170929 and rs28645263 were shown in Figure S3
and Figure $4, displaying LD-clumped SNPs with these significant loci located within 1IMb.

Results from Gene-Based Analysis

Results of fastBAT. We employed fastBAT to perform further gene-level analysis, focusing on common
variants (MAF>0.01). Top 10 genes from the gene-based analyses are listed in Table 6. The gene BAGE
(P=3.86e-8, FDR = 9.51e-4, chromosome 21) reached significance (FDR < 0.05) after adjusting the p-value
by the BH procedure, while genes BAGE2, BAGE3, BAGE4, BAGES5, ARHGEF3 were considered having
suggestive associations with Bl with FDR < 0.1 (Table S12).

Results of pathway enrichment analysis by GAUSS. To gain deeper insights into the relevant functional
pathways, we employed GAUSS for further analysis of genes extracted from fastBAT. Totaly 10,679
canonical pathways and gene ontology (GO) gene sets from the MSigDB database were tested.

Table 5 shows the pathway enrichment analysis results. For the results of canonical pathways, some of the
top enriched pathways included KEGG VIRAL MYOCARDITIS (FDR corrected p = 0.05), BIOCARTA
AKAP13 PATHWAY (FDR corrected p = 0.06), KEGG TIGHT JUNCTION (FDR corrected p = 0.06), and
REACTOME TRANSLATION (FDR corrected p = 0.06). More detailed results are listed in Table S13-14.
For the results of GO gene sets (C5), the top significant associations were observed based on Model A
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(participants with at least 1 dose of vaccine) for GOCC MUSCLE MY OSIN COMPLEX (FDR corrected p
= 1.44e-5), GOCC MYOSIN FILAMENT (FDR corrected p = 1.44e-5), and GOCC MY OSIN COMPLEX
(FDR corrected p = 6.41e-4).

Results from TWAS. We employed S-Multixcan to investigate the associations between genetically
regulated gene expression and phenotypes across 48 types of human tissues (TableS17.1), and combine
evidence across these tissues to improve statistical power. The most significant association with COVID-19
Bl was observed for AQP7P1 (FDR corrected P = 7.34e-3). Further, PFN1P2 (FDR corrected P = 1.61e-2),
AL590452.1 and LINC00842 (FDR corrected P <0.05) were observed to be associated. In addition, RP11-
314D7.3 (FDR corrected P=6.94e-2) showed moderate associations with Bl (FDR between 0.1 and 0.2).
More results are provided in Table S17.2.

Results from analysis of genetic overlap with other conditions

Results of PRS and genetic dependence analysis of breakthrough infection with other medical conditions.
We performed polygenic risk score testing for Bl with other medical conditions to explore polygenic
associations. Table 7 lists the results based on model C2 for individuals with at least one dose of vaccine.
The most significant positive association was observed for heart failure (FDR corrected P = 1.82e-3). We
also observed significant associations of Bl with HbAlc (FDR corrected P = 2.18e-2), and type | diabetes
(FDR corrected P = 1.22E-02). We also found nominally significant associations (nomina p-value <0.05)
for severa traits such as obesity, BMI, dementia, asthma, COPD/asthma-related infections, serum urate etc.
(Table S19).

Also, we performed Hoeffding's independence test to evaluate genetic dependence between these
comorbidities and BI. Table 8 and Table S20 show the results of Hoeffding's Independence test of Bl with
related traits for individuals with at least one dose of vaccine. Severa conditions including asthma,
abnormal findings on lung imaging, type | diabetes and schizophrenia showed significant genetic
dependence with FDR<0.05, while a few other traits including pulmonary embolism and cardiomyopathy
showed FDR<0.1. A variety of other pulmonary, cardiometabolic, neurological and liver conditions were
nominally significant at p<0.05.

Results of PheWAS with the top associated variants. The PheWAS results for the top 10 SNPsidentified in
Models C2 and C3, based on individuals receiving at least one or two doses of the vaccine, revealed several
SNPs significantly associated with lymphocyte counts and white blood cell counts. Although some did not
reach genome-wide significance (P = 5e-8).

