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1 Formulation8

1.1 Motivating Examples - Spatial and Temporal Variability9

From many perspectives, making and disseminating state-level forecasts is a reason-10
able strategy. States are the intuitive building blocks of the country, carrying their own11
governments and public health systems. Accurate state-level forecasts therefore have12
the potential for direct and meaningful application. However, states have enormously13
variable characteristics, which makes generalizing forecast performance problematic.14
Population difference in particular is a key factor. For example, California has the15
highest population of any state in the US (∼40 million), and Wyoming the lowest16
(∼0.6 million). For the second week of January 2022, California reported over 850,00017
incident cases. During the same week, Wyoming reported just over 6,600 new cases18
[1]. Note that California reported over 1.4 times more new cases that week than the19
entire population of Wyoming. However, in terms of incidence percentages, California20
and Wyoming were actually much closer at that time, with approximately 2% and 1%21
of the population testing positive, respectively. Intuitively, this is an easy dynamic to22
recognize when examining individual states separately. Raw epidemic numbers carry23
different meanings depending on underlying demographic factors (i.e., population24
size). However, this is problematic for aggregate and comparative analysis of forecast25
performance. This becomes clear if we apply a standard metric like mean absolute26
error (MAE) to this scenario with California and Wyoming. (For simplicity we refer27
to point predictions instead of probabilistic forecasts in the motivating examples in28
this section, along with corresponding metrics such as the absolute and percent error.29
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However, as indicated above, probabilistic evaluation is susceptible to the same issues30
[2].) For the week under consideration, predictions from the Forecast Hub’s baseline31
model yielded a MAE of 27,130 across all US states [3]. For California, a prediction32
that overshot the truth by this margin would incur a percent error of only about 3%,33
whereas for Wyoming, such a prediction would miss by over 400%. Unfortunately, spa-34
tial inconsistency is not the only obstacle. Accounting for temporal context is equally35
vital and presents its own difficulties.36

When examining forecast performance for a single region over time, metrics must37
be interpreted as a function of time-variant data. This necessity is demonstrated38
trivially by comparing pandemic surges to times of relatively low epidemic activity.39
The same value of a non-normalized metric like the absolute error carries an entirely40
different meaning in each of these situations. Consider the Forecast Hub’s baseline41
model predictions for cases in Maryland. In mid-December 2020, this model missed42
its three-weeks-ahead target by about 2,000 cases. In mid-May 2021, the same model43
also missed by about 2,000 cases [3]. Without knowing the context of each prediction,44
(namely that the first was made during a massive surge and the second was made45
during a significant lull), one might be forgiven for assuming that the model performed46
similarly in both scenarios. However, the December forecast only just missed the mark,47
undershooting by 12% of the true value. Conversely, the May forecast missed by 213%.48
Note that in this case, percent error has interpretable utility because it normalizes49
by the true value, a time-varying data source that directly represents the prevailing50
condition of the pandemic. Unfortunately, percent error is not an ideal solution as it51
becomes unstable when true values approach zero [2]. This is especially problematic52
when analyzing death forecasts (for all of 2020 through 2022, almost 15% of US states53
had less than ten weekly deaths, and over 8% had below five weekly deaths). In this54
situation, percent error is in fact too sensitive to the exact circumstances. It indicates55
a relatively large deviation from the truth which, while technically correct, misses the56
reality of how forecasts are interpreted. Given the larger context of the pandemic,57
it is unreasonable to characterize a four-death forecast compared to a target value58
of one (300% error) as a worse prediction than a 400-death forecast compared to an59
800-death reality (50% error). Like the spatial case, the numerical value of an error60
metric, absent any temporal contextualization, cannot be relied on to consistently or61
intuitively reflect forecast performance.62
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1.2 Derivation of the CIS as a function of the CRE63

