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Highlights 15 

• The neurobiological heterogeneity present in schizophrenia remains poorly 16 

understood. 17 

• This likely contributes to the limited success of existing treatments and the observed 18 

variability in treatment responses. 19 

• Magnetic resonance imaging (MRI) and machine learning (ML) algorithms can 20 

improve the classification of schizophrenia and its subtypes. 21 

• Structural and functional measures of MRI can discriminate Schizophrenia form 22 

healthy individuals with almost 80% accuracy. 23 

• Paranoid is the most distinguishable subtype of schizophrenia. 24 
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Abstract 26 

Purpose: The neurobiological heterogeneity present in schizophrenia remains poorly 27 

understood. This likely contributes to the limited success of existing treatments and the 28 

observed variability in treatment responses. Our objective was to employ magnetic resonance 29 

imaging (MRI) and machine learning (ML) algorithms to improve the classification of 30 

schizophrenia and its subtypes. 31 

Method: We utilized a public dataset provided by the UCLA Consortium for 32 

Neuropsychiatric Research, containing structural MRI and resting-state fMRI (rsfMRI) data. 33 

We integrated all individuals within the dataset diagnosed with schizophrenia (N=50); along 34 

with age- and gender-matched healthy individuals (N=50). We extracted volumetrics of 66 35 

subcortical and thickness of 72 cortical regions. Additionally, we obtained four graph-based 36 

measures for 116 intracranial regions from rsfMRI data including degree, betweenness 37 

centrality, participation coefficient, and local efficiency. Employing conventional ML 38 

methods, we sought to distinguish the patients with schizophrenia from healthy individuals. 39 

Furthermore, we applied the methods for discriminating subtypes of schizophrenia. To 40 

streamline the feature set, various feature selection techniques were applied. Furthermore, a 41 

validation phase involved employing the model on a dataset domestically acquired using the 42 

same imaging assessments (N=13). Finally, we explored the correlation between 43 

neuroimaging features and behavioral assessments. 44 

Finding: The classification accuracy reached as high as 79% in distinguishing 45 

schizophrenia patients from healthy in the UCLA dataset. This result was achieved by the k-46 

nearest neighbor algorithm, utilizing 12 brain neuroimaging features, selected by the feature 47 

selection method of Minimum Redundancy Maximum Relevance (MRMR). The model 48 

demonstrated high effectiveness (85% accuracy) in estimating the disease vs. control label for 49 

a new dataset acquired domestically. Using a linear SVM on 62 features obtained from 50 

MRMR, patients with schizophrenic subtypes were classified with an accuracy of 64%. The 51 

highest spearman correlation coefficient between the neuroimaging features and behavioral 52 

assessments was observed between degree of the postcentral gyrus and mean reaction time in 53 

the verbal capacity task (r = 0.49, p = 0.001). 54 

Conclusion: The findings of this study underscore the utility of MRI and ML algorithms in 55 

enhancing the diagnostic process for schizophrenia. Furthermore, these methods hold 56 

promise for detecting both brain-related abnormalities and cognitive impairments associated 57 

with this disorder. 58 

1 Introduction 59 

Schizophrenia is a serious mental health disorder that affects feelings, thoughts, and 60 

behavior. There are complications and heterogeneities, which have made its treatment less 61 
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effective. The diagnosis for schizophrenia mostly relies on self-reports, behavioral 62 

observations, and psychiatric history, which have led to an average response to the 63 

antipsychotic medications as the mainstream treatment (de Araujo et al., 2012). In a 64 

systematic review of 101 studies, the treatment-resistant patients exhibit malfunction in the 65 

dopaminergic system and hypersensitivity to dopamine level in comparison with patients 66 

responding to antipsychotic treatment (Iasevoli et al., 2023).  67 

Magnetic Resonance Imaging (MRI) as a neuroimaging tool has been a great help to explore 68 

the neural basis of psychiatric disorders including schizophrenia. Introducing new 69 

biomarkers based on MRI findings is so promising that it is suggested as an add-on diagnosis 70 

method for schizophrenia (Galderisi et al., 2019). Another promising field in which MRI has 71 

been helpful is personalized medicine. With the pieces of evidence MRI brought to the field, 72 

adjusting the parameters of treatments such as brain stimulation based on individual features 73 

draws some attention (Zangen et al., 2023, Klooster et al., 2022, Cole et al., 2022). Capturing 74 

differences in structure of brain between healthy and schizophrenic patients using MRI (Zhao 75 

et al., 2022, Li et al., 2022, Brenner et al., 2022) as well as the function (Zhu et al., 2022, Saris 76 

et al., 2022, Scognamiglio and Houenou, 2014, Zeng et al., 2022), is prompted scientists to 77 

invest more on this modality. The MRI modalities are capable to discriminate healthy from 78 

schizophrenia patients, for instance a simple linear model on voxel-based morphometry 79 

features can diagnose sufficiently, even on data from different sites and several scanners 80 

(Nemoto et al., 2020). A review also highlights that neuroimaging studies in schizophrenia 81 

revealed the significant role of drug abuse in the loss of brain volume of patients (Walter et 82 

al., 2012). Employment of brain function and structure simultaneously as well as their 83 

interaction can strongly examine schizophrenia patients from healthy individuals (Antonucci 84 

et al., 2022). 85 

MRI studies on brain structures revealed that the ventricular volume is associated with 86 

poor treatment outcome in patients with schizophrenia (Lieberman et al., 2001). Moreover, 87 

studying brain morphology in schizophrenia has proven that the treatment-resistance 88 

patients are in more progressive stages of changes in brain morphology than treatment-89 

responsive cases (Sone et al., 2023). Decreased thickness of cortical regions such as the insula 90 

and superior temporal gyrus has been also reported in first-episode drug-naïve schizophrenics 91 

compared to healthy controls (Song et al., 2015). In a diffusion tensor imaging (DTI) study, 92 

schizophrenia patients with severe hallucination showed disintegrated fiber integrity in the 93 

connection between frontal and temporoparietal language area (de Weijer et al., 2011). In 94 

another DTI study, white matter abnormalities in frontal, parietal and temporal regions were 95 

found associated with a poor treatment outcome (Mitelman and Buchsbaum, 2007, Molina et 96 

al., 2008). Enlargement of white matter volumes was also observed in treatment-resistance 97 

patients compared to treatment-responsive patients (Molina et al., 2008, Anderson et al., 98 