Specifically, rs28645263 (P = 3.60e-4, Beta = 0.0078) and rs9661909 (P = 2.64e-6, Beta = -0.008922) were
significantly associated with lymphocyte counts in PheWAS, with corresponding GWAS P-values of 9.46e-
9 and 1.56e-6, respectively. Additionally, rs28645263 (P = 9e-4, Beta = 0.0073) and rs4073656 (P = 1.23e-5,
Beta = 0.008) were associated with white blood cell counts, with GWAS P-values of 9.46e-9 and 9.89%e-7,
respectively. Further details are provided in Tables S15-16.

Discussion

In this study, we conducted a GWAS study to uncover the associated genetic factors of Bl using data from
the UKBB. Furthermore, a series of post-GWAS analysis, including gene-based analysis, pathway
enrichment analysis, PRS analysis etc., were performed to unveil new insights into the genetic architecture
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of BI. To the best of our knowledge, this is the first GWAS to investigate the genetic basis of breakthrough
COVID-19 infection (BI) and severe infection (focusing on pre-Omicron variants), including a comparison
of severe vs mild BI.

I nterpretation of findings

Top loci identified from GWAS. We identified two loci, rs36170929 (p=4.39e-8) and rs28645263
(p=9.46e-9), which showed association with COVID-BI at genome-wide significance. These two loci can be
mapped to two protein-coding genes, LOC102725191 and RETREG1 (Reticulophagy Regulator 1)
respectively. RETREGLI is widely considered as an important mediator of reticulophagy (also referred as
ER-phagy). Reticulophagy is a specific type of autophagy which involves the selective elimination of
portions of the endoplasmic reticulum (ER)®. Notably, a recent study® found that the ER-associated
degradation (ERAD) regulator ERLINL strongly impeded the late stages of SARS-CoV-2 replication.
Furthermore, it was discovered that two additional factors, RETREG1 and FNDC4, which are involved in
ER-phagy and aggresome-related processes respectively, also hindered SARS-CoV-2 replication. These
findings suggest that components of the ERAD pathway, including RETREG1, may serve as inhibitors of
COVID-19 infection. However, the precise mechanisms by which this gene influences COVID-19 BI
warrant further investigation.

Although LOC102725191 is a protein-coding gene, its function remains uncharacterized. Based on
OpenTargets, another gene VWDE (Von Willebrand Factor D And EGF Domains) was listed as the top gene
mapped to rs3617092, as this SNP is an eQTL for VWDE. Von Willebrand Factor (VWWF) is a multimeric
glycoprotein that is involved in inflammation and hemostasis. It has been reported that COVID-19 is
associated with elevated levels of VWF antigen and activity, which may be linked to an increased risk of
thrombosisin infected patients™.

As for the other top loci, a study® showed that Kruppel-like factor 13 (KLF13) has low activity in moderate
COVID-19 patients and high activity in severe cases. Low KLF13 expression is associate with reduced pro-
inflammatory and enhanced phagocytic activity in macrophages, necessary for an efficient immune
response®. These results support KLF13's association with COVID-19 severity™.

Gene-based results. Severa BAGE family member genes, including BAGE, BAGE2, BAGE3, BAGE4,
BAGES, were observed to be significantly associated with Bl in the gene-based analysis. BAGE (B
Melanoma Antigen) is a protein-coding gene. This gene encodes a tumor antigen recognized by autologous
cytolytic lymphocytes (CTL)*. There is currently no direct literature or study to support the association
between BAGE and COVID-19 or related diseases yet, and further studies are needed. In addition, we also
observed ARHGEF3 was suggestively associated with Bl. In another bioinformatics analysis” of
differentially expressed genes targets in SARS-CoV-2, ARHGEF3 reached significance (P.adjust =
0.002415, table 1 of ref*), yet further validation studies are required.

Pathway and GO enrichment analysis.

