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ABSTRACT
This systematic review examines the evolution and current landscape of eXplainable Artificial Intelligence
(XAI) in Clinical Decision Support Systems (CDSS), highlighting significant advancements and identifying
persistent challenges. Utilising the PRISMA protocol, we searched major indexed databases such as
Scopus, Web of Science, PubMed, and the Cochrane Library, to analyse publications from January 2000
to April 2024. This timeframe captures the progressive integration of XAI in CDSS, offering a historical
and technological overview. The review covers the datasets, application areas, machine learning models,
explainable AI methods, and evaluation strategies for multiple XAI methods.
Analysing 68 articles, we uncover valuable insights into the strengths and limitations of current XAI
approaches, revealing significant research gaps and providing actionable recommendations. We emphasise
the need for more public datasets, advanced data treatment methods, comprehensive evaluations of XAI
methods, and interdisciplinary collaboration. Our findings stress the importance of balancing model
performance with explainability and enhancing the usability of XAI tools for medical practitioners. This
research provides a valuable resource for healthcare professionals, researchers, and policymakers seeking
to develop and evaluate effective, ethical decision-support systems in clinical settings.

INDEX TERMS Clinical Decision Support Systems, eXplainable Artificial Intelligence, Machine Learn-
ing, Computer Aided Diagnosis, Electronic Health Record

I. INTRODUCTION

THe advancements in computer science, particularly in
Machine Learning, in the 21st century have been piv-

otal in ushering in the fourth industrial revolution. This
has given rise to an interdisciplinary nexus of technological
applications that address challenges beyond the traditional
boundaries of computer science. One significant impact area
is healthcare, where these technologies have seen increased
acceptance and adoption for mission-critical tasks.

Integrating AI and ML technologies in healthcare has
enhanced decision-making capabilities, yet it has also un-
derscored the need for greater transparency in these systems.
The COVID-19 pandemic, in particular, highlighted the im-
portance of such technologies in managing new and evolving
medical knowledge during critical situations. AI and ML
systems have been crucial in areas such as disease classi-
fication and cancer diagnosis. However, the accuracy and

precision of these systems, while important, are not sufficient
on their own. It is essential to empower decision-makers with
interpretable methods that allow stakeholders to understand
the technological decisions, evaluate their merits, and make
necessary adjustments. Rapid advancements in XAI have
made model explainability a central concern, serving as a
much-needed bridge between AI and its application domains,
including healthcare, social sciences, and engineering.

This need for explainability extends naturally to clinical
decision-making for healthcare professionals, particularly in
fields that already rely heavily on technology, such as ML/AI
models integrated into standard protocols. As healthcare
continues to embrace digital transformation, implementing
explainable AI within Clinical Decision Support Systems
(CDSS) is crucial for ensuring informed, ethical, and effec-
tive patient care.
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TABLE 1: List of abbreviations and their descriptions.

Abbreviation Description Abbreviation Description

RNN Recurrent Neural Network GRU Gated Recurrent Unit
LSTM Long Short-Term Memory CNN Convolutional Neural Network
LR Logistic Regression SVM Support Vector Machine
RF Random Forest XGB Extreme Gradient Boost
MLP Multi-Layer Perceptron ANN Artificial Neural Network
DT Decision Trees GBC Gradient Boosting Classifier
GNB Gaussian Naïve Bayes KNN k-Nearest Neighbors
LDA Linear Discriminant Analysis LGBM Light Gradient Boosting Machine
DNN Deep Neural Network CART Classification and Regression Trees
NBM Naive Bayes Multinomial GLM Generalised Linear Model
EN Elastic Net TB Tree Boosting
ICE Individual Conditional Expectation GBDT Gradient Boosted Decision Trees
FCN Fully Convolutional Neural Network GB Gradient Boosting
SVC Support Vector Classification ETC Extra Trees Classifier
SGD Stochastic Gradient Descent LGB Light Gradient Boosting Machine
CDSS Clinical Decision Support System EMR Electronic Medical Records
EHR Electronic Health Records LGA Large for Gestational Age
LIME Local Interpretable Model-agnostic Explanations AGRAD Attention Gradient
LORE LOcal Rule-based Explanations LRP Layer-wise Relevance Propagation
GradCAM Gradient-weighted Class Activation Mapping PDP Partial dependence plots
SHAP Shapley Additive Explanations CIU Contextual Importance and Utility
FI Feature Importance BoCSoR Boundary Crossing Solo Ratio
PFI Permutation Feature Importance ELI5 Explain Like I am 5

ABELE Anchors Basic Explanation Linked-Examples En-
hanced Explanation

A. NEED FOR EXPLAINABLE CDSS IN HEALTHCARE

Clinical Decision Support Systems (CDSS) are essential
tools in modern healthcare, aiding doctors, nurses, and
pharmacists in making better-informed decisions about pa-
tient care [1]. These systems range from basic information
providers, such as medication and lab result databases like
pharmacy information systems [2], to advanced algorithms
that recommend personalised treatments [3]. Some CDSSs
operate automatically, providing instant guidance to health-
care professionals [4], while others require manual input,
such as clinical guidelines [5].

The digital transformation in healthcare has led to ex-
ponential growth in data generation, particularly through
the adoption of Electronic Health Records (EHRs). EHRs
chronicle comprehensive patient health information, offering
a digital alternative to traditional paper records. Leverag-
ing this data, advanced CDSS has been developed to assist
healthcare providers in making informed decisions based on
patient-specific conditions.

The potential of CDSS to reduce errors in decision-making
and improve patient outcomes is well-documented. However,
the mere presence of these systems does not automatically
guarantee better patient care. While studies have shown a
significant reduction in decision-making errors [6], the effec-
tiveness of CDSS is highly dependent on the quality of the
systems and the accuracy of the data they process.

The utility of CDSS becomes particularly apparent in
scenarios requiring swift and informed decision-making. By
providing clinicians with immediate access to relevant patient
data and the latest medical knowledge, CDSS empowers
healthcare professionals to navigate complex and voluminous
data, ensuring that critical decisions regarding patient care

are both informed and timely. The ultimate goal of deploying
CDSS in healthcare is to harness the best available evi-
dence and insights, thereby enhancing patient care outcomes
through informed clinical decision-making.

XAI is crucial in this context, as it addresses the need
for transparency and interpretability in CDSS. Integrating
XAI into CDSS ensures that the decisions made by these
systems are not only accurate but also understandable to
clinicians. This transparency is essential for gaining the trust
of healthcare providers and ensuring that the systems’ rec-
ommendations can be effectively scrutinized and validated.

B. MOTIVATION FOR THE WORK
The integration of XAI into CDSS represents a significant ad-
vancement in healthcare technology. Despite various review
studies highlighting the multifaceted challenges and opportu-
nities of this integration, there is a need for a comprehensive
evaluation of current research directions and future goals.

Several studies have underscored the potential and neces-
sity of XAI in enhancing the transparency and reliability of
CDSS. For instance, Antoniadi et al. [7] showcased success-
ful integrations of XAI, providing foundational insights into
its application within CDSS. Similarly, Du et al. [8] em-
phasized the critical importance of explainability in CDSS,
particularly in specific healthcare domains such as pregnancy
care, where inclusivity and extensive validation are essential.
Vasey et al. [9] revealed a lack of sufficient evidence to
conclusively assert that ML-based CDSS enhances physician
diagnostic capabilities, highlighting limitations such as small
participant sizes, biases, and inadequate consideration of
human factors. Wang et al. [10] identified several obstacles
to the effective implementation of XAI in CDSS, including
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FIGURE 1: Search results from all databases

technical, process-related, attitudinal, informational, usabil-
ity, and environmental challenges. Similarly, Moazemi et al.
[11] similarly reported issues with validation and interoper-
ability in CDSS. Xu et al. [12] suggested that future studies
should focus on developing a formalism for defining inter-
pretability, identifying its properties, and creating appropriate
and objective metrics for evaluating interpretability.

The analysis of recent systematic literature reviews on
XAI-based CDSS indicates an inadequacy in studies that
holistically address critical aspects of these systems (see
Table 2). This observation underscores the need for a sys-
tematic review that maps the current research landscape,
identifies existing limitations, and guides future directions.
By addressing this gap, researchers and practitioners can
better understand the challenges and opportunities presented
by integrating XAI into CDSS, facilitating the development
of more effective, ethical, and user-friendly AI-driven health-
care solutions.

This work aims to provide a thorough review of the cur-
rent state of XAI in CDSS, evaluating its implementation,
challenges, and potential for future research. It seeks to offer
valuable insights for healthcare professionals, researchers,
and policymakers interested in developing and evaluating
transparent and reliable AI-based decision support systems
in clinical settings.

C. RESEARCH QUESTIONS
This literature review examines the current use of eXplain-
able AI methods in AI-assisted healthcare systems. While AI-
powered healthcare systems have been extensively studied,
the application of XAI to this domain is still emerging.
Healthcare is rapidly becoming a significant area for XAI
applications. This review aims to assess the adoption of
XAI across different healthcare domains and its implications.
Additionally, it explores the interactions between various ML
models and XAI methods regarding their compatibility, ne-
cessity, and effectiveness in enhancing interpretability. These
queries are formalised into the following research questions:

1) Which specific healthcare domains have extensively
adopted XAI methods?

2) What types of datasets are commonly used in explain-
able CDSS, and what are their key characteristics?

3) What are the prevailing trends and most effective ma-
chine learning models utilised in explainable health-
care systems?

4) What are the most commonly used XAI methods in
electronic healthcare, and how do they contribute to the
interpretability of machine learning models?