2015).  99 
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Despite many efforts, there are investigation in the field to find prognostic biomarkers and 100 

identify treatment-resistance cases with schizophrenia in order to offer a proper treatment at 101 

early stages (Jiao et al., 2022, Vita et al., 2019). With the significant advancement of 102 

technology, there is more optimism for introducing innovative and objective methodologies, 103 

which may aid in a better understanding of the heterogeneity of schizophrenia and suggestion 104 

of a potent individualized treatment. 105 

Functional connectivity in brain as an identification of spontaneous interaction of regions 106 

obtained during resting-state obtained abnormalities in favor of schizophrenia. By exploring 107 

the resting-state fMRI (rsfMRI) of schizophrenic patients with auditory hallucinations, a 108 

hypoconnectivity between the primary auditory cortex and secondary auditory cortical 109 

regions was found (Gavrilescu et al., 2010). Various measures extracted from rsfMRI can 110 

project different aspects of schizophrenia effects on the brain. For example, abnormal 111 

functional connectivity in schizophrenia was shown in individual regional homogeneity 112 

(ReHo), the amplitude of low-frequency fluctuations (ALFF), and the degree centrality values 113 

extracted from rsfMRI (Li et al., 2023). There are benefits in applying graph analyses on 114 

functional connectivity in order to characterize the brain networks (Rubinov and Sporns, 115 

2010). There is also evidence for the ability of graph measures to capture significant lower 116 

segregation and higher integration in structural connectome (Gao et al., 2023, Wang et al., 117 

2017).   118 

Moreover, some studies point to MRI's ability to distinguish between subgroups of patients 119 

with schizophrenia which can explain a portion of heterogeneities in this disorder. Structural 120 

MRI has been used to distinct between schizophrenic subtypes, namely a morphometry study 121 

suggesting a reduction in cortical folding in disorganized subtypes of schizophrenia relative 122 

to healthy controls, predominantly manifested in the left hemisphere of the paranoid subtype 123 

(Sallet et al., 2003). Patients over the course of schizophrenia revealed significant aberration 124 

in cortical thickness (Zhao et al., 2022). In a multisite study, subgrouping schizophrenia using 125 

clustering approaches on brain structures has resulted in three distinct groups with different 126 

cognitive functions (Xiao et al., 2022). A valuable study supporting neurobiological 127 

differences between paranoid and non-paranoid schizophrenia (Lutz et al., 2020), identified 128 

larger bilateral hippocampi, right amygdala, and their subfield volumes in paranoids 129 

compared to non-paranoid cases. It supports that structural MRI can play a major role 130 

diagnosis of schizophrenic subtypes. 131 

The combination of MRI with machine learning (ML) offers a new tool to exploit novel 132 

biomarkers, diagnose illnesses, and forecast the response to a particular treatment in a more 133 

accurate manner as a result of the development of new mathematical algorithms and data 134 

collecting technologies. To find patterns and traits connected to schizophrenia, ML 135 

algorithms can be trained to examine huge volumes of MRI data from numerous patients. This 136 

will facilitate the development of tailored treatment programs and more precise diagnostic 137 
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decision-making by clinicians. By applying several ML models, the researchers identified 138 

some pre-treatment clinical measures to predict the treatment outcome in depression (Webb 139 

et al., 2020). The outcome of antipsychotic medications is variable across the patients with 140 

schizophrenia. ML algorithms have been shown capable to predict the treatment outcome for 141 

the first-episode drug-naïve schizophrenia patients from the functional connection in 142 

superior temporal cortex with an accuracy of  82.5% (Cao et al., 2020). Furthermore, resting-143 

state EEG has shown potential in classifying responders vs. non-responders to the brain 144 

stimulation treatment (Ebrahimzadeh et al., 2024).  145 

Modalities neuroimaging with ML models works has elevated the accuracy of diagnosis for 146 

mental health disorders (Quaak et al., 2021, Wang et al., 2017). However, the number of 147 

studies with utilizing ML for subtyping the patients is limited.  148 

The primary objective of this study is to apply ML and MRI to classify patients with 149 

schizophrenia and its subtypes. We also seek to reach more accurate discrimination of patients 150 

from healthy controls as well as schizophrenia subtypes by utilizing the structural and 151 

functional features of the brain. To reach the goals, we first extracted structural features and 152 

graph measures from T1-weighted image and rsfMRI respectively. Then, using the 153 

conventional ML models, we classified patients to schizophrenia and healthy. Different 154 

combinations of features were tested on all models to obtain the best model with the best 155 

combination of features. We evaluated the performance of the best model in classification of 156 

schizophrenia subgroups from healthy controls. As an extra validation, we acquired a new 157 

domestic dataset from the patients diagnosed with schizophrenia to assess the selected models 158 

on an unseen test data. We used the same procedure on subtypes label to test whether the 159 

conventional models and MRI measures are capable of differentiating between subtypes of 160 

schizophrenia. For the final step, the correlation of the extracted features with behavior 161 

assessments was inspected to uncover some of associations between the brain and behaviors 162 

in the patients with schizophrenia.  163 

2 Material and method 164 

2.1 Main dataset 165 

We used the dataset from UCLA Consortium for Neuropsychiatric Phenomics 166 

(https://openneuro.org/datasets/ds000030/versions/1.0.0) consisting neuroimaging and 167 

neuropsychological data from healthy individuals and patients with schizophrenia (Poldrack 168 

et al., 2016). Neuroimaging data were acquired at the Ahmanson-Lovelace Brain Mapping 169 