The most significant result in our pathway enrichment analysis was related to KEGG VIRAL
MY OCARDITIS. Vira myocarditis is a cardiac disease associated with inflammation and injury of the
myocardium. Myocarditis may be caused by direct cytopathic effects of the virus, a pathologic immune
response to persistent virus, or autoimmunity triggered by the viral infection. Of note, viral myocarditis is
associated with both COVID-19 infection and vaccination. According to a study in Isreal, COVID-19
vaccination increased the 42-day risk of myocarditis by a factor of 3.24 (95% ClI, 1.55 to 12.44) as compared
to unvaccinated persons, with events mostly concentrated among young maes®. On the other hand, COVID-
19 itself is also linked to a significantly elevated risk of myocarditis™. It is intriguing that viral myocarditis
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is identified as the top-ranked pathway, which may suggest that the genes involved in myocarditis are also
associated with immunological responses to vaccination. The core subset of genes identified by GAUSS in
this pathway could be a focus for further experimental studies, potentially providing new insights into
associations between COVID-19 Bl and myocarditis.

Another pathway that also shows suggestive association with Bl is the BIOCARTA AKAP13 PATHWAY
(Rho-Selective Guanine Exchange Factor AKAP13 Mediates Stress Fiber Formation). The A-kinase anchor
protein 13 (AKAP13, also known as AKAP-LBC) isagroup of structurally diverse proteins, which have the
common function of binding to the regulatory subunit of protein kinase A (PKA) and confining the
holoenzyme to discrete locations within the cell®®. A polymorphism near the AKAP13 gene, associated with
higher levels of AKAP13 mRNA expression in the lung, has been reported to associate with higher risks of
developing idiopathic pulmonary fibrosis (IPF)*. Several studies”*® have shown positive and significant
genetic correlation between IPF and COVID-19. In addition, AKAP13 has been shown to regulate Toll-like
receptor 2 (TLR2) signaling and play a role in innate immune responses downstream of TLRs".

It is also worth noting that lipid-related pathways are also ranked among the top, such as
"WP_LIPID_METABOLISM_PATHWAY™" and
"WP_STEROL_REGULATORY_ELEMENTBINDING_PROTEINS_SREBP_SIGNALLING". Sterol
regulatory element-binding protein (SREBPs) are key regulators of lipid metabolism including synthesis of
cholesterol®. During viral infection, lipids play a crucial role in various processes such as membrane fusion,
replication, and endocytic and exocytic processes. Drugs targeting lipid metabolism has been suggested as
drug targets as wel|*+2%3,

In line with our findings that PRS of diabetes-related traits are significantly associated with Bl, the pathway
leptin-insulin signaling overlap was aso top-ranked. Obesity is a well-known risk factor for severe COVID-
19 infection, athough the mechanism remains unclear. It has been postulated that leptin, which regulates
both appetite and immunity>, may contribute to the pathogenesis of COVID-19.

Interleukin-7 signaling pathway was also among the top pathways. Interleukin-7 (IL-7) is a cytokine crucial
for T cell development and homeostasis. IL-7 has been studied as a potentia therapeutic to treat severe
COVID-19 patients with lymphopenia and lymphocyte exhaustion™.

Another enriched pathway was related to aguaporin signaling. Aquaporins are water channels that play a
role in fluid homeostasis, and have been implicated in the development of pulmonary edema in respiratory
diseases®. Another study showed that agquaporin levels were significantly elevated in critical COVID-19
patients™.

Polygenic score analysis and genetic overlap with other disorders. In the PRS association analysis, we
observed a positive significant genetic association between COVID-19 Bl with several traits, including heart
failure and glycaemic traits (HbA1lc) (FDR<0.05). A recent study also observed a positive genetic
association between COVID-19 and heart failure®. Combined with our current findings, these results
provided evidence to support shared genetic etiology between COVID-19 Bl and heart failure. Heart failure
has also been reported to be associated with more severe infections and as one of the long-term sequel ae of
COVID-19%.