5) How do multiple XAI methods contribute to ensuring
explainability in the healthcare decision-making pro-
cess?

II. METHODOLOGY
To conduct this systematic review, we adhered to rigorous
methodology, drawing upon the established literature review
framework [18] and further aligning our review protocols
with PRISMA-P guidelines [19] to ensure a comprehensive
and methodological approach. Figure 2 illustrates the de-
tailed implementation of the PRISMA-P protocol tailored for
our review objectives.

The following sections discuss the specifics of the SLR
methodological approach, including eligibility criteria, iden-
tification of relevant information sources, formulation of the
search strategy, and the screening process undertaken to
curate the final set of articles for analysis.

A. ELIGIBILITY CRITERIA
This review focuses on the applications of XAI in health-
care, particularly healthcare/clinical decision support sys-
tems (CDSS). The purpose is to assess the overall progress of
artificial intelligence in the last two decades and the gradual
acceptance and need for XAI to make AI-based systems more
reliable in critical domains such as healthcare. It also ex-
amines the challenges artificial intelligence has encountered
during this period and the current obstacles to adopting more
XAI-based systems. Additionally, it aims to identify future
research insights in this specific domain.

The study also aims to determine the types of data sup-
ported by artificial intelligence-based clinical decision sup-
port systems, the implementation of the systems, and the
outcome of the systems. The terms that describe our work
most accurately are "clinical decision support systems" and
"explainable artificial intelligence." These terms help us find
all the related studies in scientific databases, and all the
search terms and search strings were designed based on these
two terms.

The review included studies that discuss CDSS regardless
of the type of disease. However, the type of disease was
still considered a significant parameter for the classification
of studies and the data type they used. Studies that did not
discuss the technical aspects of CDSS, philosophical studies,
review studies, conference articles, and discussion studies
were excluded from the review.

Furthermore, the research studies were selected based on
their use of explainability methods, i.e., at least one XAI
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TABLE 2: Summary of CDSS Literature

Ref Published Duration
Application

Area

ML
Models

XAI
Methods Multiple XAI

Methods
Dataset

Characteristics

Remarks

[7] 2021 2008-2020 - - Low - - Touches upon XAI methods in CDSS with-
out focusing on specific ML models.

[13] 2022 2011 -
2022

Low Low High - - Focuses on XAI methods with limited dis-
cussion on ML models and application ar-
eas.

[12] 2023 2011-2020 - - Low - - Discusses CDSS from a technological and
medical perspective, with no detailed dis-
cussion of ML models, XAI methods, and
datasets.

[14] 2023 2018 -
2022

Low Low Medium - Medium Focuses on XAI methods and the datasets
for CDSS, with a limited discussion on
ML models and application areas and no
discussion of using multiple XAI methods
in a single study.

[15] 2023 by Oct
2022

- - High - - Reviews the implementation of XAI meth-
ods and their challenges from a physi-
cian’s perspective, with no discussion of
ML models, datasets, and applications.

[16] 2023 2019-2022 Medium Medium High - Medium Focuses on different XAI methods mostly
on image-bases datasets, and lacks discus-
sion on free-text and tabular datasets.

[17] 2023 2020 -
2022

- Low Medium - Low Focuses on the taxonomy of XAI methods
in the medical field, lacking discussion on
application areas, with limited discussion
on datasets and ML models.

This re-
view

2024 2003-2023 High High High High High Provides a comprehensive analysis of XAI
methods applied to different ML model
categories across various healthcare appli-
cation areas, detailing dataset characteris-
tics and lists tradeoffs between XAI meth-
ods used.

method (unlike EDA strategies) to explain at least one black-
box or non-interpretable ML model to decision-makers. Spe-
cific XAI methods were not a requirement for inclusion in the
review.

B. DATABASES
We utilised multiple databases to gather information, in-
cluding Scopus, Web of Science, Cochrane Library, IEEE
Explore, PubMed, and Science Direct. Although we received
almost identical outcomes from different databases, we fo-
cused on four primary databases to eliminate redundancy and
duplicate publications. These four databases are Scopus, Web
of Science, PubMed, and Cochrane Library. Scopus and Web
of Science are vast databases encompassing various research
topics and publications, making them reliable sources for
literature in any field. Meanwhile, PubMed and Cochrane
Library are important sources of knowledge for medical and
biomedical studies. PubMed covers the overall advancements
in medical expertise, while Cochrane Library is a valuable
source of clinical studies that examine all clinical-related
practices, implementations, and clinical outcomes. Although
we tested our search terms on IEEE Explore, we didn’t
achieve enough results. We also discovered that Science Di-
rect produced nearly identical outcomes to Scopus and Web
of Science. However, due to Scopus and Web of Science’s
broad range of multidisciplinary coverage, we focused on

these two databases.

C. SEARCH STRATEGY

We considered two major terms that define our research
topic. These terms are "clinical decision support systems"
and "explainable artificial intelligence." We have designed
our search strategy into three parts based on these two terms.
The first part of the search strategy focuses on explainability,
covering all the synonyms and explainability-related words
and combining them with the binary OR operator. The second
part covers artificial intelligence in publications related to
artificial intelligence, while the third part represents clinical
decision systems, covering all the synonyms and related
words to clinical decision support systems. To make these
three parts of the search term work together, we have com-
bined them using the binary AND operator; see Table 3.

After designing the search terms, we selected the topic
title, abstract, and keywords and applied the search string,
and adapted the search query according to each database
search policy (see Table 4). Also, we applied the duration
of the search between 01-Jan-2000 and 31-Dec-2023 and
collected a total of 1226 research articles1. Furthermore,

1451, 351, 229, and 195 results from Scopus, Web of Science, Cochrane
Library, and PubMed, respectively.
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Records identified from*: 

Databases (n = 1226) 

Scopus (n = 451)

Web of Science (n = 351) 

Cochrane Library (n = 229) 

PubMed (n = 195)

Records removed before screening: 

Duplicate records removed using 

endnote

Records removed based on 

document type

Not relevant to subject

Limited to English language only

(n=500)

Records screened 

(n = 726)

Duplicate records removed manually 

(n = 45).

Title and Abstract Screening 

(n = 681)
Records removed after title and 

abstract screening.

Records which does not discuss AI 

Records which does not discuss 

healthcare

Record which does not discuss 

CDSS

Records which does not discuss at 

leatst one XAI Method.

(n = 607)

Reports assessed for eligibility of 

full text reading.

(n = 74)

Reports excluded:

Low Quality articles (having no clear 

research objectives or not properly

reported the results).

Articles which does not apply XAI 

methods on classification or Blackbox 

ML Models. 

(n = 34)

Studies included in review

(n = 44)

Reports of included studies after 

forward and backward chasing 

(n = 19)

Total Articles = 44 + 19 = 63

Identification of studies via databases and registers
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FIGURE 2: PRISMA Diagram

articles from 2024 are also included until April, totaling in
5 additional articles.

D. SCREENING OF STUDIES

We took several steps to ensure we only considered high-
quality, relevant articles. Initially, we applied filters based
on document type, subject matter, and language (English
only) to limit our search results only to include peer-reviewed
journal articles that focused on the topic of XAI and CDSS.
After applying these filters, we used Endnote reference man-
ager software to detect and remove duplicate articles, and we
also removed a small number of duplicate articles through
manual intervention. After this initial screening, we were left
with 681 articles, which we reviewed based on the title and
abstract to determine if they met our inclusion and exclusion

criteria (see Table 5). Of these, 74 articles met our criteria
and were subjected to a full-text review. During this review,
we only included articles that have clear research objectives,
properly reported the results, and discussed the application
of the XAI method on classification or black-boxed machine
learning models and at least one explanation method to
clinical data. Ultimately, we were left with 44 articles that
matched our inclusion criteria. To ensure we didn’t miss any
relevant articles, we also performed forward and backward
reference chasing, which led us to include 19 additional
articles that matched our criteria and 5 articles published until
April 2024.
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Search Terms Operator Search Terms Operator Search Terms
( explainable OR interpretable OR

transparent OR accountable OR
human-interpretable OR

human-centered )

AND

( AI OR ML OR Deep Learning OR machine
AND learning OR deep AND learning OR

artificial AND intelligence OR computational
AND intelligence ) OR XAI )

AND

( ( ( health* OR *medical OR clinical
) AND decision* AND ( support OR

making OR aids ) AND system* ) OR
cdss OR cds ) )

TABLE 3: Search Terms

Name of Database Search String
Scopus TITLE-ABS-KEY ( ( ( explainable OR interpretable OR transparent OR accountable OR human-interpretable OR human-centered

) AND ( ai OR ml OR DL OR machine AND learning OR deep AND learning OR artificial AND intelligence OR computational
AND intelligence ) OR XAI ) AND ( ( ( health* OR *medical OR clinical ) AND decision* AND ( support OR making OR aids )
AND system* ) OR cdss OR cds ) )

Web of Science AB=(( ( explainable OR interpretable OR transparent OR accountable OR human-interpretable OR human-centered ) AND ( ai OR
ml OR DL OR machine AND learning OR deep AND learning OR artificial AND intelligence OR computational AND intelligence
) OR XAI ) AND ( ( ( health* OR medical OR clinical ) AND decision* AND ( support OR making OR aids ) AND system* ) OR
cdss OR cds ) )

Cochrane Library ((Explainable OR Interpretable OR Transparent OR Accountable OR Human-interpretable OR Human-Centered) AND (AI OR
ML OR DL OR machine learning OR Deep learning OR artificial intelligence OR computational intelligence) OR XAI) AND
(((Health* OR *medical OR clinical) AND decision* AND (support OR making OR aids) AND system*) OR CDSS OR CDS)

PubMed ((("Explainable"[Title/Abstract] OR "interpretable"[Title/Abstract] OR "Transparent"[Title/Abstract] OR "Ac-
countable"[Title/Abstract] OR "Human-interpretable"[Title/Abstract] OR "Human-Centered"[Title/Abstract]) AND
("AI"[Title/Abstract] OR "ML"[Title/Abstract] OR "DL"[Title/Abstract] OR "machine learning"[Title/Abstract] OR "deep
learning"[Title/Abstract] OR "artificial intelligence"[Title/Abstract] OR "computational intelligence"[Title/Abstract])) OR
"XAI"[Title/Abstract]) AND ((("health*"[Title/Abstract] OR "medical"[Title/Abstract] OR "clinical"[Title/Abstract]) AND
"decision*"[Title/Abstract] AND ("support"[Title/Abstract] OR "making"[Title/Abstract] OR "aids"[Title/Abstract]) AND
"system*"[Title/Abstract]) OR "CDSS"[Title/Abstract] OR "CDS"[Title/Abstract])

TABLE 4: Summary of Database Searches

Inclusion Exclusion

• Discuss XAI in
healthcare

• Discuss XAI and
CDSS.