Center (Siemens version syngo MR B15) and the Staglin Center for Cognitive Neuroscience 170 

(Siemens version syngo MR B17) at the University of California, Los Angeles, USA. The 171 

parameters for the high-resolution scan were: 4mm slices, TR/TE=5000/34 ms, 4 averages, 172 

Matrix=128 × 128. The parameters for MPRAGE were the following: TR=1.9 s, TE=2.26 ms, 173 
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FOV =250 mm, Matrix =256 × 256, sagittal plane, slice thickness=1 mm, 176 slices. The resting 174 

fMRI scan lasted 304 s. Participants were asked to remain relaxed and keep their eyes open; 175 

they were not presented any stimuli or asked to respond during the scan. 176 

 First, we gathered the information of all 50 schizophrenia patients and then matched them 177 

to 50 out of 130 healthy controls by the age and gender The age- and gender matched groups 178 

are shown in Table 1. We extracted demographics, structural MRI, and resting-state fMRI 179 

(rsfMRI) data of both groups. We also used behavioral assessments to investigate their 180 

relationships with imaging data. The list of three domains of behavioral tests performed on 181 

the subjects is presented in Table 2 (Poldrack et al., 2016). 182 

We also utilized the Scale for the Assessment of Negative Symptoms (SANS) and Scale for 183 

the Assessment of Positive Symptoms (SAPS) to divide patients into Negative and Positive 184 

groups. The individuals with negative scores greater than positive ones were put in the 185 

Negative; and the ones with positive scores more than negative comprised the Positive group. 186 

There were two subjects with equal scores of positive and negative symptoms which were 187 

eventually put in the Positive group for the sake of maintaining the balance between the two 188 

groups. A further grouping was made based on patients’ subtypes defined by the Structured 189 

Clinical Interview for DSM-5 (SCID-5). 190 

2.2 Extra validation dataset 191 

For extra validation of ML models to explore how these models would perform on an 192 

unseen dataset, 13 patients with schizophrenia along with 20 healthy subjects were recruited 193 

with the same imaging and behavioral measurements as the UCLA dataset. The patients were 194 

diagnosed by DSM-5 and an MRI session conducted on a 3T MRI system with a 64-channel 195 

head coil (Prisma, Siemens, Erlangen, Germany) at the National Brain Mapping Laboratory 196 

located at Tehran University, Iran, while attending a neurologist (N. T.) throughout the scans. 197 

Each session included a T1-weighted image with following protocol: TR=1.9 s, TE=2.26 ms, 198 

FOV = 250 mm, Matrix =256 × 256, Sagittal plane, Slice thickness=1 mm, Resolution= 1 x 1 x 199 

1 mm, 176 slices. The resting-state scan lasted 396 s using the following parameters:  TR=1.2 200 

s, TE=30 ms, FOV=192 mm, Matrix = 64 × 64, Sagittal plane, Slice thickness=3 mm, 201 

Resolution= 3 x 3 x 3 mm, 42 slices.  202 

2.3 Data Harmonization 203 

To reduce the impact of using different scanners, we harmonized the data using ComBat 204 

method (Johnson et al., 2006). Empirical Bayesian was used as the Bayesian inference in this 205 

method using which, the distribution of latent variables was inferred. We applied the ComBat 206 

for both main and extra validation datasets.  207 
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2.4 Feature extraction 208 

Details of the acquisition parameter and assessments of the UCLA dataset are available in 209 

the data descriptor (Poldrack et al., 2016). The data was preprocessed by FMRIPREP version 210 

0.4.4 (http://fmriprep.readthedocs.io). Cortical thickness and subcortical volume were 211 

calculated by FreeSurfer v6.0.0 (http://surfer.nmr.mgh.harvard.edu). The structural measures 212 

were extracted after motion correction, intensity correction, Talairach registration, 213 

normalization, skull stripping, and segmentation. The cortical surface and subcortical 214 

volumes were segmented and labeled into 68 and 45 regions (34 for each hemisphere), 215 

respectively (Gorgolewski et al., 2017).  216 

The preprocessing of the rsfMRI was performed using a toolbox for Data Processing and 217 

Analysis of Brain Imaging (DPABI), which evolved from the Data Processing Assistant for 218 

Resting-State fMRI (DPARSF) (Yan et al., 2016). We removed the first 10 slices and then slice 219 

timing correction, realignment, brain extraction, and co-registration of the functional image 220 

on T1 were done as preprocessing. Then the time series of 116 regions of the AAL atlas 221 

(Tzourio-Mazoyer et al., 2002) was calculated for both healthy and patient subjects, for each 222 

a matrix with a dimension of 320×116 was generated. We then calculated a 116×116 223 

functional connectivity matrix (an undirected brain network) using Pearson’s correlation 224 

coefficient between each pair of time series, and extracted these values as imaging features.  225 

Among the vast measures of brain networks, the centrality graph measures including the 226 

degree, betweenness centrality, and participation coefficient were extracted to Local 227 

efficiency was also calculated to measure the segregation and the presence of densely 228 

interconnected brain networks.  229 

These measures were calculated as follows (Rubinov and Sporns, 2010): 230 

- Degree is the number of links connected to a node. Degree of a node 𝑖 is defined as: 231 

𝑘𝑖 =  ∑ 𝑎𝑖𝑗

𝑗 ∈𝑁

 232 

where 𝑁 is the set of all nodes in the network and 𝑎𝑖𝑗 is the connection status between 233 

nodes 𝑖 and 𝑗. 234 

 235 

- Betweenness centrality of node 𝑖 is: 236 

𝑏𝑖 =  
1

(𝑛 − 1)(𝑛 − 2)
 ∑

𝜌ℎ𝑗(𝑖)