In addition, our results showed a statistically significant association between HbA1c and COVID-19 BI.
Interestingly, a related study® showed that poor glycaemic control, assessed by mean HbA1c in the post-
vaccination period, was associated with lower immune responses and an increased incidence of SARS-CoV2
Bl in type 2 DM patients, consistent with our findings based on genetic data. Of note, we also observed
significant genetic overlap of COVID-19 Bl with type | diabetes, using both PRS analysis and genetic
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dependence analysis with Hoeffding' s test. A recent review summarized current studies on vaccine response
and diabetes, with most studies reporting lower antibody response in diabetic patients™, and some studies
reported that higher BMI may also be associated with poorer immunogenicity. However, the high
heterogeneity and modest sample sizes of many studies preclude a firm conclusion from being made.

A range of cardiometabolic traits were also nominally significant in our PRS or genetic dependence analysis,
although not passing the FDR correction. For example, obesity, BMI, diabetes mellitus (type | and I1), and
serum urate were observed to be have genetic overlap with Bl. As discussed above, several pathways related
to lipid metabolism, leptin-insulin signaling overlap etc. were among the top enriched ones. Taken together,
our results may suggest that cardiometabolic traits share genetic bases with COVID-19 BI. As such, it will
be intriguing to study whether these cardiometabolic traits are risk factors or complications of COVID-19 Bl.

In the genetic dependence analysis with Hoeffding's test, we observed severa traits showing significant
results passing FDR correction (FDR<0.05), including asthma, abnormal findings on diagnostic imaging of
lung, schizophrenia, and type | diabetes. Given the possible genetic overlap between these traits and BI,
these traits may be associated with increased risks of Bl, or present as sequelae post-infection. However,
further studies are necessary to elucidate these relationships.

Strengths and limitations

Firstly, to the best of our knowledge, this is the first GWAS to investigate the genetic basis of breakthrough
COVID-19 infection (BI) and severe infection (focusing on pre-Omicron variants), including a comparison
of severe vs mild Bl. Secondly, we conducted a comprehensive series of post-GWAS analysis to provide
insights into the biological basis of COVID-19 BI. These include standard SNP-based tests as well as gene-
based (fastBAT, S-MulTiXcan) and pathway-based (GAUSS) analyses, which may help bridge the gap
between significant SNPs detected and the corresponding biological mechanisms. Lastly, we explored the
genetic associ ations between COVID-19 Bl and related disorders through PRS and other analyses.

Our study also has afew limitations. Firstly, although the total sample sizein our study is large, the number
of cases is relatively limited, due to a relatively short follow-up duration (maximum 253 days between
vaccination and infection dates). However, studies® have shown that vaccine effectiveness in preventing
infection wanes over time®. This challenge makes it harder to capture specific genetic factors underlying
vaccine response as follow-up length increases. We aimed to balance follow-up length and vaccine
effectiveness to uncover the genetics of Bl. Additionally, the UK Biobank population may not fully
represent the entire UK population, as participants tend to be healthier and have higher socioeconomic
status® compared to non-participants. Furthermore, our study is based on European samples, and the
generalizability of these genetic findings to other populations remains uncertain. Further studies in other
populations are warranted.

In summary, we have conducted a GWAS for breakthrough infection with SARS-CoV-2 in a European
population using UK Biobank data. A series of post-GWAS analysis was performed, including gene-based
analysis, pathway enrichment analysis, PRS association, and others. We discovered two novel genetic loci
and revealed corresponding genes and pathways that may underlie COVID-19 Bl. We believe this work
provides an important foundation and reference for future studies at elucidating the biological and genetic
basis of COVID-19 breakthrough infections.
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Table 1 Definitions of models for covid-19 breakthrough infections

Model Case Contral

A Hospitalized or fatal (U07.1) Bl Non-hospitalized BI

B Hospitalized or fatal (U07.1) BI Vaccinated subjects without known history of COVID-19 Dx
C All subjects with Bl Vaccinated subjects without known history COVID-19 Dx

BI: breakthrough infection; U07.1 is the code for fatal (laboratory-confirmed) COVID-19 infection based on

the latest |CD coding. Dx, diagnosis. Untested, subjects without COVID-19 testing