• Articles utilising
ML models and
XAI methods with a
clinical dataset.

• Articles lacking attention on
healthcare and CDSS.

• Articles not written in English
• Duplicate articles
• Articles involving fuzzy classi-

fiers
• Philosophical Studies
• Review studies
• Conference articles
• Discussion studies

TABLE 5: Inclusion and Exclusion Criteria

E. DATA EXTRACTION AND STUDY CHARACTERISTICS
This review includes articles published from January 2000
to April 2024. After applying the search strings and filtering
studies according to the inclusion and exclusion criteria, we
were left with studies predominantly published in recent
years, as shown in Figure 3. Specifically, seven articles were
published in 2020, 9 in 2021, 14 in 2022, 33 in 2023, and
5 articles published by April 2024. The gradual increase
in studies over recent years indicates growing interest from
researchers and stakeholders in applying artificial intelli-
gence within the healthcare domain. Consequently, it is an
opportune time to evaluate the current state of XAI in CDSS,
understand the existing challenges, and provide insights for
future implementation and research.

The studies selected for this review were subjected to a
thorough data extraction process to capture relevant charac-
teristics. Key data extracted included study design, sample
size, XAI methods used, ML models implemented, datasets
characteristics, and the specific healthcare applications ad-

dressed. This detailed extraction aimed to ensure a compre-
hensive understanding of how XAI is being utilised within
CDSS and to identify any prevalent trends or gaps in the
research.

FIGURE 3: Studies published from 2020 to 2023 are in-
cluded (*Statistics for 2024 are not shown as the year is
ongoing).

III. APPLICATION AREAS AND DATASETS
The articles included in the review were analyzed and cate-
gorised based on their applications in specific disease types.
The review identifies 19 application categories summarized
in Table 6. The six most prominent categories are discussed
in detail below, while the remaining categories with less
frequent usage are combined into a final subsection. Detailed
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descriptions of the datasets relevant to each application area
are presented in Table 8 and 9, including their detailed
descriptions.

TABLE 6: Overview of datasets by application areas, avail-
ability, and type of data

Application
Area

Availability Dataset
Type

References

Neurological
(17)

Pub (5) Tab (3) [20]–[22]

Img (1) [23]

Txt (4) [24]

Prv (12) Tab (11) [25], [26], [27], [28], [29] ,
[30], [31], [22], [32], [21], [33]

Img (1) [34]

Cancer (13)

Pub (7) Tab (4) [21], [35]–[37]

Img (3) [38]–[40]

Prv (6) Tab (3) [33], [41], [42]

Img (3) [43]–[45]

Cardiovascular
(7)

Pub (3) Tab (3) [21], [46], [47]

Prv (4) Tab (4) [48], [49], [50], [33]

Diabetes (6)
Pub (4) Tab [21], [51], [52]

Prv (3) Tab [53]–[55]

COVID-19
(7)

Pub (3) Tab (2) [56], [57]

Img (2) [58]

Prv (3) Tab (3) [59]–[61]

Mortality Risk
(ICU) (4)

Prv (4) Tab (4) [62]–[65]

Endoscopy (3) Pub (3) Img (3) [66]–[68]

Skin (2)
Pub (1) Img (1) [69]

Prv (1) Img (1) [70], [71]

Anti-microbial
(2)

Prv (2) Tab (2) [72], [73]

Pregnancy (3) Pub (1) Tab (1) [74]

Prv (2) Tab (2) [75], [76]

Cytokines (1) Prv (1) Tab (1) [77]

Pneumonia (4) Pub (3) Img (3) [58], [78]

Prv (1) Img (1) [78]

Hepatitis (1) Pub (1) Tab (1) [79]

Obesity (1) Pub (1) Tab (1) [50]

Pulse Wave
Classification
(1)

Prv (1) Img (1) [80]

Surgical (1) Prv (1) Tab (1) [46]

Acute Disease
(1)

Prv (1) Tab (1) [81]

Chronic
Disease (1)

Pub(1) Tab (1) [82]

Medical
Abstracts
(General)

Pub (1) Text (1) [83]

A. NEUROLOGICAL
Neurological conditions are the most studied category, with
17 studies focusing on diagnosis and assessment (see Ta-
ble 6). Neurological conditions include, Alzheimer’s disease
[28], [30], [34], stroke [20], [22], [32], [84], dementia [25],
Parkinson’s disease [26], Cerebrovascular issues [23], brain
injuries [27], depressive disorder [31], language behavior
based mental health issues [24] and brain connectivity net-
works [29]. A total of 12 private datasets and five public
datasets were used, featuring tabular (14), image (2), and text
data (4). These datasets are often imbalanced and contain
missing values (see Table 8), necessitating careful prepro-
cessing to ensure robust analysis and model performance.

B. CANCER
Cancer detection and diagnosis constitute a significant por-
tion of the reviewed studies, with 13 studies addressing
various types of cancer, including cervical [35], liver [33],
multiple myeloma [36], prostate [38], lung [33], [41], [85],
glioma brain [39], [40], breast [21], [33], [44], nasopharyn-
geal [42], colorectal [43] and tumor [45]. Both image-based
and tabular datasets were utilised, with a distribution of 6
image-based and seven tabular datasets, of which three are
public in both categories while the remaining are private.
Similar to neurological datasets, these datasets are frequently
imbalanced and contain missing values (see Table 8 and 9),
which must be addressed during preprocessing.

C. CARDIOVASCULAR
Seven studies focused on cardiovascular conditions such as
cardiac arrest [49], heart failure with coronary heart disease
[48], comorbidity [50], hypertensive heart disease [33], my-
ocardial infarction [46], assessing conditions through elec-
trocardiograms [47] and cardiography [21]. All datasets in
this category are tabular, with three publicly available and
four being private. These datasets are typically imbalanced
and contain noise and missing values, impacting the choice
of predictive models and preprocessing techniques.

D. COVID-19 AND DIABETES
Seven studies each focused on COVID-19 and diabetes.
COVID-19 studies explored COVID-19 prediction [56], [86],
ICU admissions [59], diagnosis from influenza-like illness
[60], triage-prediction system [57], severity risk [61], severe
community-acquired pneumonia and respiratory infections
[58]. While Diabetes studies explored predicting large ges-
tational age (LGA) in overweight and obese female patients
[52]–[54], general classification and prediction of diabetes
[51], and addressing diabetes retinopathy in type 2 diabetes
patients [21], [55].

The datasets for both categories included all data in tab-
ular format except two images in the COVID-19 Category.
While three public and three private datasets existed in each
category, both had missing values and outliers. The diabetes
datasets showed less imbalance compared to COVID-19,

7
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with one exception of a highly imbalanced dataset in the
diabetes category.

E. MORTALITY RISK PREDICTION (ICU)
Four studies focused on the mortality risk prediction category
in ICU settings, i.e., qualitative analysis in pediatric intensive
care units [64], overall mortality risk prediction [62], [65],
and assessing the risk of extubation failure in ICU patients
undergoing vitalisation [63]. All datasets used are private and
include patient vitals, hospital records, and laboratory tests.
These datasets are often imbalanced, with missing values and
outliers that require preprocessing to ensure accurate model
predictions.

F. PNEUMONIA, PREGNANCY, AND ENDOSCOPY
Three studies each focused on pregnancy [74]–[76] and en-
doscopy [66]–[68], while two studies addressed pneumonia
[58], [78]. In pregnancy, studies predicted preterm births
[75], extrauterine growth restriction [76], and anticipated
cesarean delivery outcomes [74]. Endoscopy and pneumonia
studies are primarily used and publicly available image-
based, except for one private pneumonia disease dataset.
Two of the endoscopy datasets are multiclass, and one is
highly imbalanced. The pregnancy category dataset is mostly
tabular, imbalanced, and contains missing values.

G. RARE APPLICATIONS
Less frequently studied application areas include skin le-
sion classification [69], skin vascular wound images [70],
antimicrobial [73], [79], hepatitis liver disease [79], pulse
wave classification [80], obesity [50], surgical [46], chronic
[82] and acute disease [81]. In the context of antimicrobial
aspects, early detection of drug resistance was studied in
[72], and antimicrobial stewardship was examined in [73].
These studies utilised both tabular (see Table 8) and image
datasets (see 9), with a mix of public and private sources, with
issues of imbalance and missing data. Despite their rarity,
these applications highlight the versatility of XAI methods
in addressing diverse medical conditions.

