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Note 1: Overview of the birth cohorts

Millennium Cohort Study
The Millennium Cohort Study is a longitudinal study that follows the lives of
approximately 19,000 children born in the early years of the 21st century, along with
their families, across the United Kingdom. The study participants were born over a
12-month period starting in September 2000 in England and Wales, and over a
13.5-month period starting in November 2000 in Scotland and Northern Ireland.

The sample design ensured an overrepresentation of families residing in areas with
high levels of child poverty and areas in England with significant ethnic minority
populations. The initial data collection was conducted through a home-based survey
when the children were nine months old, gathering information on various aspects,
including circumstances surrounding pregnancy and birth, early life experiences, and
the socio-economic backgrounds of the families. Subsequent data collection waves
have occurred at ages 3, 5, 7, 11, 14, and 17, allowing researchers to track the
development and life trajectories of these children as they progress through various
stages of life.

Ethical approval was obtained from Multi-centre Research Ethics Committees.

Longitudinal Study of Australian Children (Birth and Kindergarten)
Growing Up in Australia: The Longitudinal Study of Australian Children (LSAC) is a
longitudinal study that follows two cohorts of about 5,000 children and their families
randomly selected from across Australia. The sampling strategy ensured that the
number of children selected can reflect the overall child population distribution
across states/territories. The B (“baby”) cohort comprises children born between
March 2003 and February 2004 (aged 0-1 years in the first data collection sweep);
the K (“kindergarten”) cohort comprises children born between March 1999 and
February 2000 (aged 4-5 years in the first data collection sweep). Since 2004, data
collections have happened biennially using multiple methods, including face-to-face
interviews, computer-assisted telephone interviews, self-completed questionnaires,
physical measures, and linking to administrative data (e.g., MySchool). From Sweep
3 onwards, there is data on children of the same age from both cohorts at different
time points, featuring the unique LSAC “accelerated cross-sequential” design.

By systematically tracking various facets of children's environments—encompassing
social, economic, familial, and educational dimensions—LSAC seeks to identify
opportunities for early intervention and inform policy decisions aimed at enhancing
overall well-being and support systems for children.
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Growing Up in Ireland
Growing up in Ireland (GUI) is a longitudinal study that follows children living in the
Republic of Ireland. We used one of the two cohorts, Cohort 98’ (aka the Child
Cohort), who were born in 1998. Since 2008, data collections have been conducted
every four years, from parents, teachers, and young people themselves. We did not
study the other cohort, Cohort 08’ (aka the Infant Cohort), due to the unavailability of
information on autism diagnoses in the earliest few sweeps.

The GUI study aims to describe and understand the lives of children in Ireland, with
Cohort 98' tracking their development from childhood to adulthood and identifying
key factors impacting their well-being. It also seeks to examine the effects of early
childhood experiences on later life outcomes, map variations in children's lives,
gather children's perspectives, and provide data to inform the development of
effective policies and services for children and families.

ALSPAC
Pregnant women resident in Avon, UK with expected dates of delivery between 1st
April 1991 and 31st December 1992 were invited to take part in the study. 20,248
pregnancies have been identified as being eligible and the initial number of
pregnancies enrolled was 14,541. Of the initial pregnancies, there were a total of
14,676 foetuses, resulting in 14,062 live births and 13,988 children who were alive at
1 year of age. When the oldest children were approximately 7 years of age, an
attempt was made to bolster the initial sample with eligible cases who had failed to
join the study originally. As a result, when considering variables collected from the
age of seven onwards (and potentially abstracted from obstetric notes) there are
data available for more than the 14,541 pregnancies mentioned above: The number
of new pregnancies not in the initial sample (known as Phase I enrolment) that are
currently represented in the released data and reflecting enrolment status at the age
of 24 is 906, resulting in an additional 913 children being enrolled. The total sample
size for analyses after the age of seven is therefore 15,447 pregnancies, resulting in
15,658 foetuses. Of these 14,901 children were alive at 1 year of age.

Of the original 14,541 initial pregnancies, 338 were from women who had already
enrolled with a previous pregnancy, meaning 14,203 unique mothers were initially
participating in the study. As a result of the additional phases of recruitment, a further
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630 women who did not enrol originally have provided data since their child was 7
years of age. This provides a total of 14,833 unique women (G0 mothers) enrolled in
ALSPAC as of September 2021.

Please note that the study website contains details of all the data that is available
through a fully searchable data dictionary and variable search tool:
http://www.bristol.ac.uk/alspac/researchers/our-data/

Ethical approval for the study was obtained from the ALSPAC Ethics and Law
Committee and the Local Research Ethics Committees. Consent for biological
samples has been collected in accordance with the Human Tissue Act (2004)1.
Informed consent for the use of data collected via questionnaires and clinics was
obtained from participants following the recommendations of the ALSPAC Ethics and
Law Committee at the time.
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Note 2: Imputation
To handle missing data in the MCS cohort, we considered several imputation
methods, each with distinct advantages and limitations.

For example, median imputation is a simple and computationally efficient method
that replaces missing values with the median of the observed values for a given
variable. While this method is straightforward and preserves the central tendency of
the data, it does not account for relationships between variables or the longitudinal
structure of the data. Thus, it can lead to biassed estimates and reduced variability,
which may not be suitable for complex, large-scale datasets like the MCS.

Multiple Imputation by Chained Equations (MICE) is another commonly used
method. It involves creating multiple complete datasets by imputing missing values
iteratively based on predictive models for each variable. Each iteration involves fitting
a model to predict the missing values of one variable, given the others. This process
is repeated for all variables with missing data, cycling through them until all missing
data are imputed. Although MICE can handle a variety of data types and
relationships, determining the optimal imputation model within MICE in this study can
be challenging. Typically, linear regression models are used for continuous variables,
logistic regression for binary variables, and multinomial regression for categorical
variables. But in our study, the complexity of the relationships between variables,
their interactions over time, and the mixture of variable types complicate the process
of defining appropriate models for MICE.

Given these considerations, we opted for SoftImpute2, an imputation method based
on matrix completion techniques. SoftImpute employs a soft-thresholding operation
on the singular value decomposition (SVD) of the incomplete data matrix, iteratively
refining the approximation of missing values. Leveraging low-rank matrix
approximation, SoftImpute is particularly suitable for large-scale datasets due to its
computational efficiency. Moreover, by focusing on the underlying structure of the
data instead of fitting specific predictive models for each variable type, as in MICE,
SoftImpute can effectively capture and preserve complex relationships and
interactions over time in our data.