Table 2 Number of available subjects of different models

Subjects with only one dose of Subjects with at least one dose Subjects with two doses of
Moddl vaccine (scenario 1) of vaccine (scenario 2) vaccine (scenario 3)
Submodel Submodel Submodel
name Cases  Controls Totd name Cases Controls  Tota name Cases Controls Totd
A Al 122 752 874 A2 169 1,353 1522 A3 43 552 595
B Bl 122 300,655 300,777 B2 169 300,007 300,176 B3 43 198628 198671
C Cl 874 300,655 301,529 c2 1,522 300,007 301,529 C3 595 198628 199223
Table 3 Topl0 SNP-based results of model C for participants with at least one dose of vaccine
Total
. Non-  Frequency Top gene
SNP Chr, Location  Effect  groy ofeffet BETA SE P N INFO GeneSymbol  Gene name no.of  so001  prioritized by
(bp) dlele clumped
dlele alele OpenTargets
SNPs
rs36170929 7 12541187 G A 0.640 0210 0.038 439E-08 301529  0.984254 11 5 VWDE
rs56150535 15 31647722 T C 0.359 0203 0.038 109E-07 301529 0996787 KLF13 Kruppe like factor 13 33 20 KLF13
rs181987785 1 34977912 G A 0.005 1449 0284 348E-07 301529  0.984316 30 30 GJB5
rs187268954 3 116529463 C T 0.004 1736 0358 1.22E-06 301529  0.90264 4 3 LSAMP
rs7590599 2 108915136 C T 0.604 0182 0.038 126E-06 301529 0989482 SULTIC2 f‘njggg;”gaase family 1C 8 5 SULTIC2
rs3737328 13 110866065 T C 0.246 0198 0.042 3.05E-06 301529 1 COL4A1 collagentype IV alpha 1 4 4 COL4A1

N
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chain
rsl42193221 22 21166165 A G 0.006 1274 0274 331E-06 301529 0929992  PI4KA Eihrfafehjﬁﬁ' nositol 4- 6 6 PI4KA
rs56070971 1 35025879 T C 0.006 1275 0.276 3.86E-06 301529 0.968667 29 29 GJB5
(72664942 4 85808904 G A 0.007 1174 0259 575E-06 301520 0938787 \WDFY3 WD repeat and FYVE 2 2 WDFY3

domain containing 3
rs79158353 10 78798475 A T 0.082 -0.304 0067 6.48E-06 301529 0995184 KCNMAL potassium calcium-activeted 4 13 KCNMA1

channel subfamily M alpha 1
1) S0001, number of clumped SNPs (SNPs in LD) with p<le-3; only SNPs with S0001 >= 2 are shown.
2) LD clumping settings: r2=0.5, distance = 250kb
Table 4 Top10 SNP-based results of model C for participants with two doses of vaccine

Total no.of
Effect Non- Frequency SNPs from Top gene
SNP Chr.  Location (bp) Alde effect  of effect BETA SE P N INFO GeneSymbol Gene name LD S0001  prioritized by
dlde dlee dumping OpenTargets

rs28645263 16612885 c T 0416 0347 0060 9.46E-09 199223 0964 RETREG1 reticulophagy regulator 1 3 RETREG1
rs4073656 48981646 G A 0.502 -0.288 0059 989E-07 199223 0988 LHCGR Iuteinizing hormone/choriogonadotropin receptor 5 3 STONI1-GTF2A1L
rs9661909 206714818 T c 0.506 0282 0059 156E-06 199223 00985 RASSF5 Ras association domain family member 5 11 6 RASSFS
172718228 14 69475527 T c 0.090 0493 0105 249E-06 199223 1.000 5 4 ACTNL
14991425 10 123485856 T c 0.363 -0288 0061 2.62E-06 199223 0.983 10 8 FGFR2
rsl11692702 19 15651802 A G 0.009 1729 0371 321E-06 199223 0970 CYP4F22 cytochrome P450 family 4 subfamily F member 22 3 3 CYPAF22
rs28718712 17 29882071 T G 0.671 -0287 0062 3.60E-06 199223 1.000 32 4 RABLIFIPA
rs4687124 189840935 G A 0.232 0319 0070 4.86E-06 199223 0.998 22 22 P3H2
rs2874139 169751502 c G 0.680 -0.288 0063 549E-06 199223 0979 PALLD palladin, cytoskeletal associated protein 43 15 PALLD
rs12466174 184802609 T G 0.122 0417 0092 581E-06 199223 0.969 8 7 NA
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Table 5 Top 15 pathway enrichment results (GAUSS) for genesidentified through gene-based analysis (fastBAT)