From the above discussion, tabular datasets are mostly im-
balanced with missing values and noise, necessitating prepro-
cessing and balancing for improved results. Common meth-
ods used for handling missing values when more than 30%
is missing, include dropping data [20]–[22], [26], [30], [31],
[33], [41], [50], [53], [54], [75], [77], [82], means, median or
mode imputation [26], [30], [51]–[54], [60], [63], [76], [77],
[84], KNN interpolation [28], [33], [74] and last observation
carried forward [63], [65]. However, [52] noted that mean
is sensitive to noise and results in wrong imputations. Other
methods include iterative imputation [56], [61], baseline
wander removal and power line interference removal [47]
and forward imputation [27]. For data balancing, SMOTE
[30], [36], [60], [62], [75] and its other variations such as
SMOTE-ENN [48], [49], borderline SMOTE [57], SMOTE-
Tomek [57] and SMOTE-NC [62] are the most common
methods applied in the literature. Other common techniques

TABLE 7: Categorisation of the best-performing ML models
and the frequency of each model and category being reported
as the best-performing.

Category Best Performing ML
Models

References

Interpretable LR (3) [39], [44], [77]
(4) Elastic Net (1) [40]

Deep

CNN (15) [23], [34], [45]–[47], [58],
[66]–[71], [78], [81], [83]

Learning

LSTM (3) [80], [72], [65]

(26)

Light_LSTM (1) [63]
BO-Tabnet (1) [51]
RNN (1) [27]
HAE-TabNet (1) [49]
MLP (2) [20], [50]
Mental RoBERTa (1) [24]
DNN (1) [82]

Ensemble/

RF (13) [26], [28], [32], [36], [38],
[54], [55], [57], [62], [64], [74],
[79], [84]

Stacking

XGB (6) [25], [31], [33], [42], [48], [50]

(32)

CatBoost (2) [22], [29]
LightGBM (1) [87]
GBDT (2) [59], [73]
GB (1) [61]
AdaBoost (3) [21], [41], [52]
Ensemble (RNN, GRU,
BiLSTM) (1)

[43]

Ensemble (LR, DT,
MLP) (1)

[35]

Ensemble (XGB, LGB,
SVC, RF, CatBoost) (1)

[85]

Ensemble (ConvXGB)
(1)

[?]

Stacking (RF, DT,
KNN, LR, NB, SVM)
(1)

[30]

Stacking (AdaBoost,
CatBoost, LGB, XGB)
(1)

[60]

Voting ensemble (1) [75]

SVM (3) Non-Linear SVM (3) [32], [53], [76]

applied are random subsampling [22], [75], under-sampling
[75] and ADASYN [57], [74]. It is also observed that most of
the datasets among tabular categories are private, particularly
in the neurological category, where 12 out of 17 datasets
are private. Similarly, all the datasets related to mortality
risk prediction, anti-microbial, and Pulse wave classification
are private. Likewise, more than 50% datasets in all the
categories are private.

IV. PREDICTIVE MODELS
Machine learning models are broadly classified into inter-
pretable and non-interpretable models. Interpretable models
are simple and transparent, allowing humans to easily un-
derstand their predictions or decisions. Examples of inter-
pretable models include Logistic Regression, Decision Trees,
and Naive Bayes. On the other hand, non-interpretable mod-
els are complex and lack transparency in decision-making,
thus requiring an explainer method for explaining decision-
making. Examples of non-interpretable models include non-
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FIGURE 4: Baseline ML models and winners’ trends from Jan 2020 to Dec 2023 are shown; data for 2024 is not shown as it is
an ongoing year.

linear SVM, ensembles, and deep learning.
Figures 4a and 4b illustrate the evolution of models used

and winning models in literature from 2020 to 2023. 2024
data is not included as the year is ongoing. The trend
indicates that interpretable and non-interpretable models
are preferred as baseline models, but as time passes, non-
interpretable models are increasingly observed as winners,
with a significant spike in 2023 and a complete drop for
interpretable to zero in 2023. Additionally, Table 7 lists
the categories of models and their frequency count as best-
performing, along with an individual model frequency count
as winners. Ensembles/stacking emerge as the most preva-
lent category, followed by deep learning, highlighting non-
interpretable models as the top performers overall between
2020 and 2024.

As shown in Table 7, a diverse range of ML models is
evident, warranting further discussion to provide a concise
overview. Convolutional Neural Networks are ideal for sce-
narios involving image data such as skin lesion classification,
endoscopy, brain diseases, cancer, viruses, cardiovascular
diseases, and electronic health record time-series data. LSTM
is competitive on time-series and sequential data [65], [72].

Random Forest is a robust choice for structured tabular
medical data, demonstrating high performance in predicting
liver disease, diabetes, brain, cardiovascular, cancer, COVID-
19, and mortality risk prediction time-series data. Ensembles
are competitive due to their ability to aggregate predictions
from multiple models, rendering them robust and highly ef-
fective across various medical domains. For example, an en-
semble of deep learning techniques excels on image datasets
[35], [43], while an ensemble of tree-based models performs
best on tabular datasets [56]. Deep learning has outperformed
XGBoost, Naive Bayes, Random Forest, and CatBoost on the
tabular dataset [85].

Support Vector Machines (SVMs) have stood out as a
potent model for medical predictions, being successful in
gestational diabetes prediction [53], predicting the functional

outcome of stroke survivors [32], and detecting prostate
cancer on cancer images datasets [38].

Among interpretable models, logistic regression and Elas-
tic NET are chosen as the baseline and best-performing mod-
els, which have shown noteworthy performance on tabular
data in specific clinical contexts such as cancer [39], [44],
[77] and Cytokines analysis [77].

9
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TABLE 8: Overview of Tabular Datasets by Application Area, Availability and Types of Data

App
Areas

Name and ref. Features Description
Missing
Values/
Outliers

Avail
Class im-
balance

Dataset size
and classifi-
cation type

Sampling
strategy

Strategy for missing val-
ues

N
eu

ro
lo

gi
ca

l

aMCI
conversion
to dementia
[25]

Demographics and clinical character-
istics

Not
mentioned

Prv Imbalanced
19X705
(Binary)

-
Domain knowledge to
remove the unnecessary
variables

PPMI dataset
[26]

Subject Characteristics, Bio-
Samples, Medication History,
Motor function, and Non-Motor
functions

Yes ARQ Imbalanced
5X1059
(Multiclass)

SMOTENN
>30% were dropped. For-
ward and backward filling,
median and the mode

TRACK-TBI
(EHR and
Physiological)
[27]

EHR: Vitals, lab measurements, GCS
score components Physiological: Vi-
tal signs and intracranial data

EHR: 22%,
Physio-
logical:
8.8%

ARQ N/A

EHR:
12x900
(Multi),
Physio:
8x5816
(Binary)

-
EHR: GRU-D units, Phys-
iological: Linear interpola-
tion

MIMIC III
EHR [27]

Vital signs & lab measurements 10% Pub N/A
26X22988
(Multiclass)

- Forward imputation

ADNI [30]
Clinical dementia rating, functional
activities questionnaire test, AD as-
sessment scale, and Demographics

Yes ARQ Imbalanced
30X1363
(Multiclass)

SMOTE

[30] :Median, mean
and mode. [28]: >30%
dropped, and KNN
imputation

HCP [29]
Social and Emotional processing
tasks

N/A ARQ N/A
246X30135
(Multiclass)

Cerebral Stroke
Prediction- Im-
balanced [20]

Demographic and medical history
Outliers
and
Missing

Pub 1.8%:98%
10x43,400
(Binary)

- Dropped

MDD-BD [31]
Sociodemographics, past history, vi-
tal signs, laboratory tests and chief
complaints

Yes ARQ Imbalanced
93X16311
(Multiclass)

- Dropped

Ischemic stroke
[22]

Age, Sex, History of cardiac & dia-
betes mellitus, Hypercholesterolemia
presence, and Thrombolysis treat-
ment

Yes ARQ 28%:72%
7X514 (Bi-
nary)

Random
sub-
sampling

>5% Dropped

Stroke
Survivors
[32]

Demographics, medical history, type
of stroke, admission levels of sys-
tolic blood pressure, glucose, CRP
and ESR

N/A Prv N/A
35X470
(Binary)

Ischemic stroke
[84]

Demographics and medical history Yes Pub 4.9%:95.1%
10X5110
(Binary)

- Mean

Mental health
survey 14 & 16
(Kaggle) [21]

Demographics, work environment
and co-workers, family history, well-
ness

D1: Mis-
matched
D2: >60%
missing
(16 var)

Pub 50%:50%
27X1259,
63X1433
(Binary)

- Dropped

Understanding
Society [21]

General Population Sample of the
UK Household Longitudinal Study

N/A Prv
22%: 62%:
16%

330X11745
(Multiclass)

Chronic disease
prediction [33]

Routine blood and biochemical test Yes Prv
30%:
53.5%:
16.5%

37X32448
(Multiclass)

-
>10% dropped and kNN
interpolation
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C
an

ce
r

Cervical cancer
behavior risk
(UCI) [35]

Eating and hygenic behaviour, per-
ception, attitude, social support etc

No Public 30%:70%
19X72 (Bi-
nary)

Lungs Cancer
[41]

Features extracted from lung CT im-
ages

Yes Prv
56.2%:
43.8%

286X2063
(Binary)

-

Columns and rows >50%
missing values were
dropped. Forward-fill and
back-fill for remaining