For simplicity and consistency with extant metrics, we introduce the Contextual64
Interval Score (CIS) in the main body of the paper as a scaled, constrained version of65
the Interval Score (IS). However, we developed the CIS as a direct, interval-forecast66
extension of our point-forecast CRE function. In this section, we demonstrate that the67
formulation of the CIS as a function of the IS is equivalent to a different formulation68
that directly incorporates the CRE. Then, we explain each of the components of the69
equivalent form of the score to help intuit the motivation for the creation of the score.70

71
We begin with the form of the CIS introduced in the main body of the paper:72

CISα(F, y, δ) = min
{ α

2δ
ISα(F, y), 1

}
(1)

Taking the right hand side of this equation, we substitute in the expanded form73
of the Interval Score (IS):74

min

{
α

2δ

[
(u − l) + 2

α
(l − y) 1 {y < l} + 2

α
(y − u) 1 {y > u}

]
, 1

}
(2)

Simplifying:75

min

{
α

2δ
(u − l) + l − y

δ
1 {y < l} + y − u

δ
1 {y > u} , 1

}
(3)

Examining the l−y
δ 1 {y < l} term, we observe that if this term reaches or exceeds76

1, the minimizer operating over the entire equation will restrict the overall output to 1.77
Thus applying a“local” minimizer, constraining this term to a maximum of 1, will not78
change the overall value of the score. The same logic applies to the the y−u

δ 1 {y > u}79
term. Including these internal minimizers yields the following form of the CIS:80

min

{
α

2δ
(u − l) + min

{
l − y

δ
, 1

}
1 {y < l} + min

{
y − u

δ
, 1

}
1 {y > u} , 1

}
(4)

We can further exploit the indicator functions to include absolute values in the81
two minimized terms:82

min

{
α

2δ
(u − l) + min

{
|l − y|

δ
, 1

}
1 {y < l} + min

{
|u − y|

δ
, 1

}
1 {y > u} , 1

}
(5)
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This equation now directly includes the formulation of the CRE. Thus, we can83
substitute the CRE in to show the complete alternate formulation of the CIS:84

CISα(F, y, δ) = min


α

2δ
(u − l) + CRE (l, y, δ) 1 {y < l} + CRE(u, y, δ)1 {y > u}

1


(6)

Each term in the CIS is analogous to a term in the IS. We begin with the “width”85
term: α

2δ (u − l). Because y−δ to y+δ represents the upper and lower limits of forecast86
utility, a prediction interval that spans this entire distance should incur an unweighted87
penalty of 1. In other words, if a point forecast at or past the “plateau” of the CRE88
curve incurs a penalty of 1, an unweighted interval forecast that spans this region89
should get the same score. However, the α-weight is included to distinguish between90
different prediction intervals. Consider two intervals that have identical bounds but91
different α values: 0.05 (95% prediction interval) and 0.9 (10% prediction interval).92
In this case, the 95% interval should be treated less harshly that the 10% interval,93
because we expect higher-confidence forecasts to span larger ranges. Next, we examine94
the “miss” term of the CIS: (CRE(l, y, δ)) 1 (y < l) + (CRE(u, y, δ)) 1 (y > u). It is95
essentially performing the same function as the “miss” term of the IS, but instead of96
expressing the magnitude of the miss in terms of distance, the CIS term is expressed97
in terms of utility. This component of the score can be seen in panels (c) and (d) of98
Additional file 1: Fig. S1 as the vertical arrows. In sum, the CIS is a single-interval99
analogue of the point-forecast CRE. Regardless of interval width, if a probabilistic100
forecast is entirely outside the useful region, a value of 1 is returned (panel (d) in Fig.101
S1). Like the IS, the CIS naturally collapses to only its “miss” term when applied to102
a point forecast.103

1.3 Visualization of the CRE and CIS104

The following figure, S1, provides a visualization of the CRE and the three different105
ways the CIS can arise, depending on the relative positions of the prediction inter-106
val bounds and the true value. Panel (a) shows only the Contextual Relative Error107
(CRE) point score (Equation 3 in the main text), with the others displaying differ-108
ent realizations of the Contextual Interval Score (CIS, Equation 4 in the main text).109
Blue arrows represent the width penalty term (note that they are scaled by α