𝜌ℎ𝑗ℎ,𝑗 ∈𝑁
ℎ≠𝑗,ℎ≠𝑖,𝑗≠𝑖

 237 

where 𝜌ℎ𝑗 is the number of shortest paths between ℎ and 𝑗, and  𝜌ℎ𝑗(𝑖) is the number 238 

of shortest paths between ℎ and 𝑗 that pass through 𝑖. 239 

 240 

- Participation coefficient of node 𝑖 is: 241 
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𝑦𝑖 = 1 −  ∑ (
𝑘𝑖(𝑚)

𝑘𝑖
)

2

𝑚 ∈𝑀

 242 

where 𝑀 is the set of modules, and 𝑘𝑖(𝑚) is the number of links between 𝑖 and all 243 

nodes in module 𝑚. Modularity of a network is 𝑄 =  ∑ [𝑒𝑢𝑢 −  (∑ 𝑒𝑢𝑣𝑣∈𝑀 )2]𝑢∈𝑀 , where 244 

the network is fully subdivided into a set of nonoverlapping modules 𝑀, and 𝑒𝑢𝑣 is the 245 

proportion of all links that connect nodes in module 𝑢 with nodes in module 𝑣. 246 

 247 

 248 

- Local efficiency of the network is defined as: 249 

𝐸𝑙𝑜𝑐 =
1

𝑛
 ∑ 𝐸𝑙𝑜𝑐,𝑖

𝑖 ∈𝑁

=  
1

𝑛
 ∑

∑ 𝑎𝑖𝑗𝑎𝑖ℎ[𝑑𝑗ℎ(𝑁𝑖)]
−1

𝑗,ℎ ∈𝑁,𝑗 ≠𝑖

𝑘𝑖(𝑘𝑖 − 1)
𝑖 ∈𝑁

 250 

where 𝐸𝑙𝑜𝑐,𝑖 is the local efficiency of node 𝑖, and 𝑑𝑗ℎ(𝑁𝑖) is the length of the shortest 251 

path between 𝑗 and ℎ, which contains only neighbors of 𝑖.  252 

We extracted these features for both the datasets in this study. 253 

.  254 

2.5 Statistical analyses 255 

We ran 2-sample t-test to explore differences in MRI measures between the healthy 256 

controls and schizophrenia subjects. The Bonferroni correction was used to address the 257 

multiple hypothesis testing issues. Since the independent variables (MRI measures) 258 

outnumbered the observations, the repeated measure analyses of variance (ANOVA) were 259 

conducted to indicate whether or not there are any significant differences between healthy 260 

controls, Negative, and Positive groups in the extracted features. We considered the brain 261 

region as a repeated factor.  There was also another repeated measure ANOVA test to answer 262 

the same question about the subtypes of schizophrenia and healthy subjects. The subtypes are 263 

Disorganized, Paranoid, Undifferentiated, Residual, and Schizoaffective.  264 

2.6 Classification and feature selection 265 

All the procedures of classification and feature selection were operated in MATLAB ver. 266 

2020b. The Conventional ML model including Support vector machine (SVM) with 267 

polynomial and linear kernel, k-nearest neighborhood (kNN), Linear Discriminant Analyses 268 

(LDA), Linear Regression (LR), Random Forest (RF), and Naïve Bayes (NB) were applied to 269 

classify the defined groups. The 10-fold cross-validation approach was executed with 10-time 270 

repeats and the performance of the model was measured by calculating the average of mean 271 

accuracy of folds among the repeats. Furthermore, three feature selection methods were 272 

implemented to reduce the feature dimensions as well as to improve the model’s accuracy. 273 

The feature selection methods were: 274 
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- Sequential Forward Selection (SFS) in which features are sequentially added to an 275 

empty candidate set until the addition of further features does not decrease the 276 

criterion. 277 

- Minimum Redundancy Maximum Relevance (MRMR) is an approach to select features 278 

with a high correlation with output (class) and a low correlation with other features in 279 

the dataset.  280 

- Neighborhood Component Analysis (NCA) is a method for selecting features with the 281 

goal of maximizing the prediction accuracy of regression and classification algorithms. 282 

It learns the feature weights using a diagonal adaptation of NCA with a regularization 283 

term. 284 

SFS is sensitive to the feature sequence so that different arrangement of features results in 285 

different sets of final selected features. To address this issue, we implemented SFS 5 times and 286 

each time we shuffled the MRI measures before using SFS. The reported accuracy for SFS is 287 

the average of 5 repeats.  288 

For MRMR and NCA these steps were performed: 1) apply the method on the feature set, 289 

2) train the ML model with the best feature, 3) add features one by one and replicate the 290 

training, 4) determine the features with the highest accuracy. This process was run to find 291 

the best model with the lowest feature dimension by using MRMR and NCA. 292 

We performed these steps for classifying the schizophrenia from healthy and also on 293 

schizophrenia subtypes. For evaluation, we applied the best model on Negative and Positive 294 

groups as well as new unseen dataset including new healthy and patient subjects. 295 

 296 

2.7 Behavioral and imaging correlation 297 

We inspected the relationship between the imaging features and behavioral assessments. 298 

First, we obtained differences between healthy subjects and schizophrenic patients in both 299 

imaging and behavioral data. Then, we investigated whether there is any association of MRI 300 

measures with behavioral scales.  To reduce the sensitivity to the outliers, we utilized the 301 

Spearman coefficient method. 302 

3 Results 303 

3.1 Data drop-out 304 

We dropped out a patient from the Negative and Positive grouping due to the missing 305 

SANS and SAPS scores. Furthermore, we dropped the Disorganized subtype for insufficient 306 

sample size (N=1). 307 
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3.2 Statistical results 308 