In this study, the regularisation parameter λ was set to the largest possible values,
determined by the maximum singular value obtained from the Singular Value
Decomposition (SVD) of the input matrix. This choice encourages simpler solutions
with lower-rank structures, promoting generalisation and preventing overfitting of the
imputed data. Also, the maximum rank (rank.max), which determines the maximum
number of singular values to retain during the low-rank approximation, was set to be
one less than the minimum dimension of the input matrix, enabling retention of as
many patterns as possible while maintaining computational efficiency. Auxiliary
variables, including socio-demographic variables and developmental milestones,
were included in the imputation to improve the precision of estimated values
(Supplementary Table 3).

Visual inspection of density plots (Note 2, Figures 1 and 2) and
Kolmogorov-Smirnov (KS) tests demonstrated that the distributions of imputed data
restored that of the original data (see Supplementary Table 3). Although there was
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less satisfactory imputation quality observed for subscale scores at the age 17
sweep, likely due to the expected highest sweep attrition.

SDQ total scores were then calculated from imputed subscale scores in the
corresponding sweeps. To generate principal components of socio-demographic
factors and cognition, imputed data were combined with the non-imputed raw data in
MCS. Subsequently, principal component analyses were conducted separately for (i)
cognitive aptitude measures; (ii) household socio-economic status; and (iii) living
area deprivation following the procedures outlined in Methods.

In the following latent growth curve models, due to the significantly larger sample
size compared to other cohorts used in this study, most estimated latent slopes were
statistically significant, confirming the phenomena observed in non-imputed samples.
In GMM, more than two latent trajectory groups were identified as optimal across
four of the subscales. However, the most prominent drop in BIC value was from
models with one to those with two latent groups. For SDQ total scores, GMMs still
identified two latent trajectory groups as optimal, confirming previous findings. In
subsequent regression analyses, the model with group memberships derived from
two-group GMMs explained greater variance in the age at diagnosis, compared to
the model using group memberships taken from the optimal GMMs of each subscale
(R2 = 0.59, adjusted R2 = 0.51, see Supplementary Table 3). Thus, group
memberships derived from the two-group GMMs were used in the final mediation
analyses. All variables together explained 59.8% of the variance in age at diagnosis,
and trajectory groups of SDQ total and subscale scores explained 56.6% of the
variance collectively.
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Note 2, Figure 1: Density plots of raw and imputed SDQ subscale scores for imputation quality
evaluation. Solid lines represent original raw data, while dashed lines indicate imputed data. For each
graph, the first letter represents the sweep using an ordinal coding system (e.g.,B = Sweep 2 at age
3, ..., G = Sweep 7 at age 17). EMOTION = Emotional Symptoms; CONDUCT = Conduct Problems;
HYPER = Hyperactivity/Inattention; PEER = Peer Relationship Problems; PROSOC = Prosocial
Behaviours.
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Note 2, Figure 2: Density plots of raw and imputed auxiliary variables for imputation quality
evaluation. Solid lines represent original raw data, while dashed lines indicate imputed data.
dep_ = deprivation; OECD = Organisation for Economic Co-operation and Development score;
OECD_60bar = OECD below 60% Poverty Indicator; naming_vocab = Naming Vocabulary;
pattern_constr = Pattern Construction; pic_sim = Picture Similarity; word_read = Word Reading;
CANTAB = Cambridge Neuropsychological Test Automated Battery Verbal Similarities Total Correct
Responses. stands = stands up holding on; hands = puts hands together; grab = grabs objects; hold =
holds small objects; pass = passes a toy; playground = Frequency take child to park or playground;
givetoy = gives toy; wavebye = waves bye-bye arm = Extend his arms for being picked up; nodyes =
nods for yes; move = can move from place to place; dry = child dry during the day; clean = child clean
during the day; drawsquare = can draw or copy a square; dress = can dress without help. See details
in Supplementary Table 3.
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Note 3: Impact of various demographic and clinical characteristics on age at
autism diagnosis
Age at autism diagnosis is complex and likely impacted by several socio-biological
factors that vary across time and geography. Some of these factors can confound
our results. We assessed the impact of six factors on our findings. These include: 1.
Changes in diagnostic criteria over time; 2. Diagnostic misclassification; 3.
Co-occurring intellectual disability and developmental delays in the child; 4.
Country-level differences in diagnostic practices; 5. Sex; and 6. Parental factors
influencing age at autism diagnosis.

Our primary aim was to investigate whether genetic and longitudinal results we
obtained primarily reflect these six factors. We do not exclude the possibility of these
factors impacting age at autism diagnosis through other mechanisms. Although we
cannot say these factors do not contribute to some of the observed differences, we
can say, through a series of analyses, that these factors are not the primary drivers
of the results we have obtained.

1. Clinical factors: Changes in diagnostic criteria over time

The following cohorts primarily used an ICD based system for diagnosis: iPSYCH,
MCS, GUI. The following cohorts primarily used a DSM based system for diagnosis:
LSAC-B, LSAC-K, SPARK.

Details of when the birth cohorts were collected and the diagnostic changes that
affect them are provided in Supplementary Table 1.

We considered the impact of the following changes to the diagnostic criteria in our
analyses.

(1) DSM - III (1980) to DSM - IV (1994)
● Does not impact any of the longitudinal analyses as all the participants

in the birth cohorts were born after the introduction of DSM - IV.
● To minimise the impact on the genetic analyses in SPARK3 we

restricted it to autistic individuals who were 22 years or younger, as
these autistic individuals were born after 1994 (diagnosed using DSM -
IV and DSM5).

(2) ICD - 9 (1977) to ICD - 10 (1994)
● Does not impact any of the longitudinal analyses as all the birth cohorts

were born after the introduction of ICD - 10.
● To minimise the impact on the genetic analyses, in iPSYCH4, we ran

sensitivity analyses by conducting GWAS of autism diagnosed before
age 9 (iPSYCHbefore9) and after age 12 (iPSYCHafter11), and after
restricting it to individuals born in 1994 or after. We then compared
these results to the original GWAS (iPSYCHbefore9 and iPSYCHafter11) that
included all birth years. The genetic correlation between the GWAS
with and without individuals born before 1994 was high (rg > 0.95) and
not statistically different from 1, indicating strong consistency in the
genetic findings regardless of birth year restrictions.
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(3) DSM - IV (1994) to DSM - 5 (2013)
● Affects diagnosis in the Australian cohorts (LSAC-K and LSAC-B).

However, it does not affect diagnosis in MCS or GUI from the UK and
Ireland respectively, where ICD was predominantly used. We observe
similar results between the Australian cohorts and cohorts in Ireland
and UK, suggesting that the results observed are not primarily due to
changes in the diagnostic criteria, or differences between DSM and
ICD.

● Does not affect iPSYCH analyses. However, in SPARK, approximately
60% of the participants included in the study were diagnosed after
2013, implying that they were diagnosed using the DSM-5 criteria. The
remaining 40% were diagnosed using the DSM-IV criteria. The PGS for
iPSYCHafter10 was associated with age at autism diagnosis in SPARK
even after controlling for the DSM edition (DSM-IV vs DSM-5). Notably,
we observed no significant interaction effect between iPSYCHafter10
PGS and DSM edition, suggesting that iPSYCHafter10 PGS has similar
effects on age at autism diagnosis regardless of which DSM edition
was used to diagnose autism.