Survey Lung
Cancer

Demographic, Smoking, Yellow fin-
gers, Anxiety, Peer Pressure, Fa-
tigue, Allergy, Wheezing, Shortness
of Breath, Swallowing Difficulty,
Chest Pain

N/A Pub Imbalanced
17x319 (Bi-
nary)

SMOTE

Multiple
myeloma
dataset [36]

Demographic information, personal
and family history, various analysis
results, medical examinations and di-
agnostic tests

N/A Pub Imbalanced
57X102
(Multiclass)

SMOTE
Multiclass

Surveillance,
Epidemiology,
and End Results
(SEER) [42]

Demographic, AJCC Stages, Grade,
Chemotherapy, Surgical resection
and Radiotherapy

N/A ARQ 40%: 60%
11X1094
(Binary)

Breast cancer
[21]

Characteristics of the cell nuclei
present in the image

No
Pub
(UCI)

63%:37%
30X569
(Binary)

Chronic disease
prediction [33]

Routine blood and biochemical test Yes Prv
30%:
53.5%:
16.5%

37X32448
(Multiclass)

-
>10% were removed.
KNN interpolation

C
ar

di
ov

as
cu

la
r

CHF-CRF [48]

Demographics, medical history,
physicals status, echocardiography,
electrocardiography, and laboratory
parameters

Yes ARQ Imbalanced
8X5188
(Binary)

SMOTE-
ENN

Cardiac Arrest
Survival [49]

Demographic, past history, insurance,
place of cardiac arrest and other med-
ical characteristics

Yes Prv
87.2%:
12.8%

216X30179
(Binary)

SMOTE-
ENN

Columns >50% null values
were eliminated.

China
Physiological
Signal
Challenge
2018 [47]

Features from ECG recordings, age
and sex

Noise Pub N/A
7X6,877
(Multiclass)

-
Baseline Wander Removal
and Power Line Interfer-
ence Removal

ECG200 and
Synthetic [46]

ECG200: Electrical activity recorded
during a single heartbeat, Synthetic:
ECG measurements

N/A Pub

ECG200:
67%: 33%,
Synthetic:
50%:50%

ECG200:
200,
Synthetic:
1000
(Binary)

Cardiovascular
Disease Dataset
[50]

age, height, weight, gender, systolic
BP, diastolic BP, cholesterol, glucose,
smoking, alcohol, physical activity

Yes ARQ
Balanced
(48.8%:
51.2% )

11X70,000
(Binary)

- Dropped

Cardiotocography
[21]

Cardiotocograph Features No
Pub
(UCI)

78%:14%:
8%

21X2126
(Multiclass)

Chronic disease
prediction [33]

Routine blood and biochemical test Yes Prv
30%: 54%:
16%

37X32448
(Multiclass)

-
>10% were removed and
kNN interpolation

D
ia

be
te

s

GDM [53], [54] Clinical data collected at the PEARS Yes Prv
Highly im-
balanced

23X565
(Binary)

SMOTE
>30% dropped. Median,
mean and mode.
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GDM [52]

Age, Ethnicity, Diabetes mellitus,
BP (mmHg), Central armellini fat,
Current gestational age, Pregnancies,
First fasting glucose, BMI pregesta-
tional, Gestational age at birth, Type
of delivery, Child’s birth weight

Yes Pub 13%: 87% 13x133

SMOTE,
ADASYN,
SMOTE-
(ENN,
Tomek,
border-
line)

Median

ESDRPD [51]
Age, gender and other features col-
lected from patients via question-
naires

No Pub
38.5%:
61.5%

16X520
(Binary)

DR prevalence
detection [55]

Demographic, Family history and
clinical observations

N/A Prv N/A
10X172
(Binary)

Pima indians
diabetes [51]

Glucose, BP, Skin Thickness, Preg-
nancies, insulin, BMI, Age, Diabetes
pedigree function

Missing
values and
extreme
outliers

Pub 65%:35%
8X767 (Bi-
nary)

- Median

Diabetic
retinopathy
[21]

Features extracted from the Messidor
images

No Pub 53%:47%
19X1151
(Binary)

C
O

V
ID

-1
9

CHESS
database [59]

demographics and risk factors on pa-
tients with a confirmed diagnosis of
COVID-19

N/A Prv 65%: 35%
19X13954
(Binary)

COVID-19 [56]

Age, BMI, sex, alcohol, cannabis,
contacts count, COVID19 symptoms,
smoking and different chronic dis-
eases

13.8%
missing

Pub
98.8%:
1.20%

59X1023426
(Binary)

Under
sampling
(1:3)

Iterative imputation tech-
niques.

COVID-19
dataset [60]

Demographics and clinical observa-
tions

Yes Prv 23%: 77%
22X1169
(Binary)

Borderline-
SMOTE

Mean, median and mode.
IQR for handling outliers.

COVID-
19 dataset
(Kaggle) [57]

Demographic parameters, nine
grouped diseases, blood parameters,
and vital signs of COVID-19-positive

Yes Pub
26.6%:
73.4%

231X1925
(Binary)

ADASYN,
SMOTE,
SMOTE-
(Tomek,
Border-
line, and
ENN)

COVID-19
dataset [61]

Demographics, clinical signs, chronic
illnesses and platelet-disrupting med-
ications within the previous two
weeks

>50%
missing for
29 rows

ARQ
65.5%:
34.5%

48X87 (500
samples of
synthetic
data)
(Binary)

-
Iterative imputation using
chained equations Forest
(Mice-Forest)

A
nt

i-m
ic

ro
bi

al

Antimicrobial
multidrug
resistance
(AMR) [72]

Epidemiology, emergence,
prevalence, and infectious diseases

Yes ARQ 18%: 82%
23X3470
(Binary)

Under
sampling
and
Balanced
Cross-
Entropy

Antibiotic
prescriptions
and
susceptibilities
[73]

Admission data, patient demograph-
ics (age and sex), prescription, and
clinical records of culture tests

Yes ARQ N/A
51X5190
(Binary)

M
or

ta
lit

y
ri

sk
(I

C
U

)

MIMIC-III [62]

Patient’s vital signs, hospital records,
fluid information, laboratory tests,
treatment orders, and free-text med-
ical records

Yes ARQ
98.5%:
1.5%

460X7874
(Binary)

SMOTE,
SMOTE-
NC

Proposed customised algo-
rithm
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CHP Hospital
Dataset [64]

Demographics, Hospitalisation data,
Assigned diagnoses, Recorded loca-
tions, Ventilation, Physical assess-
ment and Laboratory test results

Yes ARQ N/A
422
(Binary)

Danish
National
Patient Registry
(DNPR) [65]

Demographics and diagnoses (daily
obtained information, and data ob-
tained with high sampling rate)

Yes Prv Imbalanced
44X15615
(Binary)

-
Last observation carried
forward (LOCF)

MIMIC-IV [63]
Demographic characteristics and
clinical features

Yes ARQ 70%:30%
89X8599
(Binary)

-

Last observation carried
forward and Mean imputa-
tion for without any obser-
vation

Pr
eg

na
nc

y

HosmartAI
project Dataset
[75]

Demographics, social and medical
history, and obstetrics variables

Yes Prv 34%:66%
32X375
(Binary)

Random
under-
sampling
and
SMOTE

>30% were dropped, and
others with the most fre-
quent or median.

CHA Bundang
Medical Center
ICU [76]

Demographic data and the initial as-
sessment results (vital signs, imaging
findings, and laboratory tests)

Yes ARQ 35%: 65%
26X124
(Binary)

- Mean imputation

PDHS’17-18
and ’12-13
(C-section) [74]

Household information, contracep-
tive knowledge and practice, post-
delivery, Children’s health care, Nu-
trition and migration patterns

Yes Pub
13.8%:
86.2%

875X15,409
(Binary)

ADASYN KNN imputation

H
ep

at
iti

s Hepatitis
Dataset (UCI)
[79]

Demographics and clinical observa-
tions

48%
instances
missing

Pub
20.6%:
79.4%

19X155
(Binary)

SMOTE

Su
r g

ic
al SSI (Surgical)

[46]
C-reactive protein N/A Prv

73.6%:
26.4%

883
(Binary)

C
hr

on
ic

an
d

A
cu

te

NHANES
(Chronic) [82]

Demographic, socioeconomic, Se-
lected medical & laboratory tests, and
self-reported data

Missing
Values and
outliers

Pub 66%: 34%
51X19225
(Multiclass)

-

Dropped missing values
and outliers. Interquartile
range for outlier elimina-
tion.

CROSS-
TRACKS
(Acute) [81]

Laboratory parameters and vital signs Yes ARQ Imbalanced
33X163050
(Multiclass)

Over-
sampling

Standard carry-forward in-
terpolation

C
yt

ok
in

es
an

al
ys

is HIV-DED
Dataset [77]

Cytokine-related characteristics and a
binary feature indicate which eye is
involved

10% for 2
variables
and 49%
for 4

Prv N/A
126X42
(Binary)

-
>10 were Dropped. Im-
puted through the mean.

O
bs

ei
ty

Diabetes
BRFSS 2015,
Cardiovascular
and Heart
disease datasets
[50]

Demographic and clinical
Outliers
and
duplicates

Pub

Diabetes:
85%: 15%,
Cardio:
49%, 51%,
HD: 91%,
9%

Diabetes:
21X253680,
Cardio:
11X70000,
HD:
279X400000
(Binary)

13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 10, 2024. ; https://doi.org/10.1101/2024.08.10.24311735doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.10.24311735
http://creativecommons.org/licenses/by-nc-nd/4.0/


TABLE 9: Overview of Image Datasets by Application Area, Availability and Types of Data

App
Area

Name Description Availability Dataset size
Multi/ Bi-
nary class

Class
balance

Other Remarks Ref.