GeneSat Length_ GS  pvalue excluded p_adjust BH Model
KEGG_VIRAL_MYOCARDITIS 41 9.05E-06 22 5.69E-02 Al
BIOCARTA_AKAP13 PATHWAY 21 991E-06 1 6.23E-02 B2
KEGG_TIGHT_JUNCTION 73 138E-05 11 6.29E-02 A2
REACTOME_TRANSLATION 295 200E-05 76 6.29E-02 B2
REACTOME_MITOCHONDRIAL_TRANSLATION 96 11004 4 1.73E-01 A2 ;
REACTOME_PASSIVE_TRANSPORT_BY_AQUAPORINS 13 800E-05 O 5.03E-01 C3 3

(=X
MYLLYKANGAS AMPLIFICATION_HOT_SPOT_29 33 160E-04 O 5.35E-01 C1l o
YAMASHITA_LIVER_CANCER WITH_EPCAM_DN 53 170E-04 O 5.35E-01 C1 fi;
APRELIKOVA_BRCA1 TARGETS 48 200E-04 8 7.17E-01 Cc2 %
WP_LEPTIN_INSULIN_OVERLAP 30 250E-04 1 7.17E-01 Cc2 é
REACTOME_INTERLEUKIN_7_SIGNALING 9 3.90E-04 13 7.17E-01 Cc2 5
WP_LIPID_METABOLISM_PATHWAY 23 340E-04 O 7.76E-01 Bl 8
WP_STEROL_REGULATORY_ELEMENTBINDING_PROTEINS_SREBP_SIGNALLING 8 3.70E-04 4 7.76E-01 Bl 2
REACTOME _PI3K_AKT_ACTIVATION 9 290E-04 1 7.97E-01 C3 %
WP_STRIATED_MUSCLE_CONTRACTION_PATHWAY 11 3.00E-04 2 8.39E-01 Al §

o
Table 6 Topl5 results of gene-based analysis based on al the model in our study §.
Gene Chr  Pvalue p_adjust BH TopSNP TopSNP.Pvalue Start End nsnps  SNP_dart SNP_end chisq scenario_tag B
BAGE 21  3.86E-08 9.51E-04 rs139414507 6.80E-05 11057795 11098937 385 rs374458734 rs3964663 902.946 results based on model A1 g
BAGE 21  347E-06 8.55E-02 rs3898954 9.70E-05 11057795 11098937 385 rs374458734 rs3964663 761.829 results based on model B1 &
BAGE?2 21 3.63E-06 1.79E-02 rs139414507 6.80E-05 11020841 11098925 419 rs150585080 rs3964663 945.784 results based on model A1 .
BAGE3 21  363E-06 1.79E-02 rs139414507 6.80E-05 11020841 11098925 419 rs150585080 rs3964663 945.784 results based on model A1
BAGE4 21  363E-06 1.79E-02 rs139414507 6.80E-05 11020841 11098925 419 rs150585080 rs3964663 945.784 results based on model A1
BAGES 21 363E-06 1.79E-02 rs139414507 6.80E-05 11020841 11098925 419 rs150585080 rs3964663 945.784 results based on model A1
BAGE 21 410E-06 5.88E-02 rs139414507 0.001558 11057795 11098937 385 rs374458734 rs3964663 756.652 results based on model A2
ARHGEF3 3 4.77E-06  5.88E-02 rs7433556 1.09E-05 56761445 57113336 565 rs7641898 rs6768368 1403.32 results based on model A2
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LOC102467147
KLF13
LOC102467147
LOC102467147
CALCOCO1
ARHGEF3
OPN5