2δ ). Red110
arrows indicate the miss term of the CIS. Observe that because the miss term is not111
scaled, any forecast that entirely misses the y − δ to y + δ region, regardless of width,112
will incur the maximum penalty of 1. For clarity, each of the panels refers to a single-113
interval evaluation. The full Weighed Contextual Interval Score (WCIS) is composed114
of an average across multiple α intervals.115



Fig. S1 Demonstration of the CRE (Panel a) and the three different calculation modes that the
CIS can take (Panels b,c,d).
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1.4 Empirical Impropriety Demonstration116

In this test case, we select an arbitrary distribution to represent the output of a117
forecasting model. This distribution functions as the source of the modeler’s “good-118
faith” predictions, i.e. a proper score will incentivize submission of forecasts that119
are legitimately representative of this distribution. Next, we select an arbitrary δ-120
parameterization and interval represented by α. “Good-faith” predictions are drawn121
as the α

2 and 1 − α
2 quantiles of the distribution. Next, we iterate over the domain of122

the distribution and take the expected score for each feasible interval pair. If any pair123
has a score that is lower in expectation than the “good-faith” interval, then the score124
is not proper.125

Fig. S2 Empirical demonstration of the impropriety of the Contextual Interval Score (CIS). Note
the difference between the “honest” and “gamed” interval bounds, indicating an incentive to deviate
from submitting good-faith statistical realizations in a effort to minimize the expected penalty. The
parameterization here is a normal distribution defined with µ = 100 and σ = 25. δ and α were
selected to be 5 and 0.2, respectively.

As is clearly demonstrated by figures S2 and S3, the CIS and therefore the multi-126
interval WCIS is not a statistically proper interval score. However, we propose that a127
score with the desired features of the WCIS is inherently improper. The foundation128
of the WCIS is the notion of a specific and constrained region around the target value129
wherein predictions are applicable, represented by the V-shaped CRE function. This130
means that from a gaming/error minimization perspective, the WCIS could encourage131
probabilistic forecasts that are affected by the size of the δ-region [4]. Similar to prior132
forecasting efforts when improper metrics were used, propriety is sacrificed in exchange133
for other, desirable properties of the score [5–7]. Additionally, ongoing work by Bosse134
et al. indicates that applying monotonic transformations like the natural logarithm to135
target data can help to alleviate the domination of higher-activity forecasting scenarios136
for model comparison and aggregation while retaining propriety [8].137
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Fig. S3 Contour plot showing the expected Contextual Interval Score (CIS) value for a set of
different prediction interval bounds. The distribution and score parameterization used here is the same
as in Figure S2 above. Note that the “honest” bounds do not exist at the minimum expected score,
and selecting bounds that do minimize the expectation results in the “gamed” bounds (approximately
89 and 110) that are seen in Figure S2.

2 Facility-Level Analysis138

2.1 Facility-Level Model Formulation139

Data: We obtained facility-level data on COVID-19 hospitalizations from the140
COVID-19 Reported Patient Impact and Hospital Capacity by Facility dataset,141
collected at various times by the CDC, HHS, and CDC again. This dataset includes142
metrics related to COVID-19 hospitalizations, hospital occupancy, and capacity [9].143
For this analysis, we focused only on the time series of COVID-19 bed occupancy.144
The raw data was provided at a weekly resolution for each hospital. To enable more145
granular modeling, we performed temporal disaggregation to obtain daily resolution146
data. We assumed that the weekly trends at each hospital followed the same pattern147
as the aggregated state-level trends, which were available at a daily resolution. For148
each week, we normalized the daily state-level values to sum to 1, then multiplied149
the normalized values by each hospital’s weekly totals to impute daily hospital-level150
values. Any remaining missing values were imputed using local regression smoothing151
[10]. We selected 42 hospitals in Maryland for this analysis. Hospitals were included152
if they were classified as short-term acute care hospitals and if they had at least 10153
COVID-19 patients at some point between July 2021 and July 2022. We chose to focus154
on a single state because modeling and analyzing all U.S. hospitals was not practical.155