C
O

V
ID

-1
9

NIH CXR image Public
112120 (1024 x
1024)

Multiclass - - [58]

SARS-COV-2
Ct-Scan

CT Scan Public 2481 (244x244) Binary Balanced Image resizing

E
nd

os
co

py

Kvasir-capsule
dataset

Endoscopy images Public
47,238 images
and 117 videos

Multiclass
Highly Imbal-
anced

Image resizing, normalisa-
tion and image augmenta-
tions with vertical and hor-
izontal flips

[68]

Kvasir
Endoscopy images
(gastrointestinal tract)

Public
470,000
(720X579 to
1920X1070)

Multiclass - Data augmentation [67]

Red Lesion
Endoscopy

Video capsule
endoscopy images

Public 3295 (320x320) Binary 34%:65%
Preprocessed but no dis-
cussion on preprocessing

[66]

C
an

ce
r

TCGA-GBM MR, CT, DX Public 481,158 Binary - - [40]

Brain tumor T1-weighted MRI Public 3064 (512×512) Binary - Data augmentation [39]

Breast cancer (Val-
paraíso, Chile)

Histological samples ARQ 1,000×750 Multiclass - - [44]

D1: colorectal can-
cer and D2: os-
teosarcoma dataset

MR Images Private
D1: 165 (567 ×
430 to 775 × 522)
D2:1144

D1: Binary,
D2:Multi-
class

Imbalanced - [43]

Cancer Imaging
Archive

MRI and US image
data

Public 611119 Binary - - [38]

Thyroid dataset Ultrasound images Private 19341 Binary
Highly Imbal-
anced

- [45]

Pn
eu

m
on

ia

Taichung Veterans
General Hospital
Dataset, Taiwan,
NIH and VinDr

CXR image
D1:Private,
D2:Public,
D3: Public

D1:2301,
D2:112120
(1024 x 1024),
D3:18000

Multiclass - Data augmentation [78]

NIH CXR image Public
112120 (1024 x
1024)

Multiclass - - [58]

Pu
ls

e
W

av
e

C
la

ss
ifi

ca
tio

n China Medical
University Hospital
Dataset

Raw Pulse Wave Private - - Imbalanced Oversampling [80]

Sk
in

ISIC 2019 dataset Dermoscopic images Public 25331 Images Multiclass
Highly Imbal-
anced

Data augmentation (Both)
[69],

[71]

Vascular wound
image registry

Vascular wound im-
ages

ARQ 2957 Multiclass Imbalanced
Oversampling and aug-
mentation techniques

[70]

N
eu

ro
lo

gi
ca

l

Felipe Kitamura’s
CT dataset

CT Images Public 200 (512X512) Binary Balanced - [23]

ADNI 3D MRI ARQ 1,692 Binary - - [34]
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V. XAI METHODS
Explainable methods can be defined based on five aspects
[88], stage, applicability, scope, form and type. The stage of
explanation can be post hoc or ante-hoc. Post hoc methods
are applied after the ML model is built (e.g., LIME). In
contrast, self-explaining or ante-hoc methods are inherently
explainable by design (e.g., AGRAD). In terms of applica-
bility, post hoc methods can be model-agnostic or model-
specific. Model-agnostic methods can explain and be applied
to any ML model (e.g., LORE), and model-specific models
can only be applied to specific ML models (e.g., LRP for
deep learning). The method can have either a global (explain-
ing the general behavior of the ML model) or local scope
(explaining single instances or predictions). Furthermore, the
explainer method can present explanations in various forms,
such as rule-based interpretations (e.g., Anchors) or visual
representations highlighting key aspects (e.g., GradCAM).
The output of an explainer can belong to different types,
like plots (e.g., PDP), graphs (e.g., Qlattice), feature impor-
tance (e.g., Saliency Map), or contrastive comparisons (e.g.,
SHAP).

Table 10 presents a comprehensive overview of the XAI
methods utilised in the literature, outlining various aspects of
each explainer method and the categories of ML models to
which these methods were applied, along with references. It
can be seen that the most widely used explainer method is
SHAP, which is applied fairly across different categories of
ML models. Following SHAP, LIME emerges as the second
most popular choice, also employed in a similar manner, and
both are model-agnostic methods. Among model-specific
methods, GradCAM stands out as a preferred option for deep
learning models. In terms of stage, the majority of methods
are post hoc, with the exception of two methods, namely
AGRAD and TabNet, both utilised in conjunction with deep
learning and are attention-based methods. Concerning the
scope, the emphasis is primarily on local methods, high-
lighting the significance of explaining individual instances
or patient records as opposed to the broader behavior of a
condition, class, or disease, although global scope methods
are also utilised. Visualisation is the preferred output format
among the selected methods, providing a straightforward
means of explaining decisions, followed by a rule-based
approach that explains reasoning through feature constraints.
Finally, the output type is largely determined by the impor-
tance of features in influencing a decision, typically involving
a comparison of each feature’s impact on an automated
decision (such as identifying correlated or influential features
in a specific decision). Additionally, there are occasional in-
stances of graphs and plots that explain the decision-making
process.

VI. STUDIES UTILISING MULTIPLE XAI METHODS:
Twenty-five studies have utilised various explainable meth-
ods to explain prediction outcomes, with only ten comparing
XAI methods. Six of these ten studies focused on image data,
while four analysed tabular data. Deep learning techniques

were used in all studies for image data, applying between
three to six XAI methods. Heatmap was the dominant com-
parison strategy, followed by user studies, saliency maps,
and explainability scores. GradCAM and its variant were
the most favoured XAI methods, followed by LIME, SHAP,
CIU, and ABELE, the once preferred method in different
studies. For tabular data, ensemble methods were used across
all studies, with one incorporating deep learning and non-
linear SVM in addition to ensembles. All studies utilised two
to three XAI methods, highlighting AdaWhip and BoCSoR
as preferred methods, while others viewed XAI methods as
complementary and supportive of their respective goals.

Table 11 presents a comprehensive overview of studies that
utilised multiple XAI methods and contrasted them in their
research. For image data,

• In [58], LIME achieved better quantitative scores than
other XAI methods. However, radiologists preferred the
Ensemble XAI over other methods for its localisation,
effectiveness, and trust based on evaluation of heatmaps
and computational complexity.

• In [67], GradCAM++ was identified as the top-
performing method for endoscopic analysis based on
heatmap evaluation. Similarly, in [68], GradCAM was
found to be superior for visual explanations during
backpropagation, while SHAP and LIME were also
acknowledged for their efficacy in feature-based expla-
nations.

• In [66], LIME, SHAP, and CIU were evaluated based
on human comprehension, satisfaction scores, computa-
tional complexity, and overall understanding. CIU was
highlighted as the superior method compared to LIME
and SHAP.

• In [70], SHAP was favored over LIME and GradCAM
for explaining decisions based on an explainability score
that measured the model’s focus on the wound area
compared to the rest of the image.

• In [71], ABELE was more effective than local explain-
ers LIME and LORE in skin lesion detection due to
its superior saliency maps despite higher computational
complexity.

For tabular data,

• In [21], Anchors, AdaWhip, and LORE were compared
based on mean coverage and mean precision, with
AdaWhip performing better than the other two.

• In [36], SHAP, LIME, and permutation feature impor-
tance (PFI) were evaluated based on feature importance
values and computational complexity. PFI emerged as
the most efficient method for general understanding,
while LIME and SHAP proved valuable for individual
instances, with consensus among methods underscoring
the significance of distinctive features for each cancer
patient.

• In [29], a novel XAI method, BoCSoR, was compared
with SHAP based on average correlation values for so-
cial and emotional tasks, with BoCSoR outperforming
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TABLE 10: Methods for Explainability. Abbreviations by column Applicability=App., Agnoistic=agn, Specific=spe; Stage=St.,
post hoc=p, ante hoc=a; Scope=Sc., local=l, global=l; visual=vis; feature importance=fi, contrastive=con, plot=plt.

XAI Method App. St. Sc. Form Type Model Cat. References

SHAP (43) agn p l/g vis fi/con Interpretable (6) [26], [29], [40], [44], [76], [80]
Ensemble (29) [22], [25], [26], [28]–[33], [35], [36], [42], [48], [50], [53], [55]–

[57], [59]–[62], [64], [73]–[75], [79], [80], [84]
Deep Learning (15) [20], [29], [32], [50], [51], [58], [63], [65], [66], [68], [70], [72],

[78], [80], [82]
Non-Lin. SVM (1) [76]

LIME (24) agn p l vis fi/con Interpretable (2) [26], [77]
Ensemble (12) [35], [36], [41]–[43], [54], [57], [60], [61], [74], [79], [84]
Deep Learning (10) [24], [38], [49], [51], [58], [66], [68]–[71]

GradCAM (8) spe p l vis fi Deep Learning (8) [23], [45], [47], [58], [67], [68], [70], [83]

Feature spe p l/g vis fi Interpretable (2) [22], [77]
Importance (5) Ensemble (4) [22], [25], [57], [74]

ELI5 (2) agn p l/g vis fi/con Ensemble (2) [57], [60]

Qlattice (2) agn p g rule graph Ensemble (2) [57], [60]

Anchors (2) agn p l rule - Ensemble (2) [21], [57]

GradCAM++ (3) spe p l vis fi Deep Learning (3) [58], [67], [68]

Saliency MAP
(1)

agn p l vis fi Deep Learning (1) [58]

LRP (2) spe p l vis fi Deep Learning (2) [22], [81]

Graph (2) agn p g vis graph Interpretable (1) [39]
Ensemble (1) [50]
Deep Learning (1) [50]

LORE (2) agn p l rule con Ensemble (1) [21]
Deep Learning (1) [71]

PDP (2) agn p g vis plt Ensemble (2) [25], [79]

PFI (2) agn p g vis fi Interpretable (1) [77]
Ensemble (1) [36]

ABELE (1) agn p l vis fi/con Deep Learning (1) [71]

BoCSoR (1) agn p g vis fi/con Interpretable (1) [29]
Ensemble (1) [29]
Deep Learning (1) [29]

CIU (1) agn p l vis fi/con Deep Learning (1) [66]

LayerCAM (1) spe p l vis fi Deep Learning (1) [68]

CAM (1) spe p l vis fi Deep Learning (1) [46]

Guided
GradCAM
(1)

spe p l vis fi Deep Learning (1) [34]

AGRAD (1) spe a l vis fi/con Deep Learning (1) [24]

ICE (1) agn p l vis plt Ensemble (1) [25]

Ada-WHIPS (1) spe p l rule - Ensemble [21]

WindowSHAP
(1)

agn p l vis fi/con Deep Learning (1) [27]

Ensemble XAI
(1)

spe p l vis fi Deep Learning (1) [58]

Break Down (1) agn p l vis fi/con Ensemble (1) [31]

TabNet (1) spe a l/g vis fi Deep Learning (1) [51]
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SHAP in feature correlation values.
• In [61], LIME and SHAP were compared based on

feature importance values for COVID-19 severity in
patients. The common key features identified by both
methods were deemed robust indicators for each pa-
tient’s record.

Fifteen additional studies have employed multiple XAI
methods without comparing their performance but under-
scored their usefulness. Among these, 14 studies focused on
tabular data, with only one involving text data. These studies
and results are outlined in Table 12 and the following shows
key characteristics of these studies:

• Studies [25], [31], [57], [77], [79], [84] confirmed the
usefulness of XAI methods by confirming important
identified features through previous research.

• Some studies have shown that XAI methods can be
beneficial in pinpointing crucial features related to a
medical condition for which a definitive solution is yet
to be discovered, as seen during the COVID-19 pan-
demic [60]. They can also be instrumental in unexplored
research domains like early detection of Parkinson’s
disease [26], assessing cancer risk [35], cancer survival
[42], supporting healthcare professionals and patients
[50], and addressing mental health conditions [24], [31].

• In [74], XAI methods were proposed as an early ex-
plainable predictive approach to aid in implementing
new policies to reduce unnecessary C-Section deliver-
ies.

• In [51] demonstrated the effectiveness of collective in-
ference using ante-hoc and posthoc XAI methods, and
in [22], various XAI methods were employed to explain
distinct ML models.

VII. RESEARCH GAPS AND RECOMMENDATIONS
The survey provides a comprehensive guide for medical
practitioners and researchers, providing an in-depth review
of predictive models, XAI methods, current trends in their
adaptability, and datasets used. Based on our review and anal-
ysis of the studies, the following gaps have been identified.

1) Limited availability public tabular datasets - Over
55% of the datasets used in the reviewed studies are
private, particularly in critical areas such as neurolog-
ical disorders (only 3 out of 14 datasets are public),
ICU mortality risk (all private), and antimicrobial (all
private) category. This lack of public datasets hampers
the development of replicable models and limits com-
parative studies.

2) Lack of effective data treatment methods - Many tabu-
lar datasets contain missing values, noise, and outliers.
Common strategies like dropping data with significant
missing values are not always effective, especially
when dataset sizes are already limited.

3) Lack of feature selection and engineering - Feature
engineering is crucial for improving classifiers’ pre-

dictive performance. Although it is underutilised in
CDSS, it is widely utilised in other ML applications.

4) Data imbalance issue - The data is not evenly dis-
tributed among the different classes in most of the
dataset, making it challenging to train and evaluate
models. This can lead to models being biased towards
the majority class, resulting in poor performance for
the minority class. Some studies suggest that data
balancing techniques improve predictive performance,
while others find little impact on predictive perfor-
mance but note a widening of output probabilities
demonstrating confidence of classification [81].

5) The lack of reliable and automated solutions - There is
still a lack of reliable solutions that provide convinc-
ing explanations to medical experts in their decision-
making. This is due to the ethical and regulatory con-
cerns about the use of AI in healthcare, including bi-
ases, lack of transparency, privacy concerns, and safety
and liability issues. Ensembles and deep learning-
based approaches have proven helpful for building
highly performing models; however, they lack inter-
pretability and transparency.

6) Diverse Application Areas but Uneven Coverage -
While some application areas, like neurological con-
ditions and cancer, are well-studied, others, such as
antimicrobial resistance, hepatitis, and obesity, receive
less attention.

7) Limited Use of Multiple XAI Methods - Currently, there
is a shortage of solutions that can provide convinc-
ing explanations to medical experts in their decision-
making process, which is crucial for building trust and
accountability among clinicians and patients. While
some studies compare the effectiveness of different
XAI methods, this comparison is mostly focused on
image data. Limited formal comparisons exist for XAI
metrics in tabular data. Additionally, many studies rely
on single XAI methods, potentially missing out on a
comprehensive understanding of interpretability.

8) XAI Evaluation Metrics and Standards for XAI - There
is a lack of standardized evaluation metrics for assess-
ing the effectiveness of XAI methods.

To address the discussed gaps, the following are the rec-
ommendations to follow:

1) Openness of datasets - Prioritise providing open access
to high-quality medical datasets, anonymising patient
data, obtaining patient consent for data privacy, setting
clear publishing guidelines, enforcing data governance
practices, and increasing transparency and accessibility
for XAI-CDSS research.

2) Data treatment - Develop and adopt more sophis-
ticated, medical-domain-informed data preprocessing
techniques to effectively handle missing values, noisy
data, and outliers using advanced statistical and ma-
chine learning-based approaches.

3) Adopt feature selection and engineering approaches -
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TABLE 11: Summary of studies that used multiple XAI methods and compared them.

Ref Data
Type

Model Cat. XAI Methods
Used

Comparison
Methodology

Observation Preferred
XAI
Method

[58] Image Deep
Learning

(6) SHAP, LIME,
GradCAM,
GradCAM++,
Saliency MAP,
Ensemble XAI

Heatmap along with
absence impact, local-
isation and trust

Developed an ensemble of SHAP and Grad-CAM++.
While showing comparable quantitative results to other
methods, the qualitative evaluation by radiologists in-
dicated that the XAI ensemble is more effective in lo-
calisation (precision: 0.52, recall: 0.57, F1: 0.50, IOU:
0.36) and trusted method by the panel of radiologists
(mean vote: 70.2%).

LIME
(quanti-
tative),
Ensemble
XAI (qual-
itative)

[67] Image Deep
Learning

(5) GradCAM,
GradCAM++,
LayerCAM,
Hires-CAM,
XGRAD-CAM

Heatmap All methods yielded comparable results, with Grad-
CAM++ showing higher heat maps for dyed-p and
polyp classes. Because dyed-p contained more fixtures
in the image, it produced a more precise heat map
compared to the polyp class.

GradCAM++

[68] Image Deep
Learning

(5) SHAP, LIME,
GradCAM, Grad-
CAM++, Layer-
CAM

Heatmap Propagation-based models extract better visual expla-
nations from neural networks. GradCAM is the best
method due to its reliance on back-propagation gra-
dients. However, it struggles with the localisation of
objects with multiple occurrences of the same class,
impacting results in detail-dense applications such as
bacterial microscopic images.

GradCAM

[66] Image Deep
Learning

(3) SHAP, LIME,
CIU

User (non-medical)
study

CIU is computationally at least 1.15 times more effi-
cient than the other two methods and also satisfies more
mean (at least 1.16 times more) and median users (at
least 1.16 times more) with its explanation compared to
the other two methods.

CIU

[70] Image Deep
Learning

(3) SHAP, LIME,
GradCAM

Explainability score The explainability score is calculated by assessing the
model’s focus on the wound area versus the rest of
the image during its prediction. This is done using
two segmentation models: level 1 (wound, periwound
perimeter, wound perimeter, and background) and level
2 (18 different wound segmentation classes). SHAP
achieved mean explainability scores of 0.61 for wound
classification, 0.68 for wound measurement, and 0.72
for wound segmentation.

SHAP

[71] Image Deep
Learning

(3) LIME,
ABELE, LORE

Saliency MAP and
user study

ABELE excels in generating saliency maps. Key pixel
deletion has a bigger impact on ABELE, indicating
its regions hold more importance (lime: 0.736, lore:
0.711, ABELE: 0.461 mean deletion AUC scores).
When adding pixels, AUC scores improve, emphasising
ABELE’s ability to highlight critical decision-making
areas (lime: 0.417, lore: 0.471, ABELE: 0.748 mean
insertion AUC scores). The user study also confirmed
that the ABELE explanation was effective for both
experts and non-experts. Both groups showed improved
accuracy in classifying instances when presented with
ABELE explanations, with experts showing an average
increase of 9% and non-experts with an average gain of
9.5%.

ABELE

[21] Tabular Ensemble (3) Ada-WHIPS,
Anchors, LORE

Mean coverage and
mean precision

Anchors has low mean coverage, and Ada-WHIPS
and LORE are comparably performant. Furthermore,
LORE has low mean precision in most datasets, and
Ada-WHIPS and Anchors are comparable.

AdaWhip

[36] Tabular Ensemble,
Deep
Learning,
Non-Lin.
SVM

(3) SHAP, LIME,
PFI

Feature-based
approach

PFI is important for general trends, but LIME and
SHAP are critical for instance-based explanations.
LIME is less computationally expensive than SHAP,
and the two methods can complement each other by
agreeing on important features.

Methods
comple-
ment

[29] Tabular Ensemble (2) SHAP,
BoSCaR

Avg feature impor-
tance and correlation
between feature im-
portance

BoCSoR is more reliable in identifying the most im-
portant features for classification in physiological data,
less sensitive to feature correlation, and less computa-
tionally expensive.

BoCSoR

[61] Tabular Ensemble (2) SHAP, LIME Feature importance The SHAP and LIME methods were employed to assess
the experimental results on the link between cytokine
storm and COVID-19 severity in patients, as well as the
influence of various cytokines on severity. The shared
key features from SHAP and LIME were specifically
used as robust indicators for local explanations.

Methods
comple-
ment
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TABLE 12: Summary of studies that used multiple XAI methods but did not compare them.

Ref Data
Type

Model Cat. XAI Methods
Used

Observation

[57] Tabular Ensemble (6) SHAP,
LIME, FI,
ELI5, Qlattice,
Anchor

The XAI methods have been validated by identifying the important features, which were confirmed
by previous research. The research discovered that anomalies in features such as respiratory
rate, blood pressure, body temperature, calcium, and lactate levels positively contribute to patient
severity.

[60] Tabular Ensemble (4) SHAP,
LIME, ELI5,
Qlattice

XAI methods were used to find important markers for screening COVID-19 patients. The important
markers found were albumin, ALT, basophil, and TWBC. The authors said that XAI methods can
help healthcare professionals in situations like COVID-19 when the best solution is unknown and
be helpful in the first screening of coronavirus patients.

[25] Tabular Ensemble (4) SHAP,
ICE, FI, PDP

FI and PDP helped scrutinize the most important global features concerning cognitive impairment,
with ICE and SHAP allowing the interpretation of specific patient data. Furthermore, using graphs,
patients can better understand the neuropsychological factors at risk, which is a step towards
precision medicine. Key discoveries from the explanations include RCFT delayed recall, CDR-
SOB, age, K-MMSE, COWAT-animal, education, SVLT delayed recall, RCFT copy time, and
APOE genotype - all of which resonate with previous research.

[79] Tabular Ensemble (3) SHAP,
LIME, PDP

PDP and SHAP (via mean SHAP values) were used as global explainers, and LIME as a local
explainer method. These explainer methods found that ascites, spiders, bilirubin, albumin, malaise,
varices, and the SpleenPalpable feature had more impact than the others, which is in line with prior
knowledge from hepatobiliary physicians, confirming the effectiveness of these XAI methods.

[77] Tabular Interpretable,
Ensemble

(3) LIME, FI,
PFI

In a stacked-based clustering approach, permutation importance was used to evaluate the sig-
nificance of each clustering method in grouping a set of features to identify distinct patterns
for accurate classification. Feature importance served as the global method, while LIME was
employed as the local explainer. The features identified through explainers confirmed the results
obtained and supported previous studies, particularly highlighting the significance of cytokines
GRO, EGF, and IP-10 and their association with DED disease and seropositivity.

[74] Tabular Ensemble (3) LIME,
SHAP, FI

The SHAP method was used to assess overall feature importance globally, but it was not sufficient
for understanding each individual patient. As a result, LIME explanations were demonstrated to
provide a more detailed understanding. The feature "had_previous_c_section" was identified as one
of the most important global features. LIME was used to identify contributing features, including
"suffered_domestic_violence." XAI methods were argued to provide an early explainable predic-
tive approach to assist in implementing new policies to reduce unnecessary C-Section deliveries.

[51] Tabular Deep Learning (3) SHAP,
LIME, TabNet

Uses SHAP and TabNet as global explainers and LIME as a local explainer. The collective
inference suggests that insulin and polyuria are significant features associated with diabetes risk.
TabNet, an ante-hoc method, also demonstrates high accuracies on various datasets.

[22] Tabular Ensemble,
Interpretable,
Deep Learning

(3) SHAP, FI,
LRP

Took a feature-based approach and used Shapley values for ensembles, model coefficients for
logistic regression and deep Taylor decomposition for deep learning to explain respective models.

[42] Tabular Ensemble (2) SHAP,
LIME

Globally, SHAP showed that age, T-stage, ethnicity, M-stage, marital status, and grade were key
factors for NPC patient survival. Both LIME and SHAP methods demonstrated how each feature
impacted individual predictions, aligning with the globally identified important features.

[84] Tabular Ensemble (2) SHAP,
LIME

SHAP was used as a global explainer and identified Age, Average Glucose Level, Work Type,
Residence Type, Gender, and Ever Married as important features. This generally aligns with the
views of experts in hepato-biliary and previous research. Lime was used to reveal local features
for individual patients, highlighting instances where Age and Work Type were occasionally ranked
higher than other features for stroke patients, echoing observations in globally important features.

[26] Tabular Ensemble (2) SHAP,
LIME

Used SHAP for global and local explanations and LIME for local explanations to detect Parkin-
son’s disease early. The research compared the outputs of SHAP and LIME for RF and LightGBM
models. XAI methods highlighted the NP3BRADY feature as the most important, while local
explainers identified the MESEADLG feature as the best feature for both LGBM and RF models.

[35] Tabular Ensemble (2) SHAP,
LIME

LIME and SHAP were used as local explainers. It was suggested that providing explanations
for decision-making to medical professionals in scenarios like predicting cancer risk serves the
purpose, even if methods share some features and differ in others. Severity perception was most
indicative of cervical cancer in two patient cases, confirming a general understanding.

[50] Tabular Ensemble,
Deep Learning

(2) SHAP,
Graph

The study focused on examining the links between obesity, diabetes, cardiovascular issues, and
heart disease. It utilised SHAP to provide insights globally and locally. Local findings were
showcased through three case studies featuring patients with positive test results for multiple
diseases, negative results, and varied predictions for comorbidities. A multi-node graph was used to
aid healthcare professionals and patients in understanding the progression of these conditions, with
ICD-10 codes playing a key role in interpretation. The approach assists clinicians in forecasting
pathologies associated with obesity and transitioning to long-term prevention and treatment plans.

[31] Tabular Ensemble (2) SHAP,
Break Down

Uses SHAP for global and Break Down as local explainers. Overall, explainers offer four insights.
1- clinical significance is highlighted through top features. 2- the higher values of features, such as
myocardial enzyme spectrum markers and diabetes-associated markers, lead to BD, while lower
values contribute to MDD. 3- potential for the new discovery. 4- offers general recommendations.

[24] Text Deep Learning (2) LIME,
AGRAD

Uses LIME and model-specific attention-based AGRAD explanation methods to identify the
word categories relied on by models when making predictions. Explainers reveal that multi-task
fusion models learned significant correlations between mental health conditions, emotions, and
personality traits. Specifically, AGRAD analysis highlights the models’ preference for words in
specific LIWC categories. The research suggests that interpreting models can help detect a range
of mental health conditions, such as ADHD, anxiety, bipolar disorder, and depression.
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Utilise feature selection and engineering techniques to
identify important characteristics in tabular datasets.
Consider domain expertise to highlight important fea-
tures and discard less significant ones.

4) Data Imbalance - Explore various data balancing tech-
niques on different datasets to determine the most ef-
fective approach for addressing data imbalance. Inves-
tigate counterfactual-based data augmentation methods
[89] and other advanced and novel techniques informed
of medical constraints (when available).

5) Explainability Centric Model Design - Creating new
ML models with built-in explainability features. This
includes developing deep learning architectures or
ensemble methods that prioritise transparency with-
out significantly compromising performance. Addi-
tionally, advancements in posthoc explanation methods
should be made to ensure higher fidelity.

6) Focus the less investigated Application Areas - Re-
search should be encouraged in less-studied applica-
tion areas to ensure a more balanced coverage and
explore the potential of XAI in a broader range of
healthcare applications. A way to encourage this is
by developing and curating public datasets related to
less-studied application areas (such as antimicrobial
resistance, hepatitis, and obesity). Publicly available
datasets can facilitate research by providing standard-
ized data for developing and testing XAI methods.

7) Promote the Use of Comprehensive XAI Evaluations -
There is a need for comprehensive and detailed criteria
to evaluate and compare existing XAI methods. This
will help identify strengths, weaknesses, and areas
for improvement, guiding future development to en-
sure accuracy, reliability, and ease of use for medical
practitioners. Researchers should utilise multiple XAI
methods in their studies and conduct comprehensive
evaluations considering different interpretability as-
pects, including comparative analyses. Such studies
can reveal the strengths and weaknesses of different
XAI methods, enhancing our understanding of their ef-
fectiveness. A standardised evaluation criterion would
enable fair and objective comparison of different XAI
methods, leading to a better understanding of the state-
of-the-art in this field and helping to identify the best
methods to use in practical applications. Further re-
search is required to develop reliable, automated so-
lutions that offer compelling explanations.

8) Standardize XAI Evaluation Metrics - More research
is needed to develop and disseminate standardized
evaluation metrics for XAI in CDSS. These metrics can
form the basis for being widely accepted and used by
the research community to facilitate the comparison of
results across different studies.

In conclusion, the synthesis of datasets, winning models,
and explainer methods form a rich tapestry in the evolution of
XAI for CDSSs. Beyond the technical prowess, it emphasises

ethical underpinnings and a commitment to transparency,
laying the foundation for a responsible and collaborative
future in healthcare AI.
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