1.32E-05
1.40E-05
2.09E-05
2.33E-05
2.92E-05
4.15E-05
4.22E-05

3.26E-01
3.44E-01
2.58E-01
1.92E-01
4.55E-01
4.51E-01
4.55E-01

rs16885475
rs56150535
rs157845
rs285159
rs145371667
rs7433556
rs506816

3.71E-05
1.09e-07
3.75E-05
8.61E-05
6.42E-06
6.47E-06
2.91E-05

55753621 55777596
31619082 31670102
55753621 55777596
55753621 55777596
54104901 54121307
56761445 57113336
47749774 47794116

230 rs286010

193 rs146089365

230 rs286010
230 rs286010

132 rs10444557
565 rs7641898
142 rs16876443

rs154251

rs154251
rs154251

rs34074298

rs75816804
rs6768368
rs12660611

661.504
630.988
643.237
638.979
490.492
1256.27
500.148

results based on model B2
results based on model C2
results based on model B1
results based on model A2
results based on model C3
results based on model B2
results based on model C3

Note: the definition of model A1-3, B1-3, C1-3 isdefined in Table 2

Table 7 Polygenic association testing of Bl (model C2, general Bl vs population) with related traits using summary statistics (p<0.05 are shown)

Body system Exposure pva_PRS p_adjust BH coefficient r2 nsnps exposure_p filter  clump_r2
cardiovascular system Heart Failure 1.33E-04 1.82E-03 0.030588 4.84E-05 41900 0.05 0.05
endocrine system Type 1 diabetes, strict (exclude type 2) 1.00E-03 1.22E-02 0.028586 3.59E-05 131 5.00E-08 0.05
endocrine system Glycaemic_HbAlc 1.96E-03 2.18E-02 0.704835 3.18E-05 250 1.00E-04 0.05
endocrine system Diabetes mellitus (type 1 and 2) 1.61E-02 1.30E-01 0.097242 1.92E-05 128 5.00E-08 0.05
endocrine system Obesity 3.63E-02 2.37E-01 0.004535 1.45E-05 56424  0.05 0.05
endocrine system BMI 1.49E-02 1.32E-01 0.17485 1.97E-05 1365 1.00E-07 0.05
immune system Human immunodeficiency virus disease 3.71E-02 2.41E-01 0.042006 1.44E-05 17 1.00E-05 0.05
nervous system Dementia 2.95E-02 2.00E-01 0.003864 1.57E-05 78932 0.1 0.05
respiratory system COPD/asthma related infections 9.15E-03 8.58E-02 0.01321 2.25E-05 54680  0.05 0.05
respiratory system Asthma 2.09E-02 1.62E-01 -0.009499 1.77E-05 20426  0.01 0.05
respiratory system Smoking Cessation 4.00E-02 2.46E-01 0.15793 1.40E-05 2871 0.001 0.05
renal sysem Diabetic kidney disease in type 1 DM 9.75E-03 9.00E-02 -0.015166 2.22E-05 1449 0.001 0.05
renal sysem Serum urate 1.16E-02 1.04E-01 1.205126 2.11E-05 33 0.05 0.05

*(1) clump_r2=0.05. (2) More details about the information for each exposure are listed in Table S18

(2) All the outcome in thistable isModel C2 defined in Table 2

Table 8 Hoeffding's Independence test of Bl with related traits using summary statistics (p<0.05 are shown)