156
Model: To forecast future COVID-19 hospitalizations, we used the Time Series157
Dense Encoder (TiDE) model, a deep neural network architecture that has achieved158
state-of-the-art performance on general time-series forecasting tasks [11]. TiDE uses159
a simple but flexible encoder-decoder structure that can incorporate covariates and160
accommodate various prediction horizons, output distributions, and loss functions.161
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We configured the TiDE model with 4 encoder layers, 4 decoder layers, a decoder162
output dimension of 32, hidden size of 128, past temporal width of 4, future temporal163
width of 4, dropout probability of 0.1, and layer normalization. The model used164
the previous 90 days as context to predict hospitalizations for the next 21 days.165
Rather than making sequential autoregressive predictions, the model predicted all 21166
days at once. To obtain probabilistic forecasts, we used quantile regression, with the167
model directly outputting predictions for the 0.01, 0.025, 0.05, 0.1, 0.15, 0.2, 0.25,168
0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.975, and 0.99169
quantiles. The input features were the target variable (total COVID-19 census) and170
time covariates including year, day of year, day of week, and days since July 1, 2021.171
Predictions were generated for each Monday in the time span included, simulating a172
weekly system like the Forecast Hub’s [3].173

174
Training and Calibration: We trained a separate model for each hospital and175
prediction date using an expanding window of training data starting from August 1,176
2020. Models were trained for 100 epochs to minimize the pinball loss. The model177
predictions were post-processed in two steps to improve calibration. First, we applied178
a non-negativity constraint, thresholding all predictions to be at least 0 since neg-179
ative patient counts are impossible. Second, we applied the conformalized quantile180
regression (CQR) method [12]. CQR adjusts the predicted quantiles based on the181
model’s historical quantile errors to achieve better coverage. We did not hold out a182
separate calibration dataset, instead using the training data for the CQR calibration.183

184
Implementation: We implemented the models in Python using the darts time-series185
library, while the data processing was done in Julia [13]. Model training took approxi-186
mately 10 seconds per hospital and prediction window using an NVIDIA 4070Ti GPU.187
ß188

Fig. S4 Delineation of the segments of the facility-level analysis that are in and out of the Omicron
wave for the purposes of our analysis. Each line represents one of the 42 Maryland facilities predicted
for.
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Table S1 Hospitals Included in Facility-Level Model

Hospital ID Facility Name

210001 Meritus Medical Center
210002 University of Maryland Medical Center
210003 University of Maryland Prince George’s Hospital Center
210004 Holy Cross Hospital
210005 Frederick Health Hospital
210006 University of Maryland Harford Memorial Hospital
210008 Mercy Medical Center
210009 The Johns Hopkins Hospital
210011 Saint Agnes Hospital
210012 Sinai Hospital of Baltimore
210015 MedStar Franklin Square Medical Center
210016 Adventist Healthcare White Oak Medical Center
210017 Garrett County Memorial Hospital
210018 MedStar Montgomery Medical Center
210019 TidalHealth Peninsula Regional, Inc.
210022 Suburban Hospital
210023 Anne Arundel Medical Center
210024 MedStar Union Memorial Hospital
210027 U.P.M.C. Western Maryland
210028 MedStar Saint Mary’s Hospital
210029 Johns Hopkins Bayview Medical Center
210032 Union Hospital of Cecil County
210033 Carroll Hospital Center
210034 MedStar Harbor Hospital
210035 University of Maryland Charles Regional Medical Center
210037 University of Maryland Shore Medical Center at Easton
210038 University of Maryland Medical Center Midtown Campus
210039 CalvertHealth Medical Center
210040 Northwest Hospital Center
210043 University of Maryland Baltimore Washington Medical Center
210044 Greater Baltimore Medical Center
210048 Howard County General Hospital
210049 University of Maryland Upper Chesapeake Medical Center
210051 Doctors Community Hospital
210056 MedStar Good Samaritan Hospital
210057 Adventist Healthcare Shady Grove Medical Center
210060 Adventist Healthcare Fort Washington Medical Center
210061 Atlantic General Hospital
210062 MedStar Southern Maryland Hospital Center
210063 University of Maryland St. Joseph Medical Center
210064 Levindale Hebrew Geriatric Center And Hospital
210065 Holy Cross Germantown Hospital
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2.2 Facility-Level Metric Comparisons189
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Fig. S5 WIS vs WCIS values for all 42 facilities, for 2-day-ahead forecasts, for all prediction dates
outside of the Omicron surge.
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Fig. S6 WIS vs WCIS values for all 42 facilities, for 5-day-ahead forecasts, for all prediction dates
outside of the Omicron surge.
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Fig. S7 WIS vs WCIS values for all 42 facilities, for 14-day-ahead forecasts, for all prediction dates
outside of the Omicron surge.
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Fig. S8 WIS vs WCIS values for all 42 facilities, for 2-day-ahead forecasts, for all prediction dates
within the Omicron surge.
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Fig. S9 WIS vs WCIS values for all 42 facilities, for 5-day-ahead forecasts, for all prediction dates
within the Omicron surge.
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Fig. S10 WIS vs WCIS values for all 42 facilities, for 14-day-ahead forecasts, for all prediction dates
within the Omicron surge.
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3 COVIDhub Ensemble Hospitalization Forecasts190