  There were no significant differences in age between any comparative groups based on 309 

either the t-test (for two groups) or one-way ANOVA (for more than two groups) (Table 1). 310 

A two-sample t-test with Bonferroni correction suggested no significant difference in any of 311 

structural and graph measures between healthy controls and schizophrenic patients.  312 

There was a significant interaction between group and MRI measures after the 313 

Greenhouse–Geisser corrected ANOVA in healthy, Negative, and Positive groups, 314 

(𝐹(601,1202) = 2.96, 𝑝 = 0.025). Post-hoc analyses using multiple comparison tests 315 

revealed significant differences between healthy and Positive groups (𝑝 = 0.011). Two-316 

sample t-test also identified the significant features as the volume of the right hemisphere, 317 

left hemisphere, and the whole cortex. 318 

Another repeated measure ANOVA on healthy controls and subtypes of schizophrenia 319 

obtains a significant effect of group on MRI measures after the Greenhouse–Geisser correction 320 

(𝐹(601,2404) = 2.51, 𝑝 = 0.015). The post hoc results suggested that the differences 321 

between residual and healthy groups were the most significant (𝑝 = 0.007).  322 

3.3 Classification results 323 

3.3.1 Healthy and Schizophrenia groups 324 

MRI preprocessing and feature extraction provided a vector with 602 features for each 325 

subject including sixty-six subcortical volumes (of 45 subcortical regions plus 21 whole-brain, 326 

white matter, and right and left hemisphere cortex), 72 cortical measurements (68 left and 327 

right regions plus 4 whole-brain cortical thickness) and 4 graph measures of 116 brain regions 328 

(602 = 66 + 72 + 4×116). The accuracy of models is shown in Figure 1. The combination of all 329 

three sets of imaging measures suggested the best accuracy of 67% using RF classifier. As it is 330 

observed, there is an improvement after applying feature selection methods, with the best 331 

accuracy 0f 79% achieved by kNN when applied on the 12 featured selected by MRMR. The 332 

most important features obtained from MRMR were: thickness of middle temporal and 333 

middle frontal gyrus in left hemisphere and insula in right hemisphere, degree of right 334 

superior frontal gyrus, the volumes of right hippocampus, right postcentral gyrus, and midline 335 

of vermis, participation coefficient of left cuneus and right palladium, betweenness centrality 336 

of left postcentral gyrus and left superior frontal gyrus and local efficiency of middle frontal 337 

gyrus. Confusion matrix, sensitivity, and specificity of the kNN model with selected features 338 

to evaluate the model are in Table 3. A high sensitivity reported for schizophrenia group 339 

means that the classifier has the ability to designate the individual with disease as positive. 340 

The specificity is showing an acceptable false positive result for healthy and schizophrenia 341 

groups. The details on other performances and accuracies are available in Table S1 in 342 

supplementary. 343 
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3.3.2 Performance of selected model on other groups 344 

The validation of the selected model on other group classifications is assessed in this 345 

section. Table 4 are showing the accuracy of the kNN model in classifying each group. The 12 346 

features used in this classification are the same as those extracted from MRMR mentioned in 347 

the previous section. The worth performance on the UCLA dataset belongs to healthy, 348 

Negative, and Positive groups classification with 51% accuracy. On the other hand, the kNN 349 

model with 12 features was able to discriminate healthy subjects from the Positive group with 350 

an acceptable accuracy of 74%. After harmonization of the extra validation dataset, although 351 

predicting labels of the patients seems a great success with an accuracy of 72%, the standard 352 

deviation is high (35%). Prediction of new healthy and patient subjects after harmonization 353 

was not noteworthy (58%). 354 

3.3.3 Schizophrenia subtypes 355 

There was a drastic inequality between the numbers of samples for each subtype, as shown 356 

in Table 1Error! Reference source not found.. Four subtypes: Paranoid, Undifferentiated, 357 

Residual, and Schizoaffective were considered. The same procedure was adopted as the 358 

classification of patients vs. healthy controls. Figure 2 shows the performance of 7 ML models 359 

and 9 sets of features on classifying the subtypes. The highest accuracy of 64% derived from 360 

SVM with linear kernel on 62 features obtained from MRMR. The performance of subtype 361 

classifier was found inferior compared to the patient vs. control classifier (See Table S2 of 362 

supplementary for more details). Table 5 compares the selected model performance for each 363 

group in a confusion matrix form with sensitivity and specificity values. By identifying 14 out 364 

of 21, this classifier was the most accurate in differentiating Paranoid subtype with an 365 

accuracy of 67%, followed by the Schizoaffective subtype with an accuracy of 64%. The 366 

highest sensitivity and specificity in diagnosis of Schizoaffective confirms the great 367 

differences of this subgroup with schizophrenia subtypes, with a support towards the most 368 

distinguished subtype which is Paranoid. 369 

3.4 Behavioral Results 370 

Table 6 lists the behavioral measures with the strongest correlations to each of the 12 371 

imaging features with a significant difference (p < 0.05). The degree of right postcentral and 372 

the verbal capacity task showed the highest correlation (r = 0.49, p = 0.001). The thickness of 373 

left middle temporal and mean accuracy of manipulation trials in VMNM task showed the 374 

second highest positive connection (r = 0.45, p = 0.002). Both the participation coefficient of 375 

the left cuneus and the degree of vermis were negatively correlated with the reaction times 376 

of two cognitive tasks (r = -0.44, -0.47, p = 0.003, 0.002). The remaining negative correlations 377 

(r = -0.42, -0.46, p = 0.005, 0.002) were seen between two MRI measures and the recollection 378 

process of two tasks. Figure 3 shows the most positive and negative correlated imaging features 379 

and behavioral scales. 380 
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4 Discussion 381 