Exposure Outcome pthres n Dn scaled p.value p-adj_pthres& traitB_sepa

rate
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Respiratory

Abnormal findings on diagnostic imaging of lung A2 0.1 102776 1.29E-06 4.76 2.05E-04 8.00E-03
Abnormal findings on diagnostic imaging of lung B2 0.1 102787 7.19E-07 2.66 4.47E-03 1.74E-01
Asthma (only as main-diagnosis) A2 0.5 372099 1.94E-07 2.6 4.88E-03 1.43E-01
Asthma (only as main-diagnosis) B2 0.5 372141 1.81E-07 242 6.41E-03 8.33E-02
Asthma (only as main-diagnosis) c2 0.05 68429 1.55E-06 3.82 8.08E-04 2.69E-02
Asthma, hospital admissions, main diagnosis only A2 0.5 371828 1.63E-07 219 9.11E-03 1.43E-01
COPD/asthma related infections B2 1.00E-05 44 8.24E-04 1.28 3.77E-02 2.56E-01
%’E CD;;igma related pneumoniaor pneumoniaderived 5 0.01 15042 2.35E-06  1.27 381E-02  297E-01
Interstitial lung disease A2 0.3 248253 2.02E-07 181 1.63E-02 3.08E-01
Interstitial lung disease endpoints c2 0.2 190993 1.70E-07 117 4.49E-02 6.65E-01
Obesity related asthma A2 0.01 15347 3.12E-06 1.73 1.85E-02 2.41E-01
Obesity related asthma B2 0.01 15350 2.12E-06 117 4.48E-02 5.82E-01
Pulmonary embolism B2 0.05 58577 1.46E-06 3.07 2.43E-03 6.17E-02
Tuberculosis A2 0.01 13123 3.08E-06 145 2.84E-02 2.77E-01
Cardiovascular

Cardiomyopathy c2 0.1 103175 9.18E-07 341 1.48E-03 5.75E-02
Cardiomyopathy (excluding other) B2 0.5 363183 1.87E-07 244 6.18E-03 8.33E-02
Cardiomyopathy (no controls excluded) A2 0.01 14204 4.44E-06 227 8.07E-03 1.57E-01
Endocrine

Diabetes mellitus (type 1 and 2) A2 0.3 275918 1.17E-07 1.16 4.52E-02 3.52E-01
Diabetes mellitus (type 1 and 2) c2 0.1 129409 4.66E-07 217 9.33E-03 1.82E-01
Obesity B2 04 319934 1.34E-07 154 2.49E-02 3.95E-01
Type 1 diabetes, strict definition A2 1.00E-04 728 9.35E-05 2.45 6.16E-03 1.20E-01
Type 1 diabetes, wide definition B2 0.2 179971 6.59E-07 4.27 4.21E-04 1.64E-02
Type 1 diabetes, wide definition c2 0.05 56637 6.89E-07 141 3.07E-02 3.99E-01
Neur ological

Schizophrenia or delusion Cc2 1.00E-05 35 2.00E-03 2.44 6.19E-03 241E-01
Schizophrenia or delusion (more controls excluded) A2 0.01 15032 6.43E-06 3.48 1.33E-03 5.20E-02
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Schizophrenia, schizotypal and delusional disorders B2 1.00E-05 43 3.09E-03 4.68 2.33E-04 9.09E-03
Any dementia B2 1.00E-05 109 4.62E-04 18 1.66E-02 2.56E-01
Any dementia (more controls excluded) A2 0.001 1858 2.18E-05 1.45 2.84E-02 2.77E-01
Liver

Alcoholic liver disease A2 0.001 1690 3.69E-05 2.25 8.35E-03 2.77E-01
Cirrhosis, broad definition A2 1.00E-04 202 3.92E-04 2.84 3.43E-03 1.20E-01
Cirrhosis, broad definition Cc2 0.3 248811 1.36E-07 122 4.12E-02 6.57E-01
Nonalcohalic fatty liver disease B2 0.2 178801 1.82E-07 1.17 4.45E-02 4.34E-01

1) More details about the information for each exposure are listed in Table S18.

2) Scaled statistic: the test statistic rescaled for a standard null distribution (please refer to the R package “independence’ for details). FDR adjusted-p < 0.05
are in bold and those between 0.05 and 0.1 are in italics. FDR adjustment was performed with stratification by trait B

3) r2 threshold for LD-clumping is0.2

4) The definition of the outcomesis listed in Table 2
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