(Second Test Case)191

Included here are heatmaps of the WCIS vs the WIS for hospitalization fore-192
casts for each prediction horizon (one, two, three, and four weeks ahead) from193
the Forecast Hub’s ensemble model. The δ used for the hospitalization analysis is194
detailed in full in section 3.2 of the main text of the paper. We note here that195
the column used to generate the delta values is “inpatient beds” in the COVID-19196
Reported Patient Impact and Hospital Capacity by Facility dataset (archive link:197
https://healthdata.gov/d/j4ip-wfsv).198
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Fig. S11 Heatmap of the WCIS for 1 week ahead hospitalization forecasts, performed by the Forecast
Hub’s ensemble model.

17



May
2021

Jun Jul Aug Sep Oct Nov Dec Jan
2022

Feb Mar Apr
WY 
WI 
WV 
WA 
VA 
VT 
UT 
TX 
TN 
SD 
SC 
RI 
PA 
OR 
OK 
OH 
ND 
NC 
NY 
NM 
NJ 
NH 
NV 
NE 
MT 
MO 
MS 
MN 
MI 
MA 
MD 
ME 
LA 
KY 
KS 
IA 
IN 
IL 
ID 
HI 
GA 
FL 
DC 
DE 
CT 
CO 
CA 
AR 
AZ 
AK 
AL 

 
WY
WI
WV
WA
VA
VT
UT
TX
TN
SD
SC
RI
PA
OR
OK
OH
ND
NC
NY
NM
NJ
NH
NV
NE
MT
MO
MS
MN
MI
MA
MD
ME
LA
KY
KS
IA
IN
IL
ID
HI
GA
FL
DC
DE
CT
CO
CA
AR
AZ
AK
AL

May
2021

Jun Jul Aug Sep Oct Nov Dec Jan
2022

Feb Mar Apr

All Regions
(Mean)

May
2021

Jun Jul Aug Sep Oct Nov Dec Jan
2022

Feb Mar Apr
0

50k

100k

150k

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

WCIS

H
os

pi
ta

liz
at

io
ns

All Dates
(Mean)

Total Weekly Incident Hospitalizations - All Regions

Fig. S12 Heatmap of the WCIS for 2 week ahead hospitalization forecasts, performed by the Forecast
Hub’s ensemble model.
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Fig. S13 Heatmap of the WCIS for 3 week ahead hospitalization forecasts, performed by the Forecast
Hub’s ensemble model.
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Fig. S14 Heatmap of the WCIS for 4 week ahead hospitalization forecasts, performed by the Forecast
Hub’s ensemble model.
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