Schizophrenia diagnosis is not merely reliant on a singular method; rather, a combination 382 

of physical and psychological assessments aids clinicians to achieve accurate diagnoses and 383 

treatments. MRI serves as a diagnostic tool, revealing structural and functional brain 384 

abnormalities that may distinguish the patients with schizophrenia from healthy individuals. 385 

Moreover, recent strides in ML exhibit potential in leveraging MRI data to identify and 386 

forecast outcomes in schizophrenia (Rozycki et al., 2017, Yassin et al., 2020). This study offers 387 

substantial evidence of ML's significance in diagnosing and understanding schizophrenia 388 

through both structural and functional imaging data. Achieving an accuracy of approximately 389 

80%, the utilized MRI measures including cortical thickness and graph metrics, effectively 390 

differentiate between healthy individuals and the patients. This performance on the specific 391 

dataset stands as one of the notable accomplishments to date (Quaak et al., 2021, Matsubara 392 

et al., 2019). In order to diagnose patients, the suggested strategy by this study needs to extract 393 

only 12 features from MRI images. This may be advantageous in reducing the computation 394 

cost and model’s complexity. Clinical subtypes of schizophrenia are less noted in the context 395 

of classification. According to the results of this study, Paranoid subtype can be discriminated 396 

from normal with a decent accuracy (67%). This may be a valuable point to obtain the neural 397 

differences of schizophrenia subtypes. 398 

The most pertinent features chosen as significant for classification were graph measures 399 

derived from rsfMRI data. The application of graph theory has offered novel insights into the 400 

functional connections and the collaborative behaviors of brain regions in the context of 401 

human cognitive functions and behaviors (Farahani et al., 2019). Degree, local efficiency, 402 

betweenness centrality, and participation coefficient represent graph measures computed 403 

from rsfMRI data can provide insights into various facets of brain functional connectivity. 404 

Research has demonstrated that the organization of brain networks in individuals with 405 

schizophrenia, as identified through graph theoretical analysis, deviates from the typical 406 

patterns found in healthy controls (Gao et al., 2023).  407 

Five of the twelve selected features are associated with the attention network including 408 

the thickness of the middle frontal gyrus in the left hemisphere and the insula in the right 409 

hemisphere, the degree of the right superior frontal gyrus, the betweenness centrality of the 410 

left superior frontal gyrus, and the local efficiency of the middle frontal gyrus. These findings 411 

are in agreement with existing literature. Conclusions drawn from both imaging data and 412 

behavioral observations suggest that attentional deficits in patients manifest in performance 413 

on attention-related tasks and are reflected in the brain's activity and connectivity within the 414 

attention network (Jimenez et al., 2016, Roiser et al., 2013, Ioakeimidis et al., 2020). 415 

The presence of nine functional-related measures highlights that distinctions in brain 416 

function between patients and healthy individuals were more evident. Conversely, 417 

subcortical volume values played a negligible role in discerning patients from healthy 418 
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subjects. Given that the disorder tends to preserve brain structure, particularly in its early 419 

stages, this outcome was foreseeable. Consequently, it can be inferred that MRI measures 420 

associated with brain networks might hold the potential to enhance the accuracy of diagnostic 421 

procedures. 422 

Another noteworthy finding of this study was that the chosen model exhibited superior 423 

performance in distinguishing Positive group from healthy individuals compared to Negative 424 

group. This suggests that individuals with positive symptoms show greater deviations from 425 

the normal state in terms of brain function and structure, compared to patients with negative 426 

symptoms. Substantiating this interpretation, statistical analyses confirmed that alterations in 427 

the Positive group significantly impact the overall cortical thickness of the brain. This aligns 428 

with prior research indicating distinct neural underpinnings for negative and positive 429 

symptoms (Vanes et al., 2019). 430 

In an additional validation step, the selected model displayed robust performance when 431 

applied to a new dataset, achieving an accuracy rate of nearly 85%. However, the presence of 432 

a high standard deviation suggests that the model's reliability on previously unseen data might 433 

be somewhat compromised. 434 

A multi-class classification task in general faces more challenges than a two-class 435 

classification, which is the case for the conventional classification methods used in this study. 436 

There is more concentration on clustering strategies as opposed to the classification, for 437 

subtyping the schizophrenia using behavioral (Lefort-Besnard et al., 2018, Chen et al., 2020) 438 

or anatomical data (Chand et al., 2020). We managed to solve this problem in a certain way 439 

through adjustments, supported by the validated performance on the local data acquired in 440 

this study. From the results, we observed that all models performed poorly on classifying the 441 

subtypes. In addition, the small number of data and the unbalanced distribution of patients 442 

in subtype groups has intensified the classification difficulty. This seems to be the reason why 443 

studies on subtyping patients are quite limited. However, these issues can be dealt with to a 444 

certain degree by using data augmentation approach along with developed ML models. 445 

A significant contribution of neuroimaging data and ML approaches lies within the 446 

capacity to unveil associations between brain characteristics and behavioral patterns in 447 

psychiatric disorders (Drysdale et al., 2017). Although there are only a few studies 448 

investigating that, the results are promising. Schizophrenia patients with low and high social 449 

anhedonia were classified based on temporal and spatial networks extracted from fMRI task 450 

(Krohne et al., 2019). Deep learning methods on task -based fMRI features suggested the 451 

inferior and middle temporal lobe to be sufficiently informative to classify schizophrenia 452 

versus healthy subjects (Oh et al., 2019). Another successful deep learning application in 453 

diagnosis of schizophrenia has used the structural MRI features and a 3D convolutional neural 454 

network architecture (Zhang et al., 2022). The most distinguished regions between control 455 

and patients were subcortical cortex and ventricles, pivotal regions in cognitive, affective and 456 
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social functions. Our results support that the most robust connection pertains to the degree 457 

of the postcentral gyrus and the Variable Central Attentional Performance (VCAP) task 458 