(4) ICD - 10 (1994 in Denmark) to ICD - 11 (2018)
● This does not impact any of the longitudinal analyses as children in the

MCS and GUI cohorts were diagnosed before ICD-11 has been used
by the UK and Ireland respectively .

● Does not impact any genetic analyses as the iPSYCH participants
were all diagnosed before 2015.

2. Clinical factors: Diagnostic misclassification
We wondered if later diagnosed autism reflects diagnostic misclassification of mental
health conditions and ADHD, especially among adolescents and adults, where
developmental history is difficult to ascertain5. This would indicate that later
diagnosed autism would be a mixture of both “true autism” and other mental health
and neurodevelopmental conditions diagnostically misclassified as autism.
Consequently, in the context of our study, while the earlier diagnosed autism factor
(and the GWAS contributing to the factor) would represent a “true” genetic signal for
autism, the later diagnosed autism factor represented a mixture of genetic signals
from autism and other mental health and neurodevelopmental phenotypes.

We tested if later diagnosed autism can be completely explained by diagnostic
misclassification using genomicSEM.

To investigate this, we assumed that the PGC-2017 autism GWAS6 was a
“gold-standard” GWAS of autism as autistic participants in this GWAS typically
underwent rigorous assessment using tools such as ADOS7 and ADI-R8. We further
assumed that autistic individuals included in the iPSYCH GWAS consisted of a
fraction of autistic individuals with a true autism diagnosis and individuals who were
diagnostically misclassified as autistic. If this were true then the total genetic
variance of the iPSYCH autism GWAS could be explained by the PGC-2017 autism
GWAS and other mental health conditions. In other words, the residual genetic
variation would be statistically nonsignificant.
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We tested this using genomicSEM after regressing the genetic effects of the iPSYCH
GWAS simultaneously on the genetic effects of PGC-2017 autism GWAS6, ADHD9,
depression10, schizophrenia11, bipolar disorder12, anorexia nervosa13, and PTSD14

(Note 3, Figure 1).

The residual genetic variance for iPSYCH autism GWAS was 0.37 (s.e.m = 0.10, P =
2.97x10-4). This suggests that just under 40% of the genetic variance in the iPSYCH
autism was not explained by either the PGC-2017 autism GWAS or other mental
health conditions. In the multiple regression framework within genomicSEM, we
observed significant genetic correlation between the iPSYCH autism GWAS and the
PGC-2017 autism GWAS (rg = 0.59, s.e.m = 0.12, P = 1.64x10-6) and the ADHD
GWAS (rg = 0.31, s.e.m = 0.10, P = 1.80x10-3). We observed no significant genetic
correlation between the iPSYCH autism GWAS and any of the other GWAS.
Additionally, the genetic correlation between the iPSYCH and PGC-2017 without
conditioning on the other GWAS was (rg = 0.61, s.e.m = 0.10, P = 2.64x10-9). The
genetic correlation between the PGC-2017 and iPSYCH autism GWAS were
statistically similar before and after conditioning on the genetic effects of other
mental health phenotypes.

Note 3, Figure 1: Path diagrams representing results from genomic multiple regression analyses
using genomicSEM. The genetic effects of the iPSYCH autism GWAS were regressed on the genetic
effects of the PGC-2017 autism GWAS, attention-deficit/hyperactivity disorder (ADHD), major
depressive disorder (MDD), posttraumatic stress disorder (PTSD), schizophrenia (SCZ), anorexia
nervosa (Anorexia), and bipolar disorder (Bipolar) simultaneously. Single-headed arrows indicate
conditional genetic associations between the explanatory variables and the iPSYCH autism GWAS.
Numbers represent standardised correlation coefficients, with standard errors in parentheses. Genetic
associations between explanatory factors were accounted for in the analyses but are not shown on
the graph for simplicity. The two-headed arrows connecting the genetic component of the iPSYCH
autism GWAS to itself represent the residual genetic variance unexplained by the genetic influence of
either the PGC-2017 autism GWAS or other mental health conditions. Solid lines indicate significant
genetic associations, while dashed lines indicate non-significant associations.
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As the PGC-2019 autism GWAS indexes earlier diagnosed autism, we reasoned that
the residual genetic variance in iPSYCH autism GWAS may be partly explained by
an index of later diagnosed autism. We used the independent FinnGen GWAS as an
index of later diagnosed autism. Subsequently, we reconducted the genomicSEM
analyses using the multiple regression framework with the additional inclusion of the
FinnGen autism GWAS (Note 3, Figure 2). In this model, the residual genetic
variance of the iPSYCH autism GWAS was not statistically significant (rg = 0.21,
s.e.m = 0.15, P = 0.16). In this model, the iPSYCH autism GWAS had statistically
significant genetic correlations with the PGC-2017 autism GWAS (rg = 0.53, s.em =
0.13, P = 8.81x10-5), ADHD (rg = 0.33, s.e.m = 0.11, P = 4.23x10-3), and with the
FinnGen autism GWAS (rg = 0.43, s.e.m = 0.20, P = 3.83x10-2). There were no
statistically significant genetic correlation among the ADHD, FinnGen autism, and
PGC-2017 autism GWAS.

The PGC-2017 autism GWAS explained 39% of the genetic variance in iPSYCH
autism, followed by FinnGen which explained an additional 21% of the genetic
variance, and finally, ADHD explained an additional 17% of the genetic variance.

Note 3, Figure 2: Path diagrams representing results from genomic multiple regression analyses
using genomicSEM. The genetic effects of the iPSYCH autism GWAS were regressed simultaneously
on the genetic effects of the PGC-2017 autism GWAS, and other neurodevelopmental and mental
health conditions, as well as FinnGen GWAS. Single-headed arrows indicate conditional genetic
associations between the explanatory variables and the iPSYCH autism GWAS. Numbers represent
standardised correlation coefficients, with standard errors in parentheses. Genetic correlation
between the PGC autism GWAS and FinnGen GWAS are shown with a two-headed arrow connecting
them. Other genetic associations between explanatory variables are omitted for readability. The
two-headed arrows connecting the genetic component of the iPSYCH autism GWAS to itself
represent the residual genetic variance unexplained by the genetic influence of either the PGC-2017
autism GWAS or other mental health conditions. ADHD, attention-deficit/hyperactivity disorder; MDD,
major depressive disorder; PTSD, posttraumatic stress disorder; SCZ, schizophrenia; Anorexia,
anorexia nervosa; Bipolar, bipolar disorder. Solid lines indicate significant genetic associations, while
dashed lines indicate non-significant associations.
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Taken together, we find no evidence that the later diagnosed autism is explained by
diagnostic misclassification of schizophrenia, anorexia, depression, PTSD, or bipolar.
We find modest shared genetics between later diagnosed autism and ADHD,
suggesting that a fraction of the genetic signal of later diagnosed autism may be due
to diagnostic misclassification of ADHD as autism (Note 3, Figure 3). However, this
does not exclude the possibility that this could merely reflect shared genetics
between ADHD and later diagnosed autism. Further confirming the contribution of
late diagnosed autism, we identified a significant genetic correlation between the
FinnGen autism GWAS and the iPSYCH autism GWAS after conditioning on the
genetic effects of the childhood diagnosed autism (PGC-2017), ADHD, and other
mental health conditions.

Note 3, Figure 3: Path diagrams representing results from genomic multiple regression analyses
using genomicSEM. The genetic effects of the iPSYCH autism GWAS were regressed on the genetic
effects of the PGC-2017 autism GWAS, and FinnGen GWAS simultaneously. Single-headed arrows
indicate conditional genetic associations between the explanatory variables and the iPSYCH autism
GWAS. Numbers represent standardised correlation coefficients, with standard errors in parentheses.
Genetic associations between the PGC autism GWAS and FinnGen GWAS are shown with a
two-headed arrow connecting them. The two-headed arrows connecting the genetic component of the
iPSYCH autism GWAS to itself represent the residual genetic variance unexplained by the genetic
influence of either the PGC-2017 autism GWAS or other mental health conditions. Solid lines indicate
significant genetic associations, while dashed lines indicate non-significant associations.

3. Clinical factors: Intellectual disability and co-occurring developmental
delays
Several sensitivity analyses indicate that the findings are not driven by co-occurring
intellectual disability (ID) and developmental delays.

● In longitudinal analyses of birth cohorts, none of the autistic participants had
ID. Furthermore, in regression models, the first principal component of a
child's cognitive aptitude does not explain a significant proportion of the
variance in age at autism diagnosis.
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● In SPARK, we observed no significant attenuation of the SNP-based
heritability in age at autism diagnosis when accounting for co-occurring ID,
and age at attaining developmental milestones.

● In SPARK, we find similar over-transmission of the polygenic scores (PGS) for
iPSYCHbefore11and iPSYCHafter10 among autistic individuals with and without ID.

● In SPARK, PGS for iPSYCHafter10 has a similar positive association with age at
autism diagnosis even after excluding individuals with ID and limited verbal
ability (Supplementary Table 15).

4. Clinical factors: Country/continent level differences in diagnosis
Our analyses indicate that the results do not primarily reflect differences in diagnostic
practices across countries.

● In the longitudinal analyses of birth cohorts, we find similar results in cohorts
from the UK, Ireland, and Australia. Notably, the UK uses the ICD, and
Australia primarily uses the DSM.

● The pattern of genetic correlation among different autism GWAS was not
explained by country level/cohort differences. For example, iPSYCHbefore9 had
significantly higher genetic correlation with the PGC-2017 (rg = 0.90, s.e.m =
0.09) than with iPSYCHafter11 (rg = 0.70, s.e.m = 0.05). Similarly, the
SPARKafter10 had higher genetic correlation with iPSYCHafter10 (rg = 0.83, s.e.m
= 0.17) than with SPARKbefore6 (rg = 0.31, s.e.m = 0.19).

● We further tested this using genomicSEM. In the genomicSEM analyses, a
geography model wherein we tested the hypothesis that cohorts from Europe
will load onto one factor and cohorts predominantly from North America will
load onto a second factor had poor fit statistics.

5. Demographic factors: Sex
We ran several sensitivity analyses to confirm that the results were not primarily
picking up sex differences.

● In the longitudinal analyses of birth cohorts, both latent growth curve models
and GMM analyses conducted only in autistic males identified consistent
results to the analyses conducted in both males and females.

● In the latent growth curve analyses, age of diagnosis stratified models better
fit the data compared to sex-stratified models.

● In birth cohorts, multiple regression and mediation analyses indicated that
trajectories explained a larger proportion of the variance in age at autism
diagnosis than sex.

● In genetic analyses, we find a significant SNP-based heritability for age at
autism diagnosis even after accounting for sex as a covariate.

● PGS for iPSYCHafter11 is associated with later autism diagnosis in both autistic
males and females in the SPARK cohort.

● The pattern of genetic correlation between age at autism diagnosis and the
various GWAS did not align well with the sex ratios in the various GWAS. For
example, age at autism diagnosis in SPARK had a higher positive genetic
correlation with iPSYCH males-only autism GWAS (rg = 0.05, s.e.m = 0.10)
compared to PGC-2019 (rg = -0.67, s.e.m = 0.12). Given that PGC-2019 had a
greater proportion autistic females than the iPSYCH males-only autism
GWAS, these findings are incongruous with the hypothesis that the age of
diagnosis GWAS is picking up sex differences.
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● The pattern of genetic correlations among the different autism GWAS was not
explained by sex differences. For example, the female-stratified autism GWAS
in iPSYCH had higher genetic correlation with the male-stratified autism
GWAS (rg = 0.80, s.e.m = 0.08) than with the sex-unstratified PGC-2017 (rg =
0.48, s.e.m = 0.12) or the SPARK autism GWAS (rg = 0.50, s.e.m = 0.12).

6. Demographic factors: Parental characteristics
We ran a few analyses to understand if parental characteristics can impact age at
autism diagnosis, primarily through gene-environment correlations.

● In the longitudinal analyses of birth cohorts, controlling for ethnic minority
status15, parental socio-economic status, material deprivation, and maternal
age at birth does not impact the variance explained by the GMM latent
classes on age at autism diagnosis (Supplementary Table 25).

● In SPARK, controlling for parental socio-economic status and neighbourhood
deprivation does not significantly attenuate the SNP heritability for age at
autism diagnosis.
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Note 4: GMM river plots and explanation
In the Growth Mixture Model analyses in MCS-expanded and MCS-imputed, the
optimal GMM identified more than two latent trajectory classes in some SDQ
subscales (Supplementary Tables 3 and 5).

River plots (Note 4, Figures 1 - 8) tracking changes in trajectory latent class
memberships between the two-class model and the optimal model (three or four
latent) for different subscales show that the additional latent classes were
predominantly subsets of the original two latent classes. These are indicative that
although two broad trajectories remain even with expanded sample sizes, these can
be further decomposed into smaller groups with different trajectories.

For instance, in the GMM analyses of the SDQ Conduct problems subscale on
MCS-expanded, the two-group model identified two trajectories: one with stably
decreasing conduct problems (green latent class) and another with accelerating
conduct problems, particularly after age 7 (purple latent class) (Note 4, Figure 1A).
The optimal three-trajectory model further refined these trajectories. It identified a
consistently low conduct problems group, largely composed of individuals from the
green class in the two-trajectory model (Note 4, Figure 3A). Children in the late
childhood emergent group predominantly remained in the overall increasing class
(purple in both models). Stacked bar charts indicated that more children in the
excessive increasing groups (purple) were diagnosed at or after age 7 in both
models (Note 4, Figure 1). Additionally, a distinct third group with initially high but
progressively decreasing conduct problems was identified; their symptoms declined
to become the second-lowest (blue latent class) (Note 4, Figure 1B). With their
aligned decreasing trend, this group appeared to be a subset of the generally
decreasing trajectory group (green class in the two-trajectory model) (Note 4, Figure
3A).
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Note 4, Figure 1: A: Two-group longitudinal growth mixture model of total SDQ Conduct Problems
score among autistic individuals in the MCS-expanded. B: The optimal longitudinal growth mixture
model of total SDQ Conduct Problems score among autistic individuals in MCS-expanded,
demonstrating three latent trajectories. C-D: Stacked bar charts providing proportion of individuals
who had been diagnosed as autistic at specific ages by the latent classes membership from the
corresponding growth mixture models. Darker colours indicate males and lighter colours indicate
females.

Note 4, Figure 2: A: Two-group longitudinal growth mixture model of total SDQ Prosocial Behaviours
score among autistic individuals in MCS-expanded. B: The optimal longitudinal growth mixture model
of total SDQ Conduct Problems score among autistic individuals in MCS-expanded, demonstrating
three latent trajectories. C-D: Stacked bar charts providing proportion of individuals who had been
diagnosed as autistic at specific ages by the latent classes membership from the corresponding
growth mixture models. Darker colours indicate males and lighter colours indicate females.

17



Note 4, Figure 3: River plots (Sankey Plots) of Conduct Problems (A) and Prosocial Behaviours (B)
for expanded MCS, illustrating the changes in latent trajectory group memberships between the
two-group GMM and the optimal three-group GMM in the MCS-expanded. Colours are consistent with
Note 4, Figures 1 and 2.

Note 4, Figure 4: A: Two-group longitudinal growth mixture model of total SDQ Emotional Symptoms
score among autistic individuals in the MCS-imputed. B: Three-group longitudinal growth mixture
model of total SDQ Emotional Symptoms score among autistic individuals in MCS-imputed C: The
optimal longitudinal growth mixture model of total SDQ Emotional Symptoms score among autistic
individuals in MCS-imputed, demonstrating four latent trajectories. D-F: Stacked bar charts providing
proportion of individuals who had been diagnosed as autistic at specific ages by the latent classes
membership from the corresponding growth mixture models. Darker colours indicate males and lighter
colours indicate females.
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Note 4, Figure 5: A: Two-group longitudinal growth mixture model of total SDQ Conduct Problems
score among autistic individuals in MCS-imputed B: The optimal longitudinal growth mixture model of
total SDQ Conduct Problems score among autistic individuals in MCS-imputed, demonstrating three
latent trajectories. C-D: Stacked bar charts providing proportion of individuals who had been
diagnosed as autistic at specific ages by the latent classes membership from the corresponding
growth mixture models. Darker colours indicate males and lighter colours indicate females.

Note 4, Figure 6: A: Two-group longitudinal growth mixture model of total SDQ Peer Relationship
Problems score among autistic individuals in MCS-imputed. B: The optimal longitudinal growth
mixture model of total SDQ Peer Relationship Problems score among autistic individuals in the
MCS-imputed, demonstrating three latent trajectories. C-D: Stacked bar charts providing proportion of
individuals who had been diagnosed as autistic at specific ages by the latent classes membership
from the corresponding growth mixture models. Darker colours indicate males and lighter colours
indicate females.
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Note 4, Figure 7: A: Two-group longitudinal growth mixture model of total SDQ Prosocial Behaviours
score among autistic individuals in MCS-imputed. B: Three-group longitudinal growth mixture model of
total SDQ Prosocial Behaviours score among autistic individuals in MCS-imputed. C: The optimal
longitudinal growth mixture model of total SDQ Prosocial Behaviours score among autistic individuals
in MCS-imputed, demonstrating four latent trajectories. D-F: Stacked bar charts providing proportion
of individuals who had been diagnosed as autistic at specific ages by the latent classes membership
from the corresponding growth mixture models. Darker colours indicate males and lighter colours
indicate females.

Note 4, Figure 8: River plots (Sankey Plots) of Emotional Symptoms (A), Conduct Problems (B),
Peer Relationship Problems (C) and Prosocial Behaviours (D) for MCS-imputed, illustrating changes
in latent trajectory group memberships between the two-group GMM and the optimal GMM (three or
four groups identified). Colours are in alignment with Note 4, Figure 4-7.
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Note 5: Mediation analyses
In multiple regression analysis, there were relatively modest effects of sex and other
socio-demographic variables on age at autism diagnosis. Also, as discussed above
in Note3, socio-demographic factors such as socio-economic statuses (SES) or
ethnicities may have impacts on developmental profiles (as reflected in latent class
identified in GMMs), which could in turn affect age at diagnosis. To test this potential
causal relationship, we conducted a mediation analysis with the latent classes
serving as mediators. Specifically, using structural equation modelling, we modelled
the direct effects of latent classes and socio-demographic variables on age at
diagnosis of autism, as well as indirect effects through affecting latent class
memberships of SDQ total and subscale scores. Utilising the lavaan package (v.
0.6.17) in R, we adhered to the methodology outlined in ref16, to assess the strength
and significance of four effect sets: specific indirect, total indirect, direct, and total
effects (Supplementary Table 8). We employed bootstrap analysis, a nonparametric
sampling procedure, to ascertain the significance of the indirect effects.

However, most socio-demographic variables did not have significant direct or indirect
effects, underscoring the small effect sizes of these factors in explaining the age at
autism diagnosis in our samples. Overall, results of both multiple regression and
mediation analysis suggest that neurodevelopmental trajectories explain a relatively
large proportion of variance in age at autism diagnosis (Supplementary Table 8).
Consistent results were obtained for the MCS-expanded and MCS-imputed. In
ADHD, neurodevelopmental trajectories and other socio-demographic factors did not
have a significant impact on age at ADHD diagnosis, explaining a much smaller
proportion of variation compared to autism. The results were primarily driven by the
hyperactivity/inattention and peer relationship problems subscales, demonstrating
relative specificity of the findings to autism (Supplementary Table 4).
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Note 6: Sensitivity analyses of the genetic correlation results
We conducted genetic correlation analyses between individual age of diagnosis
stratified autism GWAS in iPSYCH and SPARK and cognitive, psychiatric and
neurodevelopmental phenotypes. These results are provided in Note 6, Figure 1.
We note consistent results between iPSYCH and SPARK for all phenotypes except
for educational attainment and cognitive aptitude. The possible differences in SPARK
may be attributed to participation bias - more educated individuals may be more
likely to both pursue an autism diagnosis and participate in a study like SPARK.

Note 6, Figure 1: Genetic correlation between age at diagnosis stratified autism GWAS and
other mental health, neurodevelopmental, and cognition related traits. Points indicate the
estimate, whiskers indicate 95% confidence intervals, and points with asterisk (*) indicates significant
associations with Benjamini-Yekutieli adjustment. Solid lines represent GWAS from iPSYCH. Dotted
lines represent GWAS from SPARK.
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We also used genomicSEM to investigate if the association between iPSYCHafter10
and mental health phenotypes is attenuated after conditioning on the genetic effects
of ADHD.

Note 6, Figure 2: Genetic correlation between iPSYCHafter10 autism GWAS and other traits
before and after conditioning on the genetic effects of ADHD. Points indicate the estimate,
whiskers indicate 95% confidence intervals, and points with an asterisk (*) indicate significant
associations after Benjamini-Yekutieli adjustment. Solid lines represent genetic correlation estimates
from iPSYCHafter10 that have not been conditioned on the genetic effects of ADHD. Dotted lines
represent genetic correlation estimates from iPSYCHafter10 after conditioning on the genetic effects of
ADHD
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Summary

We wanted to understand why some autistic people receive a diagnosis only in late
childhood or afterwards. We knew, from previous research, that one reason for
variable age at autism diagnosis is because behavioural features that typically lead
to an autism diagnosis change from infancy to adolescence.

To better understand how changes in behavioural features can impact when
someone receives an autism diagnosis, we analysed data from four long-term
studies that followed children from birth through adolescence. In all four studies,
children were born around the same time. We measured behavioural features using
a parent/caregiver reported questionnaire called the Strengths and Difficulties
Questionnaire, measured at multiple time points as the children grew up.

We found that autistic children tended to follow one of two different behavioural
trajectories as they grew up. One group showed higher behavioural difficulties from a
very young age that remained relatively stable over time. Children in this group were
more likely to be diagnosed with autism at an earlier age.

The other group did not show as many difficulties in early childhood, but began to
struggle more with social skills, emotional problems, and peer relationships in late
childhood and adolescence. Those in this second group were more commonly
diagnosed with autism later, often in adolescence.

We then looked at genetic factors and found that a person's genetic profile correlates
with their age of autism diagnosis. We identified two correlated genetic profiles, or
"polygenic factors", associated with autism that seem to correspond to the two
behavioural trajectories.

One genetic factor was linked to being diagnosed earlier and having more social
communication difficulties in infancy. The other genetic factor was associated with a
later autism diagnosis, more emotional and peer problems in adolescence, and
higher rates of other conditions like ADHD and trauma.

These findings suggest there are different genetic influences that can predispose
some people to show clear autism traits from a very young age, leading to an earlier
diagnosis. For others, genetic influences may alter which autism features emerge
and when. Some of these children may have features that are not picked up by
parents or caregivers until they cause significant distress in late childhood or
adolescence. These children seem to navigate childhood reasonably typically, but
once faced with the complex social demands of adolescence, autism characteristics
emerge more prominently at that point.

Our study suggests that the age when someone is diagnosed with autism seems to
depend on a combination of their genetic factors influencing developmental
trajectories, socio-behavioural challenges emerging at different points, and other
factors still to be fully understood. Recognising this diversity and variability in autism
can help more timely diagnosis and provide more personalised support for autistic
people.
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FAQs

About the Study

Why did you do this study?
We wanted to understand why some autistic people receive a diagnosis only in late
childhood or later. We knew that there is some epidemiological and some qualitative
studies on the topic. In parallel, we were also aware of studies that show that social,
emotional, and behavioural features change over the course of one's life, especially
during childhood and adolescence. Parents and caregivers typically seek an autism
diagnosis when they observe social, emotional, and behavioural features in their
children that need support. We wondered if changes in these features during early
life partly contribute to when someone receives an autism diagnosis. Given that how
social, emotional, and behavioural features change over a young person’s life is
partly due to their genetics, we also wanted to understand how genetic variants can
impact when these features emerge, leading to an autism diagnosis.

Simply put, the model we studied was this:

Genetic variants → Variable developmental trajectories over time → Variable
emergence of autism features → Variable age at autism diagnosis

What did you find?

The main findings of this study are:

● There are at least two behavioural trajectories that autistic children tend to
follow - one group shows elevated social, emotional, and behavioural
difficulties from very early childhood, while the other group does not show as
many issues until late childhood or adolescence.

● A person's age of being diagnosed with autism is partly explained by genetic
factors and their neurodevelopmental trajectories. However, we still do not
know many factors that explain when someone receives an autism diagnosis.

● We identified two correlated genetic profiles or "polygenic factors" that
correspond to the two behavioural trajectories. One is linked to earlier autism
diagnosis, social communication difficulties in infancy, and higher cognitive
abilities. The other is associated with later diagnosis, increasing
emotional/peer problems in adolescence, and higher rates of co-occurring
conditions like ADHD and PTSD.

What are the implications of this study?
The findings suggest there is diversity in how autism manifests and emerges across
childhood and adolescence, influenced by a person's unique genetic makeup. This
has implications for:

● Improving our understanding of the diversity and variability seen in autism.
● Recognising that there is no one route to diagnosing autism. Multiple

developmental pathways, some of which may fully emerge only later in
childhood, can lead to an autism diagnosis.
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● The need for personalised support and intervention approaches tailored to
different developmental trajectories.

● Considering age of autism diagnosis as a factor in research on sex
differences, co-occurring conditions, etc. in autism.

Why did you run genetic analyses?
We ran genetic analyses for a few key reasons:

● The behavioural trajectory data suggested that age of autism diagnosis is
influenced by developmental factors. Since many developmental traits have a
genetic component, we wanted to test if age of diagnosis itself is partly
influenced by their genetics.

● We further sought to understand what specific genetic influences underlying
age at autism diagnosis are shared with different behavioural trajectories and
developmental milestones in the general population.

● We wanted to understand if studying the genetics of age at autism diagnosis
could help explain some of the heterogeneity and diversity seen in the autism
genetics studies, including the differential shared genetics with mental health
conditions.

● Finally, genetic methods help to provide additional support to results observed
from studying the changes in behavioural trajectories among autistic
individuals in four long-term bi.

What genetic analyses did you run?
We used a few different genetic methods. Some of the analyses we ran are:

● Estimating the proportion of the variance in age at autism diagnosis explained
by the genetic variants studied. This is called genetic heritability or SNP
heritability

● Looking at the shared genetics (called genetic correlation) between age at
diagnosis and various mental health conditions. In other words, do the genetic
variants that increase or decrease the age at autism diagnosis also increase
or decrease the genetic propensity for various mental health conditions?

● Using a method called polygenic scores to create a summed index of the
genetic likelihood for autism, ADHD, and mental health conditions and test
their association with age at autism diagnosis.

● Running a statistical method called genetic structural equation model that
looks at the relationship between different genetic studies to identify two
correlated genetic factors linked to early vs later diagnosis.

● Analysing very rare genetic variants and their links to age at autism diagnosis.

What are the limitations of the study?
Some key limitations of this study are:

● The findings do not fully explain all of the variance in age at diagnosis,
suggesting other contributing factors.
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● We were unable to measure and study the effect of potentially non-genetic
influences such as camouflaging/masking, stigma, healthcare access, waiting
lists etc. on age at autism diagnosis.

● Analyses were limited by sample sizes for some datasets therefore we cannot
assume that all our results apply to the entire population. For example, the
number of autistic individuals in the long-term studies were around a hundred
in each cohort.

● We observed some differences in the variance in age at autism diagnosis
explained by the factors studied across cohorts. This suggests that there are
cultural and geographic features across cohorts that impact these findings.

● We still do not fully understand what are the early developmental features that
lead to a diagnosis of autism in late childhood/adolescence.

● Although we used the largest genetic datasets to date, it is possible that there
may be more than two underlying genetic latent traits that contribute to when
some of these features that lead to an autism diagnosis emerge, leading to
differences in when an autism diagnosis is made.

● All datasets we used were from developed/western countries. It is unclear if
we will find similar findings in countries from other parts of the world.

Although the study does not provide the full picture of the factors that contribute to
age at autism diagnosis, it is an important first step towards understanding all the
different factors that may impact when someone would receive an autism diagnosis.

Implications of the study

What is the impact of factors like camouflaging, waiting time, stigma on age at
autism diagnosis?
The study did not directly measure the impact of factors like camouflaging autistic
traits, delays in assessment/diagnosis waitlists, or stigma on age at autism
diagnosis. However, we acknowledge that these likely play a role, in addition to the
genetic, some demographic, and developmental factors that we have studied.

It is important to note that in this study, genetics explain only about 11% of the total
variation in when someone receives an autism diagnosis. Similarly, developmental
and some demographic factors explain between 10 - 60% of the variance in age at
autism diagnosis across cohorts, with considerable variation among the cohorts
studied. Taken together, it is clear that there are several other unmeasured factors
that contribute to when someone receives an autism diagnosis.

More research is needed to understand how much these social/environmental
variables influence the timing of when someone receives an autism diagnosis.

Are adolescent and childhood diagnosed autism two different types of autism?
No, our findings do not suggest that autism diagnosed in childhood versus
adolescence are completely distinct conditions. Rather, the findings indicate there
are at least two main genetic and developmental profiles. One of these profiles
predispose some autistic individuals to showing clear traits from very early childhood
leading to earlier diagnosis, while autistic individuals with the second profile may not
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exhibit prominent characteristics until adolescence resulting in later diagnosis.
However, the polygenic factors identified were moderately correlated.

I am/my child is potentially autistic, what are the implications of this study?
For individuals who may be autistic or have an autistic child, our findings underscore
that there can be diversity in how and when autism traits manifest across
development. Some key implications are:

● Closely monitoring a child's social/emotional development is important, as
difficulties can potentially emerge later even if not apparent in early years.

● Consider getting an evaluation if difficulties arise - although some of these
difficulties may be transient, they may be linked to other difficulties that
emerge later on.

● Understanding a later autism diagnosis does not mean someone's autistic
traits are any less valid.

● Different support approaches may be helpful depending on the child's unique
profile and trajectory.

Can you use the findings from this study to diagnose/predict autism?
No, the findings from this study alone cannot be used to diagnose or definitively
predict autism in individuals. The genetic scores and developmental trajectory
patterns provide insights at a population level, but there is still substantial variability
across individuals. Formal autism diagnostic evaluations by qualified professionals
are still required.

What are some potential misinterpretations of the study?
Some potential misinterpretations of the study's findings include:

● Assuming all autistic children will follow one of just two rigid trajectories, when
there is more variability.

● Families delaying seeking evaluation based on expectation that difficulties
may naturally resolve.

● Oversimplifying the results to suggest there are two completely distinct "types"
of autism.

● Overemphasising genetics while minimising environmental/social influences
on age at autism diagnosis.

● Trying to use genetic analyses to self-diagnose or make predictions at an
individual level.

● Assuming that autistic individuals can be subgrouped based on when they
were diagnosed. Age at diagnosis is merely a loose index of different
emergence of developmental trajectories. Several other factors can influence
the age of diagnosis in a person.
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Glossary of terms
Trajectories: Trajectories are the different paths or ways that things can develop over
time. In this study, we found two different paths for how autistic children's behaviours
and social skills changed as they got older.

Genetic variant: A genetic variant is a difference in someone's genes or DNA code
compared to other people. These small variations can sometimes affect things like a
person's traits or health.

GWAS: This is a way for scientists to look at all of a person's genes to try and find
which genetic variants are linked to certain traits or conditions, like autism.

Polygenic score: This is a number that shows how many genetic variants linked to a
trait, like autism, a person has. A higher number means more of those variants.

De novo variant: These are new genetic variants that weren't inherited from the
person's parents, but appeared newly in a person’s DNA.

Genetically inferred ancestry: This refers to using a person's genes to figure out what
broad geographic regions their ancestors likely came from a long time ago.

Latent trait: This is an unseen characteristic that cannot be directly measured but
can be calculated using other correlated measured characters.
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Supplementary Figure 1: Conduct problems

A - C: Mean total conduct problem scores in autistic individuals diagnosed in childhood (blue) and
adolescence (orange), and individuals without an autism diagnosis (green) in the MCS-C (A), LSAC-B
(B), and LSAC-K (C) cohorts. Grey regions indicate 95% confidence intervals. D - E: Longitudinal
growth mixture models of total conduct problem scores among autistic individuals, demonstrating the
presence of two groups (green indicating early childhood emergent latent class and purple indicating
late childhood emergent latent class) in the MCS-C (D), LSAC-B (E). Only a single latent group was
identified in LSAC-K and hence not plotted. F-G: Stacked bar charts providing proportion of
individuals who had been diagnosed as autistic at specific ages by the latent classes membership
from the growth mixture models in MCS-C (F) and LSAC-B (G).
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Supplementary Figure 2: Emotional symptoms

A - C: Mean total emotional symptom scores in autistic individuals diagnosed in childhood (blue) and
adolescence (orange), and individuals without an autism diagnosis (green) in the MCS (A), LSAC-B
(B), and LSAC-K (C) cohorts. Grey regions indicate 95% confidence intervals. D - F: Longitudinal
growth mixture models of total emotional symptoms scores among autistic individuals, demonstrating
the presence of two groups (green indicating early childhood emergent latent class and purple
indicating late childhood emergent latent class) in the MCS (D), LSAC-B (E) and LSAC-K (F) cohorts.
G - J: Stacked bar charts providing proportion of individuals who had been diagnosed as autistic at
specific ages by the latent classes membership from the growth mixture models in MCS (G), LSAC-B
(H), and LSAC-K (I) cohorts. Darker colours indicate males and lighter colours indicate females.
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Supplementary Figure 3: Hyperactivity/Inattention

A - C: Mean total emotional symptom scores in autistic individuals diagnosed in childhood (blue) and
adolescence (orange), and individuals without an autism diagnosis (green) in the MCS (A), LSAC-B
(B), and LSAC-K (C) cohorts. Grey regions indicate 95% confidence intervals. D - F: Longitudinal
growth mixture models of total emotional symptoms scores among autistic individuals, demonstrating
the presence of two groups (green indicating early childhood emergent latent class and purple
indicating late childhood emergent latent class) in the MCS (D), LSAC-B (E) and LSAC-K (F) cohorts.
G - J: Stacked bar charts providing proportion of individuals who had been diagnosed as autistic at
specific ages by the latent classes membership from the growth mixture models in MCS (G), LSAC-B
(H), and LSAC-K (I) cohorts. Darker colours indicate males and lighter colours indicate females.
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Supplementary Figure 4: Peer relationship problems

A - C: Mean peer relationship scores in autistic individuals diagnosed in childhood (blue) and
adolescence (orange), and individuals without an autism diagnosis (green) in the MCS-C (A), LSAC-B
(B), and LSAC-K (C) cohorts. Grey regions indicate 95% confidence intervals. D - E: Longitudinal
growth mixture models of peer relationship scores among autistic individuals, demonstrating the
presence of two groups (green indicating early childhood emergent latent class and purple indicating
late childhood emergent latent class) in the MCS-C (D), LSAC-B (E). Only a single latent group was
identified in LSAC-K and hence not plotted. F-G: Stacked bar charts providing proportion of
individuals who had been diagnosed as autistic at specific ages by the latent classes membership
from the growth mixture models in MCS-C (F) and LSAC-B (G).
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Supplementary Figure 5: Prosocial behaviour

A - C: Mean total prosocial behaviour scores in autistic individuals diagnosed in childhood (blue) and
adolescence (orange), and individuals without an autism diagnosis (green) in the MCS (A), LSAC-B
(B), and LSAC-K (C) cohorts. Grey regions indicate 95% confidence intervals. D - F: Longitudinal
growth mixture models of total prosocial behaviour scores among autistic individuals, demonstrating
the presence of two groups (green indicating early childhood emergent latent class and purple
indicating late childhood emergent latent class) in the MCS (D), LSAC-B (E) and LSAC-K (F) cohorts.
G - J: Stacked bar charts providing proportion of individuals who had been diagnosed as autistic at
specific ages by the latent classes membership from the growth mixture models in MCS (G), LSAC-B
(H), and LSAC-K (I) cohorts. Darker colours indicate males and lighter colours indicate females.
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Supplementary Figure 6: Results from GUI

Mean SDQ and subscale scores in autistic individuals diagnosed in childhood (blue) and
adolescence (orange), and individuals without an autism diagnosis (green) in the GUI cohorts. (A)
SDQ total scores; (B) Emotional symptoms scores; (C) Conduct problem scores; (D)
Hyperactivity/inattention scores; (E) Peer problem scores; (F) Prosocial behaviour scores.
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Supplementary Figure 7: Sensitivity analyses for ADHD

A - C: Mean total SDQ (A), emotional symptoms (B), and conduct problem (C) scores in individuals
diagnosed with ADHD in childhood (blue) and adolescence (orange), and individuals without an
ADHD diagnosis (green) in the MCS cohort. Grey regions indicate 95% confidence intervals. D - F:
Longitudinal growth mixture models of total SDQ (D), emotional symptoms (E), and conduct problem
(F) scores among individuals with an ADHD diagnosis, demonstrating the presence of two groups
(green indicating early childhood emergent latent class and purple indicating late childhood emergent
latent class) in the MCS. G - J: Stacked bar charts providing proportion of individuals who had been
diagnosed with ADHD at specific ages by the latent classes membership from the growth mixture
models of total SDQ (G), emotional symptoms (H) and conduct problem (J) scores in the MCS. Darker
colours indicate males and lighter colours indicate females.
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Supplementary Figure 8: Sensitivity analyses for ADHD (cont.)

A - C: Mean hyperactivity/inattention (A), peer relationship problems (B), and prosocial behaviours (C)
scores in individuals diagnosed with ADHD in childhood (blue) and adolescence (orange), and
individuals without an ADHD diagnosis (green) in the MCS cohort. Grey regions indicate 95%
confidence intervals. D - F: Longitudinal growth mixture models of hyperactivity/inattention (D), peer
problems (E), and prosocial behaviour (F) scores among individuals with an ADHD diagnosis,
demonstrating the presence of two groups (green indicating early childhood emergent latent class and
purple indicating late childhood emergent latent class) in the MCS. G - J: Stacked bar charts providing
proportion of individuals who had been diagnosed with ADHD at specific ages by the latent classes
membership from the growth mixture models of hyperactivity/inattention (G), peer problems (H) and
prosocial behaviour (J) scores in the MCS. Darker colours indicate males and lighter colours indicate
females.
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Supplementary Figure 9: Genetic correlation between age at autism diagnosis
and autism GWAS ordered by sex and median age at diagnosis.

Genetic correlation between age at autism diagnosis and autism GWAS. A. GWAS have been
ordered by the proportion of autistic female individuals ranging from 1 (iPSYCH_females) to 0
(iPSYCH_males). B. GWAS have been ordered by the approximate median age at autism diagnosis
ranging from early twenties (FinnGen) to under 4 years of age (SPARK and PGC 2017).

39



Supplementary Figure 10: GenomicSEM models with alternate GWAS

A. Path diagram illustrating the two correlated genetic factor models for autism, using five (A) and six
(B) minimally overlapping autism GWAS datasets. F1 = Factor 1, F2 = Factor 2. One-headed arrows
depict the regression relationship pointing from the independent variables to the dependent variables.
The numbers are the regression coefficients of the factor loadings, with the standard errors provided
in parenthesis. Covariance between variables are represented as two-headed arrows linking the
variables. The numbers on the two-headed arrows can be interpreted as genetic correlation estimates
with the standard errors provided in parenthesis. Residual variances are represented using a
two-headed arrow connecting the variable to itself. Standard errors are provided in parenthesis.
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