(r=0.49). A positive association indicates that as the degree of aberration from the norm in the 459 

postcentral node increases, the difference in reaction time during the VCAP task between 460 

patients and healthy individuals becomes more pronounced. The postcentral gyrus, situated 461 

in the parietal lobe, serves as the primary sensory receptive area in the human brain. 462 

Existing literature suggests that working memory deficits are prevalent in numerous 463 

psychiatric disorders. A meta-analysis has revealed that the dysfunction of working memory 464 

in individuals with schizophrenia may stem from activation abnormalities in regions within 465 

the parietal lobe and supplementary motor area—areas closely linked to, though not identical 466 

to, the postcentral gyrus (Wu and Jiang, 2020).    467 

We observed a robust negative correlation between the participation coefficient of the 468 

right cuneus and reaction time during the switch task underscores the cuneus's integral role 469 

in executive function, and its impairment is discernible in individuals with schizophrenia 470 

(Huang et al., 2022, Nyatega et al., 2021). Moreover, the association between the superior 471 

frontal gyrus and recall performance in the remember-know task can also be highlighted  472 

(Huang et al., 2022).  473 

CVLT test measures episodic verbal learning and memory, particularly in the recall 474 

segment. The findings also indicate that performance on the CVLT test declines in 475 

schizophrenia patients as insula thickness decreases. There is ample evidence to support the 476 

insula's participation in episodic memory (Vatansever et al., 2021, Dahlgren et al., 2020), and 477 

as we have demonstrated, structural alteration in the insula is among the factors that may 478 

contribute to cognitive dysfunction in schizophrenia.  479 

Furthermore, we found that alterations in brain structure, specifically cortical thickness, 480 

attributed to the mental condition may cause changes in behavior (Ehrlich et al., 2011, Zhao 481 

et al., 2022, Fan et al., 2023). Notably, a majority of the behavioral measures linked to imaging 482 

metrics fall within the neurocognitive domain, with the exception of the Barratt 483 

Impulsiveness Scale (BIS) and the Temperament and Character Inventory (TCI), which 484 

belong to the traits domain. 485 

One notable limitation of this study was the relatively small size of the training dataset 486 

utilized for the ML model. It's important to note that employing larger datasets can yield more 487 

robust model performance. At present, the availability of a comparable dataset with a 488 

substantial volume of MRI data, encompassing both structural and functional aspects of the 489 

brain, alongside comprehensive behavioral and cognitive assessments of psychiatric 490 

patients—particularly individuals with schizophrenia—is limited. Addressing this challenge 491 

might necessitate a collaborative effort across multiple research centers to generate a dataset 492 

of sufficient size and diversity, thereby providing more reliable insights to the field. 493 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.09.24311726doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.09.24311726


15 
 

In cases where such comprehensive datasets do become available, the application of deep 494 

learning techniques and neural networks could be explored to more effectively harness the 495 

features and achieve enhanced understanding, yielding more refined outcomes. 496 

Clinical implications: It is a proven state that MRI and fMRI can distinguish the differences 497 

in structure and function of the brain between schizophrenia patients and normal individuals. 498 

The neuroimaging features along with clinical and behavioral characteristics can determine 499 

subtypes of schizophrenia. On the other hand, MRI measures and clinical and behavioral data 500 

can be used as features of the input data to be fed into an ML algorithm to learn the subtypes 501 

from all types of features together. Then the subtype of a new neuroimaging and behavioral 502 

data recorded from an individual can be predicted by this trained ML model which can be 503 

negative, positive, or one of the cognitive subtypes (Figure 4). This application obtained from 504 

our study can pave the way to a new individualized medicine and help the therapeutic 505 

approach that targets either positive or negative symptoms, such as add-on TMS or other 506 

medicine to regulate symptoms linked to distinct subtypes. The findings of this work can also 507 

help in understanding the underlying neural basis of the negative and positive symptoms. 508 

To estimate the subtypes, this model could be employed in place of neuropsychological tests 509 

with subjective and other patient-related variability. (Carruthers et al., 2019, Gurvich et al., 510 

2023, Dean et al., 2022). 511 

5 Conclusion 512 

This study has effectively classified individuals with schizophrenia and healthy subjects 513 

with a commendable level of accuracy, leveraging the structural and functional attributes of 514 

MRI data alongside conventional machine learning models. The utilization of graph theory 515 

has emerged as a powerful approach in the analysis of functional brain data, offering a 516 

comprehensive depiction of various aspects of brain connectivity. Notably, the feature 517 

selection process predominantly prioritized graph measures extracted from rsfMRI data, 518 

signifying their relevance in the context of this study. 519 

Furthermore, the identification of meaningful correlations between brain characteristics 520 

and behavioral manifestations related to schizophrenia aligns harmoniously with existing 521 

literature. These outcomes reinforce the notion that the fusion of machine learning 522 

methodologies with feature selection techniques holds the potential to unearth novel 523 

biomarkers, consequently contributing to the enhancement of diagnosis and treatment 524 

strategies for psychiatric disorders. 525 

Supplementary information. The supplementary material can be found in a separate file titled 526 

“Supplementary_Material”. 527 
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 770 

 771 

Group Number Age (mean ± std) Male/Female 

Healthy 50 36.40 ± 8.87 38/12 

Schizophrenia 50 36.46 ± 8.87 38/12 

Negative 26 36.69 ± 8.38 19/7 

Positive 23 36 ± 9.71 18/5 

Paranoid 21 38.38±8.54 17/4 

Undifferentiated 10 34.4±8.85 8/2 

Residual 6 33.66±8.29 6/0 

Schizoaffective 11 37±8.57 4/7 

Local dataset (Healthy) 20 31.43±8.34 10/10 

Local dataset (Patients) 13 33.84±11.58 11/2 

 772 

  773 

Table 1 Demographic of healthy and patient groups 
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 774 

Table 2 Behavioral assessments in three domains: Traits, neurocognitive, and 775 

neuropsychological. 776 

Domains Measures 

Traits Barratt Impulsiveness Scale (BIS-11) 

Dickman Functional and Dysfunctional Impulsivity Scale 

Multidimensional Personality Questionnaire (MPQ)—Control subscale 

Scale for Traits that Increase Risk for Bipolar II Disorder 

Golden & Meehl’s Seven MMPI Items Selected by Taxonomic Method 

Hypomanic Personality Scale (HPS) 

Chapman Scales (Perceptual Aberrations, Social Anhedonia, Physical 

Anhedonia) 

Temperament and Character Inventory (TCI) 

Munich Chronotype Questionnaire (MCTQ) 

Neurocognitive Tasks Task-switching Task (TS) 

Spatial Capacity Task (SCAP) 

Verbal Capacity Task (VCAP) 

Delay Discounting Task (DDT) 

Balloon Analog Risk Task (BART) 

Attention Network Task (ANT) 

Continuous Performance Go/NoGo Task (CPT) 

Stroop Color Word Task (SCWT) 

Stop Signal Task (SST) 

Scene Recognition Task 

Remember-Know Task (RK) 

Spatial Maintenance and Manipulation Task (SMNM) 

Verbal Maintenance and Manipulation Task (VMNM) 

Neuropsychological Assessment California Verbal Learning Test (CVLT-II) 

WMS-IV Symbol Span 

WMS-IV Visual Reproduction 

WAIS-IV Letter Number Sequencing 

WMS-IV Digit Span 

WAIS-IV Vocabulary 

WAIS-IV Matrix Reasoning 

Color Trails Test 

 777 
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 779 

 780 
 

 True value   

 

 Healthy Schizophrenia Sensitivity Specificity 

P
re

d
ic

ti
on

 

Healthy 42 14 0.84 0.71 

Schizophrenia 8 35 0.81 0.75 

 781 

  782 

Table 3 Confusion matrix of the best model on classifying heathy from 

schizophrenia with the sensitivity and specificity of the model. 
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 783 

 784 

 785 

Groups 
Accuracy 

(kNN on 12 features from MRMR) 
Healthy, Negative, Positive 0.51±0.02 
Healthy, Negative 0.72±0.02 
Healthy, Positive 0.74±0.02 
Negative, Positive 0.52±0.04 
Healthy, Schizophrenia (local dataset) 0.58±0.04 

 786 

  787 

Table 4 Accuracy (mean±std) of kNN for classifying the different groups from 

UCLA dataset and local dataset (13 patients) using 12 features extracted from 

MRMR method.  
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 788 

 789 

  True value   

 
 Paranoid Undifferentiated Residual Schizoaffective Sensitivity Specificity 

P
re

d
ic

ti
on

 Paranoid 14 3 2 1 0.67 0.77 

Undifferentiated 4 6 1 1 0.60 0.84 

Residual 1 1 3 0 0.50 0.95 

Schizoaffective 2 0 0 8 0.80 0.95 

 790 

 791 

  792 

Table 5 Confusion matrix of the best model on classifying the subtypes of schizophrenia with 

the sensitivity and specificity of the model. 
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 793 

 794 

Imaging measures Behavioral items r-value p-value 
Thickness-Left middle temporal VMNM - Mean Accuracy of Manipulation trials 0.45 0.002 

Degree-Right hippocampus SCAP - Number of correct answers 0.41 0.005 

Local efficiency-Left middle frontal BIS - Brief 0.44 0.003 

Participation coefficient -Right pallidum TCI - Novelty -0.33 0.024 

Degree-Vermis VCAP - Mean reaction time of true negatives -0.44 0.003 

Participation coefficient-Left cuneus TS - Mean reaction time -0.47 0.002 

Degree-Right postcentral VCAP - Mean reaction time of false negatives 0.49 0.001 

Betweenness centrality-Left precentral RK - Number of Know responses 0.38 0.010 

Thickness-Left middle frontal SST - Stop signal reaction time 0.39 0.008 

Thickness-Right insula CVLT - Number of correct recall answers -0.42 0.005 

Betweenness centrality-Left superior frontal CVLT - Long delay cued recall 0.41 0.006 

Degree-Right superior frontal RK - Zero recalls -0.46 0.002 

 795 

  796 

Table 6 Spearman’s correlation coefficients and p-values between MRI and behavioral measures. 
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Figure 1. 797 
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Figure 2. 799 

 800 

 801 

 802 

 803 

 804 

 805 

 806 

 807 

 808 

 809 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.09.24311726doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.09.24311726


29 
 

Figure 3. 810 
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Figure 4. 813 
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 816 

Figure 1. Performance of machine learning models for differentiating schizophrenia vs. healthy with 817 
different sets of features. There are six models with nine sets of features. The highest accuracy (79%) 818 
belongs to kNN and MRMR, considered as the best model. Although the combination of RF and 819 
MRMR resulted in the same accuracy as the combination of kNN and MRMR (79%), the latter 820 
combination was chosen because of a lower number of features (12 < 22). 821 

Figure 2. Accuracy of machine learning models and sets of features for differentiating schizophrenic 822 
subtypes. SVM with linear kernel on 62 features extracted using MRMR method reached the highest 823 
accuracy (64%) of classification. 824 

 825 

Figure 3. Interaction of the differences observed in 6 extracted MRI measures between the 826 
schizophrenia and healthy cohorts, in conjunction with the most closely associated behavioral 827 
indicators. The red lines in the scatterplots represents the optimal linear regression correlating MRI 828 
and behavioral metrics. Spearman correlation results are denoted as 'r' and the corresponding p-values 829 
are presented above each scatterplot, offering insight into the strength and significance of the observed 830 
relationships. 831 

Figure 4. A suggestion for ML model to learn the subtypes of individuals from different types of 832 
features.  833 

 